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a b s t r a c t

Fast cortical rhythms with stochastic and intermittent neural discharges have been ob-
served in electric recordings of brain activity. For these fast sparsely synchronized os-
cillations, individual neurons fire spikings irregularly and sparsely as Geiger counters, in
contrast to fully synchronized oscillations where individual neurons exhibit regular firings
like clocks. We study the effect of network architecture on these fast sparsely synchro-
nized rhythms in an inhibitory population of suprathreshold fast spiking (FS) Izhikevich
interneurons (which fire spontaneously without noise). We first employ the conventional
Erdös–Rényi random graph of suprathreshold FS Izhikevich interneurons for modeling the
complex connectivity in neural systems, and study emergence of the population synchro-
nized states by varying both the synaptic inhibition strength J and the noise intensity D.
Fast sparsely synchronized states of relatively high degree are found to appear for large val-
ues of J and D. However, in a real cortical circuit, synaptic connections are known to have
complex topology which is neither regular nor random. Hence, for fixed values of J and D
we consider the Watts–Strogatz small-world network of suprathreshold FS Izhikevich in-
terneurons which interpolates between regular lattice and random graph via rewiring, and
investigate the effect of small-world synaptic connectivity on emergence of fast sparsely
synchronized rhythms by varying the rewiring probability p from short-range to long-
range connection. When passing a small critical value p∗c , fast sparsely synchronized pop-
ulation rhythms are found to emerge in small-world networks with predominantly local
connections and rare long-range connections. This transition to fast sparse synchronization
is well characterized in terms of a realistic ‘‘thermodynamic’’ order parameter. For further
understanding of this transition, we also investigate the effect of long-range connections
on dynamical correlations between neuronal pairs, and find that for p > p∗c , global syn-
chronization appears in the whole population because the spatial correlation length cov-
ers the whole system thanks to sufficient number of long-range connections. The degree
of fast sparse synchronization for p > p∗c is also measured in terms of a realistic ‘‘sta-
tistical–mechanical’’ spiking measure. As p is increased from p∗c , the degree of population
synchrony becomes higher, while the axon ‘‘wire length’’ of the network also increases. At
a dynamical-efficiency optimal value p∗E , there is a trade-off between the population syn-
chronization and the wiring economy, and hence an optimal fast sparsely-synchronized
rhythm is found to occur at a minimal wiring cost in an economic small-world network.
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1. Introduction

Recently, brain rhythms have attracted much attention [1]. Particularly, we are interested in fast sparsely synchronized
cortical rhythms, associated with diverse cognitive functions [2,3]. In some experimental data [4–10], synchronous small-
amplitude fast oscillations (e.g., gamma rhythm (30–100 Hz) during awake behaving states and rapid eye movement sleep
and sharp-wave ripple (100–200 Hz) during quiet sleep and awake immobility) have been observed in local field potential
recordings, while individual neuron recordings have been found to show stochastic and intermittent spike discharges. Thus,
single-cell firing activity differs markedly from the population oscillatory behavior. We note that these sparsely synchro-
nized rhythms are in contrast to fully synchronized rhythms. For the fully synchronized rhythms, individual neurons fire
regularly at the population frequency like the clock oscillators [11]. Hence, fully synchronized oscillations may be well de-
scribed by using the conventional coupled-oscillator model composed of suprathreshold spiking neurons above a threshold
in the absence of noise or for weak noise [12]. However, such coupled-oscillator models seem to be inappropriate for de-
scribing sparse synchronization because of stochastic and intermittent individual neural discharges like the Geiger counters.
By taking an opposite view from that of coupled oscillators, the authors in Refs. [13–20] developed a framework appropri-
ate for description of sparse synchronization. When the external noise is strong, suprathreshold spiking neurons discharge
irregular firings as Geiger counters, and then the population state becomes unsynchronized. However, as the inhibitory re-
current feedback becomes sufficiently strong, a synchronized population state with stochastic and sparse neural discharges
emerges. In this way, under the balance between strong external excitation and strong recurrent inhibition, fast sparse syn-
chronization was found to occur in networks of suprathreshold neurons for both cases of random coupling [13–16] and
global coupling [17–20]. Similar sparsely synchronized rhythms were also found to appear through cooperation of noise-
induced spikings of subthreshold Morris–Lecar neurons (which cannot fire spontaneously without noise) [21–23].

In this paper, we study the effect of network architecture on fast sparsely synchronized cortical rhythms in an inhibitory
population of suprathreshold fast spiking (FS) Izhikevich interneurons [24–27]. The conventional Erdös–Rényi randomgraph
has been usually used for modeling complex connectivity occurring in diverse fields such as social, biological, and techno-
logical networks [28]. So, we first consider a random network of suprathreshold FS Izhikevich interneurons, and investigate
occurrence of the population synchronized states by varying the inhibition strength and the noise intensity. Fast sparsely
synchronized oscillations are found to appearwhen both the inhibition and the noise are sufficiently strong. Global efficiency
of information transfer becomes high for randomconnection because its average path length (i.e., typical separation between
two neurons represented by average number of synapses between two neurons along theminimal path) is short due to long-
range connections [29,30]. However, randomnetworks have poor clustering (i.e., low cliquishness of a typical neighborhood)
and they are non-economic ones because the (axon) wiring cost becomes expensive due to appearance of short-range and
long-range connections with equal probability [31,32]. In a real cortical circuit, synaptic connections are known to have
complex topology which is neither regular nor completely random [31–39]. Hence, we consider the Watts–Strogatz model
for small-world networks which interpolates between regular lattice with high clustering and random graph with short
path length via rewiring [40–42]. TheWatts–Strogatz model may be regarded as a cluster-friendly extension of the random
network by reconciling the six degrees of separation (small-worldness) [43,44] with the circle of friends (clustering). Many
recent works on various subjects of neurodynamics have been done in small-world networks with predominantly local con-
nections and rare long-distance connections [38,45–56]. Here,we investigate the effect of small-world connectivity on emer-
gence of fast sparsely synchronized rhythms by varying the rewiring probability p from local to long-range connections. As p
is increased, long-range short-cuts that connect distant neurons begin to appear, and the average path length can be dramat-
ically decreased only by a few short-cuts. Thus, global effective communication between distant neurons may be available
via shorter synaptic paths. Eventually, when p passes a critical value p∗c , fast sparsely synchronized rhythm emerges in the
whole population because dynamical correlation length covers the whole system thanks to sufficient number of long-range
connections. However, with increasing p, the (axon)wiring length also becomes longer due to appearance of long-range con-
nections. Longer axonal projections are expensive due to their material and energy costs. Hence, we must take into account
the (axon) wiring economy for the dynamical efficiency because wiring cost is an important constraint of the brain evolu-
tion [1,2,31,23,32,47,50,57–62]. At a dynamical-efficiency optimal value p∗E an optimal fast sparse synchronization is found
to occur via trade-off between synchrony andwiring cost at aminimalwiring cost in an economic small-world network [32].

This paper is organized as follows. In Section 2, we describe an inhibitory population of suprathreshold FS Izhikevich
interneurons. The Izhikevich neurons are not only biologically plausible, but also computationally efficient [24–27], and
they interact through inhibitory GABAergic synapses (involving the GABAA receptors). In Section 3, we first consider the
conventional Erdös–Rényi random graph [28], and study appearance of the population synchronized states by varying the
noise intensity D and the inhibition strength J . We fix J and D at appropriately strong values where sparsely synchronized
rhythms of relatively high degree emerge. Then, we consider theWatts–Strogatz model for the small-world network which
interpolates between the regular lattice and the random graph [40], and investigate the effect of the small-world connectiv-
ity on fast sparsely synchronized rhythms by increasing the rewiring probability p. For the regular connection of p = 0, the
average path length is very long because there exist only short-range connections, and hence an unsynchronized popula-
tion state appears. However, with increasing p, long-range connections begin to appear, and hence the average path length
becomes shorter. Consequently, when passing a critical value p∗c (≃0.12), the unsynchronized state is destabilized and then
fast sparsely synchronized population rhythm emerges. This transition to fast sparse synchronization is well described by
using a realistic ‘‘thermodynamic’’ order parameter, based on the instantaneous population spike rate (IPSR) [63]. In order
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to further investigate the effect of geometrical long-range connections ondynamical spatial correlation length for occurrence
of population synchronization, we also make a dynamical-correlation analysis between neuronal pairs. It is thus found that
the spatial correlation length for p < p∗c is so small that global synchronization cannot occur. On the other hand, for p > p∗c ,
the correlation length is found to cover the whole system thanks to sufficient number of long-range connections, and con-
sequently global synchronization appears in the whole population. Furthermore, the degree of fast sparse synchronization
is well measured by employing a realistic ‘‘statistical–mechanical’’ spiking measure, based on IPSR [63]. At an optimal value
p∗E (≃0.26), a dynamical-efficiency factor given by the ratio of the synchronization degree to the (axon) wiring cost is found
to become maximal. Thus, an optimal fast sparsely-synchronized rhythm is found to appear at a minimal wiring cost in an
economic small-world network. Finally, a summary is given in Section 4.

2. Inhibitory network of suprathreshold FS Izhikevich interneurons

A neural circuit in the major parts of the brain consists of a few types of excitatory principal cells and diverse types of
inhibitory interneurons. By providing a synchronous oscillatory output to the principal cells, interneuronal networks play
the role of the backbones of many brain rhythms [1,2,12,32]. We consider an inhibitory population of N sparsely-coupled
neurons equidistantly placed on a one-dimensional ring of radius N/2π . As an element in our neural system, we choose the
FS Izhikevich interneuron model [24–27]. The population dynamics in this neural network is governed by the following set
of ordinary differential equations:

C
dvi

dt
= k(vi − vr)(vi − vt)− ui + IDC + Dξi − Isyn,i, (1)

dui

dt
= a{U(vi)− ui}, i = 1, . . . ,N, (2)

with the auxiliary after-spike resetting:
if vi ≥ vp, then vi ← c and ui ← ui + d, (3)

where

U(v) =


0 for v < vb

b(v − vb)
3 for v ≥ vb,

(4)

Isyn,i =
J
dini

N
j(≠i)

wijsj(t)(vi − Vsyn), (5)

sj(t) =
Fj

f=1

E(t − t(j)f − τl); E(t) =
1

τd − τr
(e−t/τd − e−t/τr )Θ(t). (6)

Here, the state of the ith neuron at a time t is characterized by two state variables: themembrane potential vi and the recov-
ery current ui. In Eq. (1), C is the membrane capacitance, vr is the resting membrane potential, and vt is the instantaneous
threshold potential. After the potential reaches its apex (i.e., spike cutoff value) vp, themembrane potential and the recovery
variable are reset according to Eq. (3). The units of the capacitance C , the potential v, the current u and the time t are pF,
mV, pA, and ms, respectively.

Unlike Hodgkin–Huxley-type conductance-based models, the Izhikevich model matches neuronal dynamics by tuning
the parameters instead of matching neuronal electrophysiology. The parameters k and b are associated with the neuron’s
rheobase and input resistance, a is the recovery time constant, c is the after-spike reset value of v, and d is the total amount
of outward minus inward currents during the spike and affecting the after-spike behavior (i.e., after-spike jump value of
u). Tuning these parameters, the Izhikevich neuron model may produce 20 of the most prominent neuro-computational
features of cortical neurons [24–27]. Here, we use the parameter values for the FS interneurons (which do not fire postin-
hibitory rebound spikes) in the layer 5 Rat visual cortex [26]; C = 20, vr = −55, vt = −40, vp = 25, vb = −55, k =
1, a = 0.2, b = 0.025, c = −45, d = 0.

Each Izhikevich interneuron is stimulated by using the common DC current IDC (measured in units of pA) and an
independent Gaussian white noise ξi (see the 3rd and the 4th terms in Eq. (1)) satisfying ⟨ξi(t)⟩ = 0 and ⟨ξi(t) ξj(t ′)⟩ =
δij δ(t− t ′), where ⟨· · ·⟩ denotes the ensemble average. The noise ξ is a parametric one that randomly perturbs the strength
of the applied current IDC , and its intensity is controlled by using the parameter D (measured in units of pA ms1/2). In the
absence of noise (i.e.,D = 0), the Izhikevich interneuron exhibits a jump from a resting state to a spiking state via subcritical
Hopf bifurcation for IDC,h = 73.7 by absorbing an unstable limit cycle born via a fold limit cycle bifurcation for IDC,l = 72.8.
Hence, the Izhikevich interneuron shows type-II excitability because it begins to fire with a non-zero frequency, as shown in
Fig. 1(a1) [64,65]. As IDC is increased from IDC,h, the mean firing rate f increases monotonically (see Fig. 1(a2)). Throughout
this paper, we consider a suprathreshold case of IDC = 1500. For this case, the membrane potential v oscillates very fast
with f = 633 Hz, as shown in Fig. 1(b).

The last term in Eq. (1) represents the synaptic coupling of the network. Isyn,i of Eq. (5) represents a synaptic current
injected into the ith neuron. The synaptic connectivity is given by the connection weight matrix W (={wij}) where wij = 1
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Fig. 1. Single FS Izhikevich interneuron for D = 0. Plot of the mean firing rate f versus the external DC current IDC (a1) near the transition point and (a2)
in a large range of IDC . (b) Time series of the membrane potential v for IDC = 1500.

if the neuron j is presynaptic to the neuron i; otherwise, wij = 0. Here, the synaptic connection is modeled by using both
the conventional Erdös–Rényi random graph and the Watts–Strogatz small-world network. Then, the in-degree of the ith
neuron, dini (i.e., the number of synaptic inputs to the neuron i) is given by dini =

N
j(≠i) wij. The fraction of open synaptic

ion channels at time t is denoted by s(t). The time course of sj(t) of the jth neuron is given by a sum of delayed double-
exponential functions E(t− t(j)f −τl) (see Eq. (6)), where τl is the synaptic delay, and t(j)f and Fj are the f th spike and the total
number of spikes of the jth neuron at time t , respectively. Here, E(t) (which corresponds to contribution of a presynaptic
spike occurring at time 0 to s(t) in the absence of synaptic delay) is controlled by the two synaptic time constants: synaptic
rise time τr and decay time τd, and Θ(t) is the Heaviside step function: Θ(t) = 1 for t ≥ 0 and 0 for t < 0. For the
inhibitory GABAergic synapse (involving the GABAA receptors), τl = 1 ms, τr = 0.5 ms, and τd = 5 ms [18]. The coupling
strength is controlled by the parameter J (measured in units of µS), and Vsyn is the synaptic reversal potential. Here, we use
Vsyn = −80 mV for the inhibitory synapse.

Numerical integration of Eqs. (1)–(2) is done using the Heun method [66] (with the time step 1t = 0.01 ms). For each
realization of the stochastic process, we choose a random initial point [vi(0), ui(0)] for the ith (i = 1, . . . ,N) neuron with
uniform probability in the range of vi(0) ∈ (−50,−45) and ui(0) ∈ (10, 15).

3. Effect of small-world connectivity on fast sparsely synchronized rhythms

In this section, we study the effect of network architecture on fast sparsely synchronized rhythms with stochastic and
intermittent neural discharges. For modeling the complex connectivity in neural systems, we first use the conventional
Erdös–Rényi random network of suprathreshold FS Izhikevich interneurons [28], and study occurrence of population oscil-
latory states by varying the inhibition strength J and the noise intensity D. But, in a real cortical circuit, synaptic connections
are known to be neither regular nor completely random. Hence, we consider theWatts–Strogatz model for the small-world
networkwhich interpolates between the regular lattice and the randomgraph [40], and investigate the effect of small-world
connectivity on fast sparsely synchronized rhythms by varying the rewiring probability p for fixed values of J and D. Partic-
ularly, we search for an optimal fast sparse synchronization occurring at a minimal wiring cost in an economic small-world
network.

We first consider the conventional Erdös–Rényi random graph of N sparsely-connected suprathreshold FS Izhikevich
interneurons equidistantly placed on a one-dimensional ring of radius N/2π . A postsynaptic neuron i receives a synaptic
input from another presynaptic neuron j with a connection probability Psyn (=Msyn/N), where Msyn is the average number
of synaptic inputs per neuron (i.e., Msyn = ⟨di⟩; di is the number of synaptic inputs to the neuron i and ⟨· · ·⟩ denotes an
ensemble-average over all neurons). Here, we consider a sparse case of Msyn = 50. By varying the inhibition intensity J
and the noise intensity D, we investigate occurrence of population synchronized states. In computational neuroscience, an
ensemble-averaged global potential,

VG(t) =
1
N

N
i=1

vi(t), (7)
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is often used for describing emergence of population neural synchronization. However, to directly obtain VG in real
experiments is very difficult. To overcome this difficulty, instead of VG, we use an experimentally-obtainable IPSR which
is often used as a collective quantity showing population behaviors [2,13–18]. The IPSR is obtained from the raster plot of
neural spikes which is a collection of spike trains of individual neurons. Such raster plots of spikes, where population spike
synchronization may be well visualized, are fundamental data in experimental neuroscience. For the synchronous case,
‘‘stripes’’ (composed of spikes and indicating population synchronization) are found to be formed in the raster plot. Hence,
for a synchronous case, an oscillating IPSR appears, while for an unsynchronized case the IPSR is nearly stationary. To obtain
a smooth IPSR, we employ the kernel density estimation (kernel smoother) [67]. Each spike in the raster plot is convoluted
(or blurred) with a kernel function Kh(t) to obtain a smooth estimate of IPSR, R(t):

R(t) =
1
N

N
i=1

ni
s=1

Kh(t − t(i)s ), (8)

where t(i)s is the sth spiking time of the ith neuron, ni is the total number of spikes for the ith neuron, and we use a Gaussian
kernel function of band width h:

Kh(t) =
1
√
2πh

e−t
2/2h2 , −∞ < t <∞. (9)

We first study the case of D = 0. For small J , individual interneurons fire too fast to be synchronized. Fig. 2(a1) shows
the raster plot of spikes and the IPSR kernel estimate R(t) for an unsynchronized case of J = 10. Spikes in the raster plot
are completely scattered and hence R(t) is nearly stationary. However, as J is increased mean firing rates, fi, of individual
interneurons decrease, and full synchronization occurs when J passes a critical value J∗ (≃12). For a synchronous case of
J = 100, clear stripes (composed of spikes and indicating population spike synchronization) are formed in the raster plot, and
hence R(t) shows regular oscillation with population frequency fp = 197 Hz, as shown in Fig. 2(a2). The interspike interval
(ISI) histogram with a single peak appearing at 5.1 ms is shown in Fig. 2(a3), and hence individual neurons fire regularly
with mean firing rate fi which is the same as fp. Thus, complete full synchronization with fp = fi occurs for J = 100. We next
consider the effect of noise on the full synchronization for a fixed J . As D is increased, the full synchronization for D = 0
evolves, depending on the values of J , and eventually desynchronization occurs when passing a critical value D∗. Fig. 2(b)
shows the state diagram in the J–D plane. For the full synchronization, mean firing rates, fi, of individual neurons are the
same as the population frequency fp, while for the partial and sparse synchronization, fi is less than fp (i.e., individual neurons
fire at lower rates than the population frequency). For the sparsely synchronized cortical rhythms, fp : fi ∼ 4 : 1 [13–16].
Hence, when the population frequency is much higher than the mean firing rate of individual interneurons (fp > 4 fi), the
synchronization will be referred to as sparse synchronization. Plots of fp and fi versus D are shown in Fig. 2(c1)–(c4) for J =
100, 400, 1400, and 2000. For small J (J∗ < J < 162), only the full synchronization occurs because fp = fi (e.g., see the case of
J = 100). However, for J > 162, the full synchronization is developed into partial synchronization at some threshold value
Dth via pitchfork-like bifurcations (e.g., see the cases of J = 400 1400, and 2000). With increasing J , the difference between
fp and fi increases abruptly when passing Dth. For J > 1275, the partial synchronization evolves into sparse synchronization
with fp > 4 fi (e.g., see the cases of J = 1400 and 2000).

For further understanding of the full and the partial synchronization, we present two explicit examples showing how
the full synchronization is evolved into unsynchronized states as D is increased. For J∗ < J < 162, the full synchronization
for D = 0 develops directly into an unsynchronized state without any other type of intermediate synchronization stage.
As an example consider the case of J = 100. The raster plots and the IPSR kernel estimate R(t) for various values of D are
given in Fig. 3(a1)–(a4). As D is increased, stripes of spikes in the raster plot become more and more smeared, and hence
the amplitudes of R(t) become smaller (i.e., the pacing degree of spikes decreases). When passing a critical value D∗ ≃ 173,
stripes become overlapped and R(t) becomes nearly stationary. Thus, a transition to an unsynchronized state occurs (e.g.,
see Fig. 3(a4)). The ISI distributions for various values of D are also shown in Fig. 3(b1)–(b4). As D is increased from 0, the
height of the ISI histogram becomes smaller and its width becomeswider. During this process, fp = fi ≃ 197 Hz, as shown in
Fig. 2(c1). Thus, asD passes a critical valueD∗, a direct transition from full synchronization to an unsynchronized state occurs
for J = 100. For J > 162, with increasing D the full synchronization for D = 0 evolves into the partial synchronization with
fp > fi. As an example, we consider the case of J = 1400. Fig. 3(c1)–(c4) show the raster plots and the IPSR kernel estimate
R(t) for various values of D. For 0 < D < Dth (≃144), full synchronization with fp = fi occurs (see Fig. 2(c3)). As D is
increased from 0 to Dth, the degree of full synchronization decreases because the stripes of the raster plot become smeared,
and hence the amplitude of R(t) also becomes smaller (see Fig. 3(c1)). As in the case of J = 100, thewidth of the ISI histogram
becomes wider due to decrease in the pacing degree (see Fig. 3(d1)). However, for D > 144, partial synchronization with
fp > fi appears via a pitchfork-like bifurcation, as shown in Fig. 2(c3). As D is increased from D = 144, the interval between
stripes of the raster plot becomes smaller, and hence the population frequency fp increases (see Fig. 3(c2)). For this case,
the stripes of the raster plot become smeared, and hence the pacing degree of spikes decreases. Furthermore, the density of
stripes becomes smaller because smaller fraction of total neurons fire in each stripes. Thus, with increasing D from D = 144
both the pacing and the occupation degrees of spikes decrease, and consequently a large decrease in the amplitude of R(t)
occurs. In contrast to the case of full synchronization, the ISI histogram has multiple peaks appearing at multiples of the
period TG of R(t) (see Fig. 3(d2)). Similar skipping phenomena of spikings (characterized with multi-peaked ISI histograms)
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Fig. 2. Erdös–Rényi random graph ofN (=103) suprathreshold FS Izhikevich interneurons for IDC = 1500 andMsyn = 50. Raster plots of spikes and plots of
the IPSR kernel estimate R(t) versus t for (a1) J = 10 and (a2) J = 100; the bandwidth of the Gaussian kernel estimate is 1ms. (a3) ISI histogram for J = 100
(ISI histogram is composed of 5× 104 ISIs and the bin size for the histogram is 0.5 ms). (b) State diagram in the J–D plane. For the full synchronization, the
individual frequency fi is the same as the population frequency fp , while for the partial and sparse synchronization, fi is less than fp . Particularly, the cases
of fp > 4 fi are referred to as the sparse synchronization. Plots of fp and fi versus D for (c1) J = 100, (c2) J = 400, (c3) J = 1400, and (c4) J = 2000. Here,
the circles and crosses denote fp and fi , respectively.

have also been found in networks of coupled inhibitory neurons in the presence of noise where noise-induced hopping
from one cluster to another one occurs [68], in single noisy neuron models exhibiting stochastic resonance due to a weak
periodic external force [69,70], and in inhibitory networks of coupled subthreshold neurons showing stochastic spiking
coherence [21–23]. Stochastic spike skipping in coupled systems is a collective effect because it occurs due to a driving
by a coherent ensemble-averaged synaptic current, in contrast to the single case driven by a weak periodic force where
stochastic resonance occurs. Due to this stochastic spike skipping, partial occupation occurs in the stripes of the raster plot.
Thus, the mean firing rates fi of individual interneurons become less than the population frequency fp, and hence partial
synchronization occurs. Particularly, for D > 448, sparse synchronization with fp > 4 fi appears. As D is further increased
from D = 448, both the pacing and the occupation degrees of spikes (seen in the raster plot) decrease andmultiple peaks in
the ISI histogram overlap (see Fig. 3(c3) and (d3)). Eventually, when passing a critical value D∗ ≃ 741, an unsynchronized
state appears (e.g. see the case of D = 800).

As shown in the state diagram of Fig. 2(b), fast sparsely synchronized rhythms appear when both the inhibition strength
and the noise intensity are strong in the Erdös–Rényi random graph of suprathreshold FS Izhikevich interneurons. For
random connectivity, the average path length is short due to long-range connections, and hence global efficiency of
information transfer becomes high [29,30]. However, unlike the regular lattice, the random network has poor clustering,
and it becomes non-economic due to appearance of short-range and long-range connections with equal probability [31,32].
Real synaptic connectivity is known to have complex topology which is neither regular nor completely random [31–38].
To study the effect of network structure on fast sparsely synchronized oscillations, we consider the Watts–Strogatz model
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Fig. 3. Erdös–Rényi random graph of N (=103) suprathreshold FS Izhikevich interneurons for IDC = 1500 and Msyn = 50. For J = 100, raster plots of
spikes and plots of the IPSR kernel estimate R(t) versus t in (a1)–(a4), and ISI histograms in (b1)–(b4) for various values of D. For J = 1400, raster plots of
spikes and plots of R(t) versus t in (c1)–(c4), and ISI histograms in (d1)–(d4) for various values of D; vertical dotted lines denote integer multiples of the
global period TG (≃9.1 ms in (d2) and 6.8 ms in (d3)) of R(t). The band width of the Gaussian kernel estimate is 1 ms. Each ISI histogram is composed of
5× 104 ISIs and the bin size for the histogram is 0.5 ms.

for small-world networks which interpolates between regular lattice and random graph via rewiring [40]. By varying the
rewiring probability p from local to long-range connection, we investigate the effect of small-world connectivity on fast
sparse synchronization for fixed values of J = 1400 and D = 500. We start with a directed regular ring lattice with N
suprathreshold FS Izhikevich interneurons where each Izhikevich interneuron is coupled to its first Msyn neighbors (Msyn/2
on either side) via outward synapses, and rewire each outward connection at random with probability p such that self-
connections and duplicate connections are excluded. As in the above random case, we consider a sparse but connected
network with a fixed value of Msyn = 50. Then, we can tune the network between regularity (p = 0) and randomness
(p = 1); the case of p = 1 corresponds to the above Erdös–Rényi random graph. In this way, we investigate emergence of
fast sparsely synchronized rhythm in the directed Watts–Strogatz small-world network of N suprathreshold FS Izhikevich
interneurons by varying the rewiring probability p for J = 1400 and D = 500.

The topological properties of the small-world connectivity have been well characterized in terms of the clustering
coefficient and the average path length [40]. The clustering coefficient, denoting the cliquishness of a typical neighborhood
in the network, characterizes the local efficiency of information transfer, while the average path length, representing the
typical separation between two vertices in the network, characterizes the global efficiency of information transfer. The
regular lattice for p = 0 is highly clustered but large world where the average path length grows linearly with N , while
the random graph for p = 1 is poorly clustered but small world where the average path length grows logarithmically with
N [40]. As soon as p increases from zero, the average path length decreases dramatically, which leads to occurrence of a
small-world phenomenon which is popularized by the phrase of the ‘‘six degrees of separation’’ [43,44]. However, during
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Fig. 4. Watts–Strogatz small-world network of suprathreshold FS Izhikevich interneurons for IDC = 1500, Msyn = 50, J = 1400, and D = 500. (a) Plots
of log10 O versus p. Unsynchronized state for p = 0: raster plots of spikes and plots of the IPSR kernel estimate R(t) versus t for (b1) N = 103 and (b2)
N = 104 . Synchronized state for p = 0.25: raster plots of spikes and plots of the IPSR kernel estimate R(t) versus t for (c1) N = 103 and (c2) N = 104 . The
band width of the Gaussian kernel estimate is 1 ms.

this dramatic drop in the average path length, the clustering coefficient remains almost constant at its value for the regular
lattice. Consequently, for small p small-world networks with short path length and high clustering emerge [40].

As is well known, a conventional order parameter, based on the ensemble-averaged global potential VG, is often used
for describing transition from asynchrony to synchrony in computational neuroscience [71–73]. Recently, instead of VG,
we used an experimentally-obtainable IPSR kernel estimate R(t), and developed a realistic order parameter, which may be
applicable in both the computational and the experimental neuroscience [63]. The mean square deviation of R(t),

O ≡ (R(t)− R(t))2, (10)

plays the role of an order parameterO. (Here the overbar represents the time average.) The order parametermay be regarded
as a thermodynamic measure because it concerns just the macroscopic IPSR kernel estimate R(t)without any consideration
betweenR(t) andmicroscopic individual spikes. In the thermodynamic limit ofN →∞, the order parameterO approaches a
non-zero (zero) limit value for the synchronized (unsynchronized) state. Fig. 4(a) shows a plot of the order parameter versus
the rewiring parameter p. For p < p∗c (≃0.12), unsynchronized states exist because the order parameter O tends to zero as
N →∞. As p passes the critical value p∗c , a transition to synchronization occurs because the values of O become saturated
to non-zero limit values for N ≥ 3 · 103. These synchronized states seem to appear because global efficiency of information
transfer between distant neurons for p > p∗c becomes enough for occurrence of population synchronization. Herewepresent
two explicit examples for the synchronized and unsynchronized states. First, we consider the population state in the regular
lattice for p = 0. As shown in Fig. 4(b1) for N = 103, the raster plot shows a zigzag pattern intermingled with inclined
partial stripes of spikes with diverse inclinations and widths, and R(t) is composed of coherent parts with regular large-
amplitude oscillations and incoherent partswith irregular small-amplitude fluctuations. For p = 0, the clustering coefficient
is high, and hence partial stripes (indicating local clustering of spikes) seem to appear in the raster plot of spikes. As N is
increased to 104, partial stripes become more inclined from the vertical, and hence spikes become more difficult to keep
pace with each other. As a result, R(t) shows noisy fluctuations with smaller amplitudes, as shown in Fig. 4(b2). Hence the
population state for p = 0 seems to be unsynchronized because R(t) tends to be nearly stationary as N increases to the
infinity. As p is increased from 0, long-range short-cuts begin to appear, and hence average path length becomes shorter.
Eventually, when passing the critical value p∗c , synchronized population state emerges because of sufficient global efficiency
of information transfer between distant neurons, which will be discussed below in more detail. As a second example, we
consider a synchronized case of p = 0.25. For N = 103, the degree of zigzagness for partial stripes in the raster plot is
much reduced when compared with the p = 0 case, and hence R(t) shows a regular oscillation, as shown in Fig. 4(c1).
Its amplitudes are much larger than that for the case of p = 0, although there is a little variation in the amplitude. As N
is increased to N = 104, R(t) shows regular oscillations, and the amplitudes in each oscillating cycle are nearly the same,
in contrast to the case of N = 103 (see Fig. 4(c2)). Hence, R(t) displays more regular oscillations with nearly the same
amplitudes for N = 104. Consequently, the population state for p = 0.25 seems to be synchronized because R(t) tends to
show regular oscillations as N goes to the infinity.

In order to further understand the above transition to global spike synchronization, we investigate the effect of
geometrical long-range connections on the dynamical cross-correlations between neuronal pairs. As examples, we
reconsider the same cases of p = 0 and 0.25 as in Fig. 4. Fig. 5(a1) shows a raster plot of spikes in the longer time interval
(where the horizontal structure may be more clearly seen than the vertical zigzag structure when compared with the raster
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Fig. 5. Watts–Strogatz small-world network of suprathreshold FS Izhikevich interneurons for IDC = 1500, Msyn = 50, and D = 500. Unsynchronized
state for p = 0 and J = 1400: (a1) raster plots of spikes and MFR distribution of individual neurons for N = 103 and the spatial correlation function CL for
N = (a2) 103 and (a3) 104 . For this case of J = 1400, the MFR distribution exhibits spatially modulated oscillation. Unsynchronized state for p = 0 and
J = 200: (b1) raster plots of spikes and MFR distribution of individual neurons for N = 103 and the spatial correlation function CL for N = (b2) 103 and
(b3) 104 . The MFR distribution for J = 200 shows noisy fluctuation around the average MFR (≃140 Hz) without any regular spatial oscillation. Hereafter,
the values of J in (c1)–(f8) are fixed at J = 1400. Synchronized state for p = 0.25: (c1) raster plots of spikes and MFR distribution of individual neurons for
N = 103 and the spatial correlation function CL for N = (c2) 103 and (c3) 104 . Spatial correlation functions CL for unsynchronized states for various values
of p when (d1)–(d3) N = 103 and (d4)–(d6) 104 . Spatial correlation functions CL for synchronized states for various values of p when (e1)–(e3) N = 103

and (e4)–(e6) 104 . Flat spatial correlation functions CL for synchronized states for various values of p when (f1)–(f4) N = 103 and (f5)–(f8) 104 . The band
width of the Gaussian kernel estimate is 1 ms. The temporal cross-correlation Ci,j(τ ) is obtained through average over 20 realizations, and the number of
data used for the calculation of each temporal cross-correlation function Ci,j(τ ) is 2× 104 .
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plot (in the shorter time interval) in Fig. 4(b1)) and the distribution of the mean firing rates (MFRs) of individual neurons
for the case of p = 0 (without long-range connections). Dense and sparse horizontal stripes of spikes appear alternatively
in the raster plot with the average spatial period τL (≃36). In accordance to this structure of the horizontal stripes, the
MFR distribution also shows a regular oscillation with large amplitude around the average MFR (≃33 Hz): the peak (valley)
regions of the MFR correspond to the centers of the dense (sparse) stripes. This spatial oscillation of the MFR distribution
affects the behavior of the spatial cross-correlations betweenneuronal pairs. For obtaining dynamical pair cross-correlations,
each spike train of the ith neuron is convoluted with a Gaussian kernel function Kh(t) of band width h to get a smooth
estimate of instantaneous individual spike rate (IISR), ri(t):

ri(t) =
ni
s=1

Kh(t − t(i)s ), (11)

where t(i)s is the sth spiking time of the ith neuron, ni is the total number of spikes for the ith neuron, and Kh(t) is given in Eq.
(9). Then, the normalized temporal cross-correlation function Ci,j(τ ) between the IISRs ri(t) and rj(t) of the (i, j) neuronal
pair is given by:

Ci,j(τ ) =
1ri(t + τ)1rj(t)
1r2i (t)


1r2j (t)

, (12)

where 1ri(t) = ri(t) − ri(t) and the overline denotes the time average. We now introduce the spatial cross-correlation
CL (L = 1, . . . ,N/2) between neuronal pairs separated by a spatial distance L through average of all the temporal cross-
correlations between ri(t) and ri+L(t) (i = 1, . . . ,N) at the zero-time lag:

CL =
1
N

N
i=1

Ci,i+L(0) for L = 1, . . . ,N/2. (13)

Fig. 5(a2) shows the plot of the spatial cross-correlation CL versus L for N = 103 in the case of p = 0. We note that the
spatial cross-correlation function CL exhibits a ‘‘damped’’ oscillation with respect to L. Local maxima (minima) of CL come
from cross-correlations when the distances L between neuronal pairs are multiples (odd multiples) of the spatial period τL
(half-period τL/2) of the MFR. In this way, CL makes an oscillatory decay to zero. To obtain the exponential decay rate of
CL, the maximal envelope (denoted by a dotted line) may be well fitted with an exponential function with a characteristic
correlation η:

CL = A · e−L/η; A = 0.31, η = 143. (14)

Then, one can think that the whole system is composed of independent partially synchronized blocks of size η. To examine
occurrence of population synchronization, we increase the number of neurons as N = 104. For this case, the spatial cross-
correlation function CL in Fig. 5(a3) also shows a damped oscillation, and it decays to zero. Then, the maximal envelope
also is well fitted with the same exponential function (CL = A · e−L/η; A = 0.31, η = 143). Hence, the correlation length
η remains unchanged, although the system size is increased 10 times. As a criterion for occurrence of synchronization, we
introduce a normalized correlation length η̃:

η̃ =
η

N
, (15)

which represents the ratio of the correlation length η to the system sizeN . AsN is increased, η̃ tends to zero (i.e., the relative
size of partially synchronized blocks (when compared to the whole system size) tends to zero). Consequently, no global
synchronization occurs for the case of p = 0. Although the population dynamical state for p = 0 is unsynchronized, it
seems to be worth noting the spatially modulated MFR distribution which exhibits regular spatial oscillation for J = 1400.
To examine appearance of spatially modulated phase, we decrease the inhibitory coupling strength J , and find spatially non-
modulated phase for small J less than a critical value Jc (∼540). Fig. 5(b1) shows an example of spatially non-modulated
phase for J = 200 where the MFR distribution exhibits a noisy fluctuation around the average MFR (≃140 Hz) without any
regular oscillation. The average MFR for J = 200 is much larger than that for J = 1400 because the inhibition strength J is
decreased. In this case of non-modulated phase, the spatial cross-correlation function CL exhibits a direct exponential decay
to zero without any oscillation, as shown in Fig. 5(b2) and (b3), unlike the case of modulated phase for J = 1400 where
CL shows an oscillatory decay to zero. Furthermore, the correlation length for J = 200 is η ≃ 32, independently of the
system size N , which is smaller than that for the case of J = 1400 because the decay rate to zero for J = 200 is faster than
that for J = 1400. Although the topological clustering coefficient is high for p = 0, no distinct dynamical clustering seems
to occur when the inhibitory coupling strength J is small. The clustering effect seems to be distinctly evident only when
J becomes sufficiently strong. Hence, when J passes the critical value Jc , this type of spatially modulated phase seems to
emerge spontaneously. Further in-depth study of this transition to spatially modulated phase is beyond our present subject,
and itwill be done in a futurework. Then,we return to the original subject on the effect of small-world connectivity for a fixed
value of J = 1400, and consider another case of p = 0.25 where long-range connections appear. The raster plot of spikes
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Fig. 6. Watts–Strogatz small-world network of suprathreshold FS Izhikevich interneurons for N = 103, IDC = 1500, Msyn = 50, J = 1400, and D = 500.
Fast sparsely synchronized states for various values of p: raster plots of neural spikes and plots of the IPSR kernel estimate R(t) versus t (the band width
of the Gaussian kernel estimate is 1 ms) in (a1)–(a5), and ISI histogram in (b1)–(b5) (each ISI histogram is composed of 5 × 104 ISIs, the bin size for the
histogram is 0.5 ms, and vertical dotted lines in (b1)–(b5) denote integer multiples of the global period TG (≃6.8 ms) of R(t)). Plots of (c1) the average
occupation degree ⟨Oi⟩, (c2) the average pacing degree ⟨Pi⟩, and (c3) the statistical–mechanical spiking measureMs versus p.

and the MFR distribution are shown in Fig. 5(c1). Some of dense horizontal stripes become smeared and overlap vertically
with neighboring dense stripes, and then some parts of sparse horizontal stripes between merging dense stripes disappear.
The MFR distribution shows irregular oscillation with relatively small dispersion about the average MFR (≃33 Hz) (when
compared with the MFR distribution for p = 0). Unlike the case of p = 0, the spatial correlation function CL for N = 103

becomes nearly non-zero constant (≃0.045) in the whole range of L, as shown in Fig. 5(c2), and hence the correlation length
η becomes N/2 (=500) covering the whole system (note that the maximal distance between neurons is N/2 because of the
ring architecture on which neurons exist). Consequently, the whole system is composed of just one single synchronized
block (i.e., global synchronization occurs in the whole system), in contrast to the case of p = 0. For N = 104, the flatness of
CL in Fig. 5(c3) also extends to thewhole range (L = N/2 = 5000), and the correlation length becomes η = 5000, which also
covers the whole system. Hence, the number of long-range connections for p = 0.25 seems to become enough to make the
correlation length η cover thewhole system, independently ofN . Consequently, asN is increased, the normalized correlation
length η̃ has a non-zero limit value, 1/2, and global synchronization emerges in thewhole population, in contrast to the case
of p = 0. In addition to the above cases of p = 0 and 0.25, we also make an extensive dynamical-correlation analysis for
several values of p in the subcritical and the supercritical subregions of p. Fig. 5(d1)–(d6) shows the spatial correlation
functions CL in the subcritical cases of p = 0.05, 0.08, and 0.11 (less than the critical values p∗c (≃0.12)). For N = 103, CL
makes an oscillatory decay to zero. As p is increased, the decay rate becomes slower, and hence the correlation length η
becomes longer, as shown in Fig. 5(d1)–(d3). When the system size is increased to N = 104, CL also exhibits an oscillatory
decay to zero in the same way as the case of N = 103 (see Fig. 5(d4)–(d6)). Hence, the correlation length η becomes the
same, independently of N , and the normalized correlation length η̃ (=η/N) tends to zero in the thermodynamic limit of
N → ∞ due to the insufficient number of long-range connections. As a result, no global synchronization occurs for the
subcritical case. On the other hand, in the supercritical case of p = 0.13, 0.14, and 0.15 (larger than p∗c ), CL seems to make
an oscillatory decay to a non-zero limit, as shown in Fig. 5(e1)–(e3), and the convergence rate to non-zero limit becomes
faster with increasing p. AsN is increased, this kind of convergence to non-zero limit in CL may bemore clearly seen (e.g., see
Fig. 5(e4)–(e6) for N = 104). As p is further increased, the oscillatory part in CL disappears gradually, and then CL becomes
nearly positive constant, as shown in Fig. 5(f1)–(f8) for both N = 103 and 104. Hence, unlike the subcritical case, with
increasing N the correlation length η increases as N/2, covering the whole system, and the normalized correlation length η̃
has a non-zero limit value, 1/2, in the thermodynamic limit of N → ∞. Consequently, global population synchronization
occurs for the supercritical case because η covers the whole system thanks to sufficient number of long-range connections.
We also note that, with increasing p the constant values of CL increase, as shown in Fig. 5(f1)–(f8). However, their values
become saturated for p = pmax (∼0.4) (i.e., CL = 0.075 for p ≥ pmax), because long-range connections which appear up to
pmax seem to play a sufficient role for obtaining the maximal degree of pair cross-correlations.

We now study the population and individual behaviors of synchronized states for various values of p > p∗c . Through com-
parison of the population behaviors with individual behaviors, one can understand fast sparsely synchronized states well.
With increasing p the zigzagness degree of partial stripes in the raster plots of spikes becomes reduced (see Fig. 6(a1)–(a5)),
and eventually for p = pmax (∼0.4), the raster plot becomes composed of vertical stripes without zigzag, and then the pacing
degree between spikes becomes nearly the same. Hence, the amplitude of the IPSR kernel estimate R(t) increases up to pmax,
and then its value becomes saturated. For these values of p, R(t) shows regular oscillation with the population frequency
fp = 147 Hz, corresponding to the ultrafast rhythm (100–200 Hz). In contrast to population rhythm, individual neurons
make stochastic and sparse discharges as Geiger counters. We collect 5 × 104 ISIs from all individual neurons and get the
ISI histograms which are shown in Fig. 6(b1)–(b5). Multiple peaks appear at multiples of the period TG (=1/fp ≃ 6.8 ms)
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of R(t). Hence, individual neurons exhibit stochastic phase locking leading to stochastic spike skipping (i.e., intermittent
spikings phase-locked to R(t) at randommultiples of the period of R(t)). For these values of p, mean firing rates fi of individ-
ual neurons, corresponding to the inverse of the average ISI, is 33 Hz, and hence each neuron makes an average firing very
sparsely once during 4.5 population cycles. Consequently, for p > p∗c fast sparsely synchronized rhythms emerge.

By varying p in the whole range of fast sparse synchronization, we also measure the degree of fast sparsely synchronized
rhythms in terms of a realistic statistical–mechanical spikingmeasureMs, based on the IPSR kernel estimate R(t), whichwas
developed in our recent work [63]. As shown in Fig. 6(a1)–(a5), population spike synchronization may be well visualized in
a raster plot of spikes. For a synchronized case, the raster plot is composed of partially-occupied stripes (indicating sparse
synchronization). To measure the degree of the population synchronization seen in the raster plot, a statistical–mechanical
spiking measure Ms, based on R(t), was introduced by considering the occupation pattern and the pacing pattern of the
spikes in the stripes [63]. The spiking measure Mi of the ith stripe is defined by the product of the occupation degree Oi of
spikes (representing the density of the ith stripe) and the pacing degree Pi of spikes (denoting the smearing of the ith stripe):

Mi = Oi · Pi. (16)

The occupation degree Oi in the ith stripe is given by the fraction of spiking neurons:

Oi =
N (s)

i

N
, (17)

where N (s)
i is the number of spiking neurons in the ith stripe. For sparse synchronization, Oi ≪ 1, while Oi =

1 for full synchronization. The pacing degree Pi of each microscopic spike in the ith stripe can be determined in a
statistical–mechanical way by taking into account its contribution to themacroscopic IPSR kernel estimate R(t). Each global
cycle of R(t) begins from its left minimum, passes the central maximum, and ends at the right minimum; the central
maxima coincide with centers of stripes in the raster plot (see Fig. 6(a1)–(a5)). An instantaneous global phase Φ(t) of R(t)
is introduced via linear interpolation in the two successive subregions forming a global cycle [63,74]. The global phase Φ(t)
between the left minimum (corresponding to the beginning point of the ith global cycle) and the central maximum is given
by

Φ(t) = 2π(i− 3/2)+ π


t − t(min)

i

t(max)
i − t(min)

i


for t(min)

i ≤ t < t(max)
i (i = 1, 2, 3, . . .), (18)

and Φ(t) between the central maximum and the right minimum (corresponding to the beginning point of the (i + 1)th
cycle) is given by

Φ(t) = 2π(i− 1)+ π


t − t(max)

i

t(min)
i+1 − t(max)

i


for t(max)

i ≤ t < t(min)
i+1 (i = 1, 2, 3, . . .), (19)

where t(min)
i is the beginning time of the ith global cycle (i.e., the time at which the left minimum of R(t) appears in the ith

global cycle) and t(max)
i is the time atwhich themaximumof R(t) appears in the ith global cycle. Then, the contribution of the

kth microscopic spike in the ith stripe occurring at the time t(s)k to R(t) is given by cosΦk, whereΦk is the global phase at the
kth spiking time (i.e., Φk ≡ Φ(t(s)k )). A microscopic spike makes the most constructive (in-phase) contribution to R(t) when
the corresponding global phase Φk is 2πn (n = 0, 1, 2, . . .) while it makes the most destructive (anti-phase) contribution
to R(t) when Φi is 2π(n− 1/2). By averaging the contributions of all microscopic spikes in the ith stripe to R(t), we obtain
the pacing degree of spikes in the ith stripe:

Pi =
1
Si

Si
k=1

cosΦk, (20)

where Si is the total number of microscopic spikes in the ith stripe. By averaging Mi of Eq. (16) over a sufficiently large
number Ns of stripes, we obtain the statistical–mechanical spiking measureMs:

Ms =
1
Ns

Ns
i=1

Mi. (21)

By varying p, we follow 3 × 103 stripes and characterize sparse synchronization in terms of ⟨Oi⟩ (average occupation
degree), ⟨Pi⟩ (average pacing degree), and the statistical–mechanical spiking measure Ms for 12 values of p in the sparsely
synchronized region, and the results are shown in Fig. 6(c1)–(c3).We note that the average occupation degree ⟨Oi⟩ (denoting
the average density of stripes in the raster plot) is nearly the same (⟨Oi⟩ ≃ 0.22), independently of p; only a fraction (about
1/4.5) of the total neurons fire in each stripe (see Fig. 6(a1)–(a5)). This partial occupation in the stripes results fromstochastic
spike skipping of individual neurons and is seen well in the multi-peaked ISI histograms (see Fig. 6(b1)–(b5)). The average
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occupation degree (⟨Oi⟩ ≃ 0.22) implies that individual neurons fire about once during the 4.5 global cycles, which agrees
wellwith the average firing rates (≃33Hz)of individual neurons obtained from the ISI distributions shown in Fig. 6(b1)–(b5).
Hence, the average occupation degree ⟨Oi⟩ characterizes the sparseness degree of population synchronization well. On the
other hand, with increasing p, the average pacing degree ⟨Pi⟩ increases rapidly due to appearance of long-range connections.
However, the value of ⟨Pi⟩ saturates for p = pmax (∼0.4) because long-range short-cuts which appear up to pmax play
sufficient role to get maximal pacing degree, as in the case of pair cross-correlations in Fig. 5(e1)–(e8). Fig. 6(c3) shows the
statistical–mechanical spikingmeasureMs (taking into account both the occupation and the pacing degrees of spikes) versus
p. As in the case of ⟨Pi⟩ ,Ms makes a rapid increase up to p = pmax, because ⟨Oi⟩ is nearly independent of p. Ms(p) is nearly
equal to ⟨Pi⟩ /4.5 because of the sparse occupation [⟨Oi⟩ ≃ 1/4.5].

As the rewiring probability p is increased from p∗c , synchronization degree is increased because global efficiency of
information transfer becomes better. However, with increasing p, the network axon wiring length becomes longer due to
long-range short-cuts. Longer axonal connections are expensive because of material and energy costs. Hence, in view of
dynamical efficiency we search for optimal population rhythm emerging at a minimal wiring cost. An optimal fast sparsely
synchronized rhythmmay emerge via tradeoff between the synchronization degree and thewiring cost. The synchronization
degree is given by the statistical–mechanical spiking measure Ms shown in Fig. 6(c3). We then calculate the wiring length
by varying p on a ring of radius r (=N/2π ) where neurons are placed equidistantly. The axonal wiring length, Lij, between
neuron i and neuron j is given by the arc length between two vertices i and j on the ring:

Lij =


|j− i| for |j− i| ≤

N
2

N − |j− i| for |j− i| >
N
2

.

(22)

Then, the total wiring length is:

Ltotal =
N
i=1

N
j=1(j≠i)

aij · Lij, (23)

where aij is the ij element of the adjacency matrix A of the network. The connection between vertices in the network is
represented by itsN×N adjacencymatrix A (={aij})whose element values are 0 or 1. If aij = 1, then an edge from the vertex
i to the vertex j exists; otherwise no such edges exist. This adjacencymatrix A corresponds to the transpose of the connection
weightmatrixW in Section 2.We get a normalizedwiring lengthL by dividing Ltotal with L(global)

total [=
N

i=1
N

j=1(j≠i) Lij]which
is the total wiring length for the global-coupled case:

L =
Ltotal

L(global)
total

. (24)

Plot of L versus p is shown in Fig. 7(a). It increases linearly with respect to p. Hence, with increasing p, the wiring cost
becomes expensive. Anoptimal rhythmmayemerge through tradeoff between the synchronizationdegreeMs and thewiring
cost L. To this end, a dynamical efficiency E is given by Ref. [32]:

E =
Synchrony Degree (Ms)

Normalized Wiring Length (L)
. (25)

Fig. 7(b) shows plot of E versus p. For p = p∗E (≃0.26), an optimal rhythm is found to emerge at a minimal wiring cost in an
economic small-world network. An optimal fast sparsely synchronized rhythm is shown in Fig. 7(c). Since the economical
small-world network has a moderate clustering coefficient C(p∗E ) (=0.3), the raster plot of spikes shows a zigzag pattern
due to local clustering of spikes, and the IPSR kernel estimate R(t) exhibits a regular ultrafast oscillation at a population
frequency fp (=147 Hz). In contrast to population rhythm, individual neurons fire irregularly and sparsely with fi = 33 Hz
as Geiger counters, as shown well in the multi-peaked ISI histogram of Fig. 7(d).

4. Summary

We have investigated the effect of network architecture on fast sparsely synchronized cortical rhythms with stochastic
and intermittent neural discharges. These fast sparsely synchronized neural oscillations are in contrast to fully synchro-
nized oscillations with regular neural discharges. For modeling of complex connections in neural systems, we first used the
conventional Erdös–Rényi random graph of suprathreshold FS Izhikevich interneurons, and studied occurrence of the pop-
ulation synchronized states by varying the inhibition strength J and the noise intensity D. Fast sparsely synchronized states
have been found to appear for large values of J andD. However, real synaptic connections are known to be neither regular nor
random. Hence, we considered theWatts–Strogatzmodel for small-world networkswhich interpolates between the regular
lattice and the random graph, and for fixed values of J and D (J = 1400 and D = 500), we investigated the effect of small-
world connectivity on emergence of fast sparsely synchronized rhythms by varying the rewiring probability p from local to
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Fig. 7. Watts–Strogatz small-world network of suprathreshold FS Izhikevich interneurons for N = 103, IDC = 1500, Msyn = 50, J = 1400, and D = 500.
(a) Statistical–mechanical spiking measureMs and normalized wiring length L versus p. (b) Dynamical efficiency E versus p. The values ofMs, L, and E at
an optimal value p∗E (≃0.26) are denoted by the symbol ‘‘+’’. Optimally fast sparsely synchronized rhythm for p = p∗E : (c) raster plot of neural spikes and
plot of the IPSR kernel estimate R(t) versus t and (d) ISI histogram (ISI histogram is composed of 5× 104 ISIs, the bin size for the histogram is 0.5 ms, and
vertical dotted lines in (d) denote integer multiples of the global period TG (≃6.8 ms) of R(t)).

long-range connections. Through calculation of a realistic thermodynamic order parameter O, fast sparsely synchronized
rhythmshave been found to emerge as ppasses a small critical value p∗c (≃0.12). For p > p∗c , the IPSR kernel estimateR(t)has
been found to oscillate with population frequency of 147 Hz. However, individual neurons discharge spikes stochastically at
low rates (∼33 Hz)which is much lower than the population frequency.We have also investigated the effect of geometrical
long-range connections on dynamical correlations between neuronal pairs for occurrence of global synchronization. It has
thus been found that for p > p∗c , the dynamical correlation length covers the whole system, thanks to sufficient number of
long-range connections, and consequently global synchronization appears in thewhole population. The degree of fast sparse
synchronization has been well measured in terms of the realistic statistical–mechanical spiking measure Ms introduced by
considering both the occupation and the pacing degrees of spikes in the raster plot of neural spikes. As p is increased, the syn-
chrony degree increases, while the network axon wiring length also becomes longer because more long-range connections
appear. Hence, wiring economy must be taken into account for dynamical efficiency. A ratio of the synchrony degree to the
geometrical wiring cost is found to bemaximal at a dynamical-efficiency optimal value p∗E (≃0.26). For this case, an optimal
fast sparsely synchronized rhythm is found to emerge at a minimal wiring cost in an economic small-world network.
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