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Abstract
We investigate population and individual firing behaviors in sparsely synchronized rhythms (SSRs) in a spiking neural

network of the hippocampal dentate gyrus (DG). The main encoding granule cells (GCs) are grouped into lamellar clusters.

In each GC cluster, there is one inhibitory (I) basket cell (BC) along with excitatory (E) GCs, and they form the E-I loop.

Winner-take-all competition, leading to sparse activation of the GCs, occurs in each GC cluster. Such sparsity has been

thought to enhance pattern separation performed in the DG. During the winner-take-all competition, SSRs are found to

appear in each population of the GCs and the BCs through interaction of excitation of the GCs with inhibition of the BCs.

Sparsely synchronized spiking stripes appear successively with the population frequency fpð¼ 13:1 Hz) in the raster plots

of spikes. We also note that excitatory hilar mossy cells (MCs) control the firing activity of the GC-BC loop by providing

excitation to both the GCs and the BCs. SSR also appears in the population of MCs via interaction with the GCs (i.e., GC-

MC loop). Population behaviors in the SSRs are quantitatively characterized in terms of the synchronization measures. In

addition, we investigate individual firing activity of GCs, BCs, and MCs in the SSRs. Individual GCs exhibit random spike

skipping, leading to a multi-peaked inter-spike-interval histogram, which is well characterized in terms of the random

phase-locking degree. In this case, population-averaged mean-firing-rate (MFR) \f
ðGCÞ
i [ is less than the population

frequency fp. On the other hand, both BCs and MCs show ‘‘intrastripe’’ burstings within stripes, together with random spike

skipping. Thus, the population-averaged MFR hf ðXÞi i (X ¼ MC and BC) is larger than fp, in contrast to the case of the GCs.

MC loss may occur during epileptogenesis. With decreasing the fraction of the MCs, changes in the population and

individual firings in the SSRs are also studied. Finally, quantitative association between the population/individual firing

behaviors in the SSRs and the winner-take-all competition is discussed.
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Introduction

The hippocampus, composed of the dentate gyrus (DG) and

the areas CA3, CA2, and CA1, plays important roles in

memory formation, storage, and retrieval (Gluck and

Myers 2001; Squire 1987; Dudek et al. 2016). The DG is

the gateway to the hippocampus, and its primary cells, the

so-called granule cells (GCs), receive excitatory inputs

from the entorhinal cortex (EC) through the perforant paths

(PPs). As a pre-processor for the CA3, the GCs perform

pattern separation on the input patterns from the EC by

sparsifying and orthogonalizing them (i.e., transforming a

set of input patterns into sparser and more distinct pat-

terns), and project the pattern-separated outputs to the

pyramidal cells in the CA3 via the mossy fibers (MFs)

(Marr 1971; Willshaw and Buckingham 1990; McNaugh-

ton and Morris 1987; Rolls 1989a, b, c; Treves and Rolls

1991, 1992, 1994; O’Reilly and McClelland 1994; Schmidt

et al. 2012; Rolls 2016; Knierim and Neunuebel 2016;

Myers and Scharfman 2009, 2011; Myers et al. 2013;

Scharfman and Myers 2016; Yim et al. 2015; Chavlis et al.
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2017; Kassab and Alexandre 2018; Beck et al. 2000; Nitz

and McNaughton 2004; Leutgeb et al. 2007; Bakker et al.

2008; Yassa and Stark 2011; Santoro 2013; Dijk and

Fenton 2018). The sparse, but relatively strong MFs are

known to play a role of ‘‘teaching inputs’’ which tend to

trigger synaptic plasticity between the pyramidal cells in

the CA3 and also between the pyramidal cells and the EC

cells (Treves and Rolls 1994; O’Reilly and McClelland

1994; Schmidt et al. 2012; Rolls 2016; Knierim and

Neunuebel 2016; Myers and Scharfman 2009, 2011; Myers

et al. 2013; Scharfman and Myers 2016; Kassab and

Alexandre 2018). Then, a new pattern may be stored in

modified synapses. In this way, pattern separation in the

DG facilitates pattern storage and retrieval in the CA3.

In this paper, we pay attention to the DG. The whole

GCs in the DG are grouped into the lamellar clusters

(Andersen et al. 1971; Amaral and Witter 1989; Andersen

et al. 2000; Sloviter and Lømo 2012). In each GC cluster,

there is one inhibitory (I) basket cell (BC) along with

excitatory (E) GCs, and they form a dynamical E-I loop.

During the process of pattern separation, the GCs make

sparse firing activity via the winner-take-all competition

(Coultrip et al. 1992; Almeida et al. 2009; Petrantonakis

and Poirazi 2014, 2015; Houghton 2017; Espinoza et al.

2018; Su et al. 2019; Barranca et al. 2019; Bielczyk et al.

2019; Wang et al. 2020). Only strongly active GCs survive

under the feedback inhibition of the BC (i.e., they become

winners), while weakly active GCs become silent in

response to the feedback inhibition from the BC. The

sparsity (resulting from the winner-take-all competition)

has been thought to enhance the pattern separation (Treves

and Rolls 1994; O’Reilly and McClelland 1994; Schmidt

et al. 2012; Rolls 2016; Knierim and Neunuebel 2016;

Myers and Scharfman 2009, 2011; Myers et al. 2013;

Scharfman and Myers 2016; Chavlis et al. 2017; Kassab

and Alexandre 2018).

Here, we are concerned about population rhythms in the

DG. For example, gamma rhythms were observed to

emerge for communication between the DG and the EC,

and between the DG and the CA3 (Fernández-Ruiz et al.

2021; Hsiao et al. 2016), and also observed to appear in the

DG, CA3, and CA1 regions during behaving states of rats

(Csicsvari et al. 2003). In addition, decrease in the ampli-

tude of theta rhythm and increase in the amplitude of beta

rhythm were observed in the DG while performing dif-

ferent associative tasks via presentation of meaningful cues

(Rangel et al. 2015). In this paper, we consider sparsely

synchronized rhythms (SSRs) which emerge during pattern

separation via winner-take-all competition. SSRs are found

to appear in each population of the GCs and the BCs via

interaction of excitation of the GCs and inhibition of the

BCs in the GC-BC loop. In addition to the excitatory GCs,

there exist another type of excitatory hilar mossy cells

(MCs). The MCs control the firing activity of the GC-BC

loop by providing excitation to both the GCs and the BCs.

SSR is also found to appear in the population of MCs via

interaction with the GCs (i.e., GC-MC loop). Thus, in the

whole DG network, SSRs appear in the populations of the

GCs, the MCs, and the BCs, together with occurrence of

the winner-take-all competition.

Various SSRs, associated with diverse cognitive func-

tions (e.g., sensory perception, feature integration, selective

attention), were observed in the hippocampus, the neo-

cortex, the cerebellum, and the olfactory system (Csicsvari

et al. 1999; Destexhe and Paré 1999; Fellous and Sej-

nowski 2000; Hasenstaub et al. 2005; Solages et al. 2008;

Rojas-Lı́bano and Kay 2008). In these SSRs, at the popu-

lation level, sparsely synchronous oscillations have been

observed in local field potential recordings, while at the

cellular level, individual neuronal recordings have been

observed to exhibit intermittent and irregular discharges

like Geiger counters. Thus, in the SSRs, single-cell firing

activity differs markedly from the population oscillatory

behaviors, in contrast to the fully synchronized rhythms

where individual cells fire regularly at the population fre-

quency like clocks (Wang 2010).

In this paper, we investigate the population behaviors in

the SSRs appearing in the DG. Population synchronization

may be well visualized in the raster plot of spikes which is

a collection of spike trains of individual cells. As a col-

lective quantity showing population behaviors, we use an

instantaneous population spike rate (IPSR) which may be

obtained from the raster plots of spikes (Wang 2010;

Brunel and Wang 2003; Geisler et al. 2005; Brunel and

Hakim 2008; Kim and Lim 2018, 2014). For a synchronous

case, ‘‘stripes’’ (composed of spikes and indicating popu-

lation synchronization) are found to be formed in the raster

plot, while in a desynchronized case spikes are completely

scattered. Hence, in the synchronous case, an oscillating

IPSR appears, while for the desynchronized case the IPSR

is nearly stationary (Wang 2010; Brunel and Wang 2003;

Geisler et al. 2005; Brunel and Hakim 2008; Kim and Lim

2018, 2014). In the case of SSR in the DG, sparsely syn-

chronized stripes appear successively in the raster plot of

spikes, and the corresponding IPSR exhibits sparsely syn-

chronized oscillation with the population frequency fpð¼
13:1 Hz) [e.g., see the raster plot of spikes for the GCs in

Fig. 2a1 and the IPSR in Fig. 2a2]. We note that, in the

case of SSR only a fraction of cells make spikings in each

stripe in the raster plot of spikes, in contrast to the fully

synchronized rhythm where all cells fire spikings in each

stripe (Wang 2010). Then, population behaviors in the

SSRs in the DG are quantitatively characterized by

employing diverse synchronization measures introduced in

our prior works. The overall synchronization degree for the

Cognitive Neurodynamics

123



SSR may be well measured in terms of a thermodynamic

amplitude measure, given by the time-averaged amplitude

of the macroscopic IPSR (Kim and Lim 2021c). In addi-

tion, we use the statistical-mechanical spiking measure,

given by the product of the occupation degree (representing

the spike density in each stripe) and the pacing degree

between the spikes (Kim and Lim 2014), and make

intensive characterization of the population behaviors in

the SSRs.

In addition to the population behaviors, we also study

the individual firing behaviors of the GCs, the MCs, and

the BCs in the SSRs. Active GCs exhibit intermittent

spikings phase-locked to the IPSR at random multiples of

the global period TG of the IPSR. This random phase

locking results in random spike skipping, which is well

shown in the inter-spike-interval (ISI) histogram with

multiple peaks appearing at integer multiples of TG [e.g.,

see the ISI histogram of the GCs in Fig. 2c; spiking may

occur most probably after 5- and 6-times spike skipping

because the middle 6th- and the 7th-order peaks are the

highest ones], in contrast to the case of fully synchronized

rhythm with only one peak at TG (i.e., all cells fire regularly

at each global cycle without skipping). Similar skipping

phenomena of spikings were also observed in the case of

fast sparse synchronization occurring in the systems con-

sisting of the two excitatory and inhibitory populations or

in the single inhibitory population (Wang 2010; Brunel and

Wang 2003; Geisler et al. 2005; Brunel and Hakim 2008;

Kim and Lim 2018, 2014). Due to random spike skipping,

population-averaged mean-firing-rate (MFR) \f
ðGCÞ
i [ ið¼

2:0HzÞ becomes less than the population frequency fp (=

13.1 Hz). We also introduce a new random phase-locking

degree and characterize the random spike skipping. In

contrast to the GCs, both MCs and BCs exhibit burstings

within stripes, along with random spike skipping. Hence,

the ISI histogram becomes composed of the dominant

bursting peak and the multiple random-spike-skipping

peaks. Due to the dominant bursting peak, the population-

averaged MFR hf ðXÞi i (X ¼ MC and BC) is larger than fp, in

contrast to the case of the GCs.

Finally, we note that, during epileptogenesis MF

sprouting and hilar cell (MC and HIPP cell) death occur

(Santhakumar et al. 2005; Morgan et al. 2007). Here, we

are concerned about the MC loss. According to the dormant

BC hypothesis (Sloviter 1991, 1994), MC loss leads to

excitatory denervation of the BCs, resulting in hypoactive

inhibition of the GCs, which in turn contributes to hyper-

excitability of the GCs. On the other hand, based on the

irritable MC hypothesis (Santhakumar et al. 2000; Ratzliff

et al. 2002, 2004), surviving MCs with increased

excitability amplify hyperexcitability of the GCs. In our

work, by decreasing the fraction of the MCs, we investigate

how the population and individual firings in the SSRs

change. Quantitative correlation between the population/

individual firing behaviors in the SSRs and the winner-

take-all competition is also studied.

This paper is organized as follows. In Sect. 2, we

describe a spiking neural network of the hippocampal DG.

Then, in the main Sect. 3, we investigate population and

individual behaviors in the SSRs of the GCs, the MCs, and

the BCs. Finally, we give summary and discussion in

Sect. 4.

Spiking neural network of the dentate gyrus

In this section, we describe our spiking neural network of

the DG. We first developed our DG spiking neural network

in the work for the winner-take-all competition (Kim and

Lim 2021d), based on the anatomical and the physiological

properties given in (Myers and Scharfman 2009; Chavlis

et al. 2017). In the present work for the SSR, most of the

system parameters for the structure, the single neuron

models, and the synaptic currents are the same as those in

the work for the winner-take-all competition (Kim and Lim

2021d), except for a few differences (e.g., number of GC

clusters). Obviously, our spiking neural network will not

capture all the detailed anatomical and physiological

complexity of the DG. But, with a limited number of

essential elements and synaptic connections in our DG

network, population and individual firing behaviors in the

SSRs could be successfully studied. Therefore, our spiking

neural network model would build a foundation upon

which additional complexity may be added and guide

further research.

Framework of the spiking neural network
of the dentate gyrus

Figure 1 shows the box diagram for our DG network. The

granular layer (composed of the excitatory GCs and the

inhibitory BCs) and the hilus [consisting of the excitatory

MCs and the inhibitory HIPP (hilar perforant path-associ-

ated) cells] constitute the DG. Thus, there exist two types

of excitatory cells, GCs and MCs, in contrast to the case of

the CA3, CA2, and CA1 with only one kind of excitatory

pyramidal cells. This DG receives the input from the

external EC via the PPs and projects its output to the CA3

via the MFs.

Based on the anatomical data given in (Myers and

Scharfman 2009; Chavlis et al. 2017), we chose the num-

bers of the constituent cells (GCs, BCs, MCs, and HIPP

cells) in the DG and the EC cells and the connection

probabilities between them. In our work for the winner-

take-all competition (Kim and Lim 2021d), we developed a
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scaled-down spiking neural network where the total num-

ber of excitatory GCs (NGC) was 2,000, corresponding to
1

500
of the 106 GCs found in rats (West et al. 1991). These

GCs were grouped into the Ncð¼ 20Þ lamellar clusters

(Andersen et al. 1971; Amaral and Witter 1989; Andersen

et al. 2000; Sloviter and Lømo 2012); in the case of the

winner-take-all competition, we chose Ncð¼ 100Þ clusters

(Kim and Lim 2021d). In each GC cluster, there were

n
ðcÞ
GCð¼ 100Þ GCs and one inhibitory BC. Hence, the

number of the BCs (NBC) in the whole DG network became

20, corresponding to 1/100 of NGC (Buckmaster et al.

1996; Buckmaster and Jongen-Rêlo 1999; Buckmaster

et al. 2002; Nomura et al. 1997a, b; Morgan et al. 2007).

Thus, in each GC cluster, a dynamical GC-BC loop was

formed, and the BC (receiving the excitation from all the

GCs) provided the feedback inhibition to all the GCs.

The EC layer II is the external source providing the

excitatory inputs to the GCs and the HIPP cells via the PPs,

as shown in Fig. 1 in Ref. (Myers and Scharfman 2009).

The HIPP cells have dendrites extending into the outer

molecular layer, where they are targeted by the PPs, along

with axons projecting to the outer molecular layer (pri-

marily to the GCs) (Myers and Scharfman 2009; Scharf-

man 1991; Savanthrapadian et al. 2014; Hosp et al. 2014).

Thus, the EC cells and the HIPP cells become the excita-

tory and the inhibitory input sources to the GCs, respec-

tively. The estimated number of the EC layer II cells (NEC)

is about 200,000 in rats, corresponding to 20 EC cells per

100 GCs (Amaral et al. 1990). Thus, we chose NEC ¼ 400

in our DG network. Also, the activation degree Da of the

EC cells was chosen as 10% (McNaughton et al. 1991).

Thus, we randomly chose 40 active ones among the 400 EC

(layer II) cells. Each active EC cell was modeled in terms

of the Poisson spike train with frequency of 40 Hz (Hafting

et al. 2005). The random-connection probability pðGC;ECÞ

(pðHIPP;ECÞ) from the pre-synaptic EC cells to a post-sy-

naptic GC (HIPP cell) was 20 % (Myers and Scharfman

2009; Chavlis et al. 2017). Thus, each GC or HIPP cell was

randomly connected with the average number of 80 EC

cells.

Next, we consider the hilus, composed of the excitatory

MCs and the inhibitory HIPP cells (Scharfman and Myers

2013; Scharfman 2018; Lübke et al. 1998; Amaral et al.

2007; Jinde et al. 2012, 2013; Ratzliff et al. 2004). In rats,

the number of MCs (NMC) is known to change from 30,000

to 50,000, corresponding to 3-5 MCs per 100 GCs (West

et al. 1991; Buckmaster and Jongen-Rêlo 1999). In our DG

network, we chose NMC ¼ 80. Also, the estimated number

of HIPP cells (NHIPP) in rats is about 12,000 (Buckmaster

and Jongen-Rêlo 1999), which corresponds to about 2

HIPP cells per 100 GCs. Hence, we chose NHIPP ¼ 40 in

our DG network. For simplicity, as in (Myers and Scharf-

man 2009; Chavlis et al. 2017), the lamellar cluster orga-

nization for the hilar cells was not considered.

In our DG network, the whole MCs and the GCs in each

GC cluster were mutually connected with the same 20 %

random-connection probabilities pðMC;GCÞ (GC ! MC) and

pðGC;MCÞ (MC ! GC), independently of the GC clusters

(Myers and Scharfman 2009; Chavlis et al. 2017). In this

way, the GCs and the MCs formed a dynamical E-E loop.

All the MCs also provided the excitation to the BC in each

GC cluster (Chavlis et al. 2017). Hence, the BC in the GC

cluster received excitatory inputs from all the GCs in the

same GC cluster and from all the MCs. In this way, the

MCs control the firing activity in the GC-BC loop by

providing excitation to both the GCs and the BCs.

We also note that each GC in the GC cluster received

inhibition from the randomly-connected HIPP cells with

the connection probability pðGC;HIPPÞ ¼ 20% (Myers and

Scharfman 2009; Chavlis et al. 2017). Hence, the firing

Fig. 1 Box diagram for the hippocampal dentate gyrus (DG) network.

Lines with triangles and circles denote excitatory and inhibitory

synapses, respectively. In the DG, there are the granular layer

[consisting of GC (granule cell) and BC (basket cell)] and the hilus

[composed of MC (mossy cell) and HIPP (hilar perforant path-

associated) cell]. The DG receives excitatory input from the EC

(entorhinal cortex) via PPs (perforant paths) and provides its output to

the CA3 via MFs (mossy fibers)
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activity of the GCs may be determined through competition

between the excitatory inputs from the EC cells and from

the MCs and the inhibitory inputs from the HIPP cells.

With the above information on the numbers of the rel-

evant cells and the connection probabilities between them,

we developed a one-dimensional ring network for the SSR

in the DG, as in the case of the winner-take-all competition

in the DG (Kim and Lim 2021d). Due to the ring structure,

our network has advantage for computational efficiency,

and its visual representation may also be easily made. For

the schematic diagrams of the ring networks for the EC, the

granular layer and the hilus, refer to Fig. 1b1-b3 in (Kim

and Lim 2021d), respectively.

Elements and synaptic currents in the DG spiking
neural network

As elements of our DG spiking neural network, we chose

leaky integrate-and-fire (LIF) neuron models with addi-

tional afterhyperpolarization (AHP) currents which deter-

mines refractory periods, like our prior study of cerebellar

network (Kim and Lim 2021a, b). This LIF neuron model

is one of the simplest spiking neuron models (Gerstner and

Kistler 2002). Due to its simplicity, it may be easily ana-

lyzed and simulated.

Evolutions of dynamical states of individual cells in the

X population are governed by the following equations:

CX
dv

ðXÞ
i ðtÞ
dt

¼ �I
ðXÞ
L;i ðtÞ � I

ðXÞ
AHP;iðtÞ þ I

ðXÞ
ext � I

ðXÞ
syn;iðtÞ;

i ¼ 1; � � � ;NX :

ð1Þ

Here, NX is the total number of cells in the X population,

X ¼ GC and BC in the granular layer and X ¼ MC and

HIPP in the hilus. In Eq. (1), CX (pF) represents the

membrane capacitance of the cells in the X population, and

the state of the ith cell in the X population at a time t (msec)

is characterized by its membrane potential v
ðXÞ
i ðtÞ (mV).

The time-evolution of v
ðXÞ
i ðtÞ is governed by 4 types of

currents (pA) into the ith cell in the X population; the

leakage current I
ðXÞ
L;i ðtÞ, the AHP current I

ðXÞ
AHP;iðtÞ, the

external constant current I
ðXÞ
ext (independent of i), and the

synaptic current I
ðXÞ
syn;iðtÞ. Here, a subthreshold case of

I
ðXÞ
ext ¼ 0 was considered for all X (Chavlis et al. 2017).

The 1st type of leakage current I
ðXÞ
L;i ðtÞ for the ith cell in

the X population is given by:

I
ðXÞ
L;i ðtÞ ¼ g

ðXÞ
L ðvðXÞi ðtÞ � V

ðXÞ
L Þ: ð2Þ

Here, g
ðXÞ
L and V

ðXÞ
L are conductance (nS) and reversal

potential for the leakage current, respectively. The ith cell

fires a spike when its membrane potential v
ðXÞ
i reaches a

threshold v
ðXÞ
th at a time t

ðXÞ
f ;i . Then, the 2nd type of AHP

current I
ðXÞ
AHP;iðtÞ follows after spiking (i.e., t� t

ðXÞ
f ;i ), :

I
ðXÞ
AHP;iðtÞ ¼ g

ðXÞ
AHPðtÞðv

ðXÞ
i ðtÞ � V

ðXÞ
AHPÞ for t� t

ðXÞ
f ;i : ð3Þ

Here, V
ðXÞ
AHP is the reversal potential for the AHP current,

and the conductance g
ðXÞ
AHPðtÞ is given by an exponential-

decay function:

g
ðXÞ
AHPðtÞ ¼ �g

ðXÞ
AHPe

�ðt�t
ðXÞ
f ;i

Þ=sðXÞ
AHP : ð4Þ

Here, �g
ðXÞ
AHP and sðXÞAHP are the maximum conductance and the

decay time constant for the AHP current. As sðXÞAHP is

increased, the refractory period becomes longer.

For the parameter values of the capacitance CX , the

leakage current I
ðXÞ
L ðtÞ, and the AHP current I

ðXÞ
AHPðtÞ, refer

to Table 1 in (Kim and Lim 2021d); these parameter values

are based on physiological properties of the GC, BC, MC,

and HIPP cell (Chavlis et al. 2017; Lübke et al. 1998).

We next consider the synaptic current I
ðXÞ
syn;iðtÞ into the ith

cell in the X population, composed of the following 3 types

of synaptic currents:

I
ðXÞ
syn;iðtÞ ¼ I

ðX;YÞ
AMPA;iðtÞ þ I

ðX;YÞ
NMDA;iðtÞ þ I

ðX;ZÞ
GABA;iðtÞ: ð5Þ

Here, I
ðX;YÞ
AMPA;iðtÞ and I

ðX;YÞ
NMDA;iðtÞ are the excitatory AMPA

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)

receptor-mediated and NMDA (N-methyl-D-aspartate)

receptor-mediated currents from the pre-synaptic source Y

population to the post-synaptic ith neuron in the target X

population, respectively. On the other hand, I
ðX;ZÞ
GABA;iðtÞ is

the inhibitory GABAA (c-aminobutyric acid type A)

receptor-mediated current from the pre-synaptic source

Z population to the post-synaptic ith neuron in the target

X population.

Like the case of the AHP current, the R (= AMPA,

NMDA, or GABA) receptor-mediated synaptic current

I
ðT ;SÞ
R;i ðtÞ from the pre-synaptic source S population to the ith

post-synaptic cell in the target T population is given by:

I
ðT ;SÞ
R;i ðtÞ ¼ g

ðT ;SÞ
R;i ðtÞðvðTÞi ðtÞ � V

ðSÞ
R Þ: ð6Þ

Here, g
ðT ;SÞ
ðR;iÞ ðtÞ and V

ðSÞ
R are synaptic conductance and

synaptic reversal potential (determined by the type of the

pre-synaptic source S population), respectively.

In the case of the R (=AMPA and GABA)-mediated

synaptic currents, we get the synaptic conductance g
ðT ;SÞ
R;i ðtÞ

from:

g
ðT ;SÞ
R;i ðtÞ ¼ K

ðT ;SÞ
R

XNS

j¼1

w
ðT ;SÞ
ij s

ðT ;SÞ
j ðtÞ: ð7Þ
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Here, K
ðT ;SÞ
R is the synaptic strength per synapse for the R-

mediated synaptic current from the jth pre-synaptic neuron

in the source S population to the ith post-synaptic cell in

the target T population. The inter-population synaptic

connection from the source S population (with Ns cells) to

the target T population is given by the connection weight

matrix W ðT ;SÞ (¼ fwðT ;SÞ
ij g) where w

ðT ;SÞ
ij ¼ 1 if the jth cell in

the source S population is pre-synaptic to the ith cell in the

target T population; otherwise w
ðT ;SÞ
ij ¼ 0. The fraction of

open ion channels at time t is also denoted by sðT ;SÞðtÞ.
In contrast, in the NMDA-receptor case, some of the

post-synaptic NMDA channels are blocked by the positive

magnesium ion Mg2þ (Jahr and Stevens 1990). Hence, the

conductance in the case of NMDA receptor is given by

(Chavlis et al. 2017):

g
ðT ;SÞ
R;i ðtÞ ¼ eK ðT ;SÞ

R f ðvðTÞðtÞÞ
XNS

j¼1

w
ðT ;SÞ
ij s

ðT ;SÞ
j ðtÞ: ð8Þ

Here, eK ðT ;SÞ
R is the synaptic strength per synapse, and the

fraction of NMDA channels that are not blocked by the

Mg2þ ion is given by a sigmoidal function f ðvðTÞðtÞÞ:

f ðvðTÞðtÞÞ ¼ 1

1 þ g � ½Mg2þ�o � expð�c � vðTÞðtÞÞ
: ð9Þ

Here, vðTÞðtÞ is the membrane of the target cell, ½Mg2þ�o is

the outer Mg2þ concentration, g represents the sensitivity

of Mg2þ unblock, c denotes the steepness of Mg2þ

unblock, and the values of parameters vary depending on

the target cell (Chavlis et al. 2017). For simplicity, we

make an approximation to replace f ðvðTÞðtÞÞ with

hf ðvðTÞðtÞÞi [i.e., time-averaged value of f ðvðTÞðtÞÞ in the

range of vðTÞðtÞ of the target cell]. Then, we introduce an

effective synaptic strength K
ðT ;SÞ
NMDAð¼ eK ðT ;SÞ

NMDAhf ðvðTÞðtÞÞi)
by absorbing hf ðvðTÞðtÞÞi into K

ðT ;SÞ
NMDA. Thus, with the

scaled-down effective synaptic strength K
ðT ;SÞ
NMDA (including

the average blockage effect of the Mg2þ ion), the con-

ductance g for the NMDA receptor may also be well

approximated in the same form of conductance as other

AMPA and GABA receptors in Eq. (7). In this way, we

get all the effective synaptic strengths K
ðT ;SÞ
NMDA from the

synaptic strengths eK ðT ;SÞ
NMDA in (Chavlis et al. 2017) by tak-

ing into consideration the average blockage effect of the

Mg2þ ion. Consequently, we can use the same form of

synaptic conductance of Eq. (7) in all the cases of R ¼
AMPA, NMDA, and GABA, as in other works [e.g., see

(Brunel and Wang 2003)].

The post-synaptic ion channels are opened because of

binding of neurotransmitters (emitted from the source S

population) to receptors in the target T population. The

fraction of open ion channels at time t is represented by

sðT ;SÞðtÞ. The time course of s
ðT ;SÞ
j ðtÞ of the jth cell in the

source S population is given by a sum of double expo-

nential functions E
ðT ;SÞ
R ðt � t

ðjÞ
f � sðT ;SÞR;l Þ:

s
ðT ;SÞ
j ðtÞ ¼

XF
ðsÞ
j

f¼1

E
ðT ;SÞ
R ðt � t

ðjÞ
f � sðT ;SÞR;l Þ: ð10Þ

Here, t
ðjÞ
f and F

ðsÞ
j are the fth spike time and the total

number of spikes of the jth cell in the source S population,

respectively, and sðT ;SÞR;l is the synaptic latency time constant

for R-mediated synaptic current. The exponential-decay

function E
ðT ;SÞ
R ðtÞ (corresponding to contribution of a pre-

synaptic spike occurring at t ¼ 0 in the absence of synaptic

latency) is given by:

E
ðT ;SÞ
R ðtÞ ¼ 1

sðT ;SÞR;d � sðT ;SÞR;r

e�t=sðT ;SÞ
R;d � e�t=sðT ;SÞR;r

� �
�HðtÞ:

ð11Þ

Here, HðtÞ is the Heaviside step function: HðtÞ ¼ 1 for

t� 0 and 0 for t\0, and sðT ;SÞR;r and sðT ;SÞR;d are synaptic rising

Table 1 Parameters for the

synaptic currents I
ðGC;SÞ
R ðtÞ into

the GC. The GCs receive the

direct excitatory input from the

entorhinal cortex (EC) cells, the

inhibitory input from the HIPP

cells, the excitatory input from

the MCs, and the feedback

inhibition from the BCs

Target Cells (T) GC

Source Cells (S) EC cell HIPP cell MC BC

Receptor (R) AMPA NMDA GABA AMPA NMDA GABA

K
ðT;SÞ
R

0.89 0.15 0.12 0.05 0.01 25.0

sðT ;SÞR;r
0.1 0.33 0.9 0.1 0.33 0.9

sðT ;SÞR;d
2.5 50.0 6.8 2.5 50.0 6.8

sðT ;SÞR;l
3.0 3.0 1.6 3.0 3.0 0.85

V
ðSÞ
R

0.0 0.0 -86.0 0.0 0.0 -86.0
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and decay time constants of the R-mediated synaptic cur-

rent, respectively.

In comparison to those in the case of winner-take-all

competition (Kim and Lim 2021d), most of the parameter

values, associated with the synaptic currents, are the same,

except for the changed synaptic strengths, GC ! MC:

ðKðMC;GCÞ
AMPA , K

ðMC;GCÞ
NMDA ) = (1.52, 0.27) and MC ! BC:

ðKðBC;MCÞ
AMPA , K

ðBC;MCÞ
NMDA ) = (0.85, 0.05). For completeness, we

include Tables 1 and 2 which show the parameter values

for the synaptic strength per synapse K
ðT ;SÞ
R , the synaptic

rising time constant sðT ;SÞR;r , synaptic decay time constant

sðT ;SÞR;d , synaptic latency time constant sðT ;SÞR;l , and the synaptic

reversal potential V
ðSÞ
R for the synaptic currents into the

GCs and for the synaptic currents into the HIPP cells, the

MCs and the BCs, respectively. These parameter values are

also based on the physiological properties of the relevant

cells (Chavlis et al. 2017; Kneisler and Dingledine 1995;

Geiger et al. 1997; Bartos et al. 2001; Schmidt-Hieber

et al. 2007; Larimer and Strowbridge 2008; Schmidt-Hie-

ber and Bischofberger 2010; Krueppel et al. 2011; Chiang

et al. 2012).

All of our source codes for computational works were

written from scratch in the programming C language. Then,

using the GCC complier we ran the source codes on per-

sonal computers with Intel i5-10210U CPUs (1.6 GHz) and

8 GB of RAM. The number of used personal computers

vary (from 1 to 70) depending on the type of jobs. For

example, consider the case of Fig. 4a1-a3 where raster

plots of spikes are shown for 3 different values for the

parameter NMC (number of MCs). In each case of NMC = 60

and 30, we ran the source codes on 20 independent per-

sonal computers simultaneously to get independent sam-

ples of raster plots of spikes, and then chose one

representative sample of raster plot of spikes (showing well

the long-term population behavior). In the case of NMC ¼ 0

with the lowest synchronization degree, we needed 30

personal computers to get enough 30 independent samples

of raster plots of spikes for choice of a representative raster

plot of spikes. In this way, we used 70 personal computers

for Figs. 4a1-a3. We note that numerical integration of the

governing Eq. (1) for the time-evolution of states of indi-

vidual spiking neurons is done by employing the 2nd-order

Runge-Kutta method with the time step 0.1 msec. The

Runge-Kutta method for numerical integration is well

explained in ordinary textbooks for numerical analysis

[e.g., refer to (Press et al. 1992)]. We will release our

source codes at the public databases such as the ModelDB.

Population and individual firing behaviors
in sparsely synchronized rhythms

In our DG network shown in Fig. 1, the main encoding

GCs are found to exhibit SSR during their winner-take-all

competition (leading to sparse activation of the GCs). Also,

the MCs and the BCs show SSRs via interaction with the

GCs through the GC-MC loop and the GC-BC loop,

respectively. Population and individual behaviors of these

SSRs are investigated in terms of diverse measures for

population synchronization and random phase-locking

degree for characterization of the ISIs. Quantitative cor-

relations between these behaviors and the winner-take-all

competition are shown to exist.

Population and individual behaviors
in the sparsely synchronized rhythm of the GCs

Figure 1 shows the external input from the EC. As

explained in the subsect. 2.1, there are direct excitatory

input from the EC cells and indirect disynaptic inhibitory

EC input, mediated by the HIPP cells (Myers and Scharf-

man 2009, 2011; Myers et al. 2013; Scharfman and Myers

2016; Chavlis et al. 2017) [e.g., see Fig. 1 in Ref. (Myers

and Scharfman 2009)]. Among the 400 EC cells, randomly-

chosen 40 active cells make spikings (i.e., activation

Table 2 Parameters for the

synaptic currents I
ðT ;SÞ
R ðtÞ into

the HIPP cell, MC, and BC. The

HIPP cells receive the

excitatory input from the EC

cells, the MCs receive the

excitatory input from the GCs,

and the BCs receive the

excitatory inputs from both the

GCs and the MCs

Target Cells (T) HIPP cell MC BC

Source Cells (S) EC cell GC GC MC

Receptor (R) AMPA NMDA AMPA NMDA AMPA NMDA AMPA NMDA

K
ðT;SÞ
R

12.0 3.04 1.52 0.27 0.38 0.02 0.85 0.05

sðT ;SÞR;r
2.0 4.8 0.5 4.0 2.5 10.0 2.5 10.0

sðT ;SÞR;d
11.0 110.0 6.2 100.0 3.5 130.0 3.5 130.0

sðT ;SÞR;l
3.0 3.0 1.5 1.5 0.8 0.8 3.0 3.0

V
ðSÞ
R

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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degree Da ¼ 10 %). Each active EC cell is modeled in

terms of the Poisson spike train with frequency of 40 Hz.

After a break stage (t ¼ 0 � 300 msec), Poisson spike train

of each active EC cell follows during the stimulus stage

(t ¼ 300 � 30; 300 msec; the stimulus period Ts is 3 � 104

msec).

We note that each HIPP cell is randomly connected to

the average number of 80 EC cells with the connection

probability pðHIPP;ECÞ ¼ 20%, among which the average

number of active EC cells is 8. Among the 40 HIPP cells,

37 HIPP cells are found to be active, while the remaining 3

HIPP cells (without receiving excitatory input from the

active EC cells) are silent; the activation degree of the

HIPP cells is 92.5%. Also, the spikings of the active HIPP

cells begin from t ’ 320 msec (i.e. about 20 msec delay for

the firing of the HIPP cells with respect to the firing onset

(t ¼ 300 msec) of the active EC cells).

As a pre-processor for the CA3, the GCs in the DG

perform the pattern separation, facilitating the pattern

storage and retrieval in the CA3. The GCs make sparse

firing activity through competitive learning, which has

been thought to improve the pattern separation. The acti-

vation degree of the GCs was found to be Da ¼ 5:2% (i.e.,

the total number of active GCs is 104). Also, the active

GCs begin to make sparse firings from t ’ 340 msec [i.e.

about 40 msec delay for the firing of the GCs with respect

to the firing onset (t ¼ 300 msec) of the active EC cells].

Dynamical origin for winner-take-all competition, leading

to the sparse activation of the GCs, has been studied in our

prior work (Kim and Lim 2021d). Winner-take-all com-

petition has been found to occur via competition between

the firing activity of the GCs and the feedback inhibition of

the BC in each GC cluster. In this case, the hilar MCs has

also been found to enhance the winner-take-all competition

by providing excitation to both the GCs and the BC.

During the winner-take-all competition, SSR is found to

appear in the population of the GCs via interaction of

excitation of the GCs with inhibition of the BCs. Popula-

tion firing activity of the active GCs may be well visualized

in the raster plot of spikes which is a collection of spike

trains of individual active GCs. Figure 2a1 shows the raster

plot of spikes for the active GCs; for convenience, only a

part from t ¼ 300 to 1,300 msec is shown in the raster plot

of spikes. We note that sparsely synchronized stripes

(composed of sparse spikes and indicating population

sparse synchronization) appear successively.

As a population quantity showing collective behaviors,

we use an IPSR (instantaneous population spike rate)

which may be obtained from the raster plots of spikes

(Wang 2010; Brunel and Wang 2003; Geisler et al. 2005;

Brunel and Hakim 2008; Kim and Lim 2018, 2014). To get

a smooth IPSR, we employ the kernel density estimation

(kernel smoother) (Shimazaki and Shinomoto 2010). Each

spike in the raster plot is convoluted (or blurred) with a

kernel function KhðtÞ to get a smooth estimate of IPSR

RGCðtÞ:

RGCðtÞ ¼
1

Na

XNa

i¼1

Xni

s¼1

Khðt � tðiÞs Þ; ð12Þ

where Na is the number of the active GCs, t
ðiÞ
s is the sth

spiking time of the ith active GC, ni is the total number of

spikes for the ith active GC, and we use a Gaussian kernel

function of band width h:

KhðtÞ ¼
1ffiffiffiffiffiffi
2p

p
h
e�t2=2h2

;�1\t\1: ð13Þ

Throughout the paper, the band width h of KhðtÞ is 20

msec. The IPSR RGCðtÞ of the active GCs is shown in

Fig. 2a2, and we note that RGCðtÞ exhibits synchronous

oscillation with the population frequency f
ðGCÞ
p ð¼ 13:1

Hz); in a desynchronized case, the IPSR becomes station-

ary without oscillation.

In the above way, SSR with the population frequency

f
ðGCÞ
p ð¼ 13:1 Hz) [i.e., the global period T

ðGCÞ
G (corre-

sponding to the average period between the neighboring

spiking stripes) is 76.3 msec] emerges in the population of

active GCs. This is similar to the previously-studied case

where fast sparse synchronization occurs via E-I balance in

the feedback E-I loop (Wang 2010; Brunel and Wang

2003; Geisler et al. 2005; Brunel and Hakim 2008).

(b4)

(b3)

(b2)

(b1)

(d2)

(d1)

(a2)

(c)

(a1)

Fig. 2 Emergence of SSR of the GCs. a1 Raster plot of spikes of 104

active GCs. a2 IPSR RGCðtÞ of active GCs. Band width for RGCðtÞ:
h ¼ 20 msec. Plots of b1 amplitude Ai of the IPSR RGCðtÞ, b2
occupation degree Oi, b3 pacing degree Pi, and b4 statistical-

mechanical spiking measure Ms;i vs. i (spiking stripe index). c
Population-averaged ISI histogram; bin size = 2 msec. Vertical dotted

lines in c represent the integer multiples of the global period T
ðGCÞ
G

(=76.3 msec) of RGCðtÞ. Plots of d1 normalized weight wn and d2

random phase-locking degree LðnÞ
d for the nth peak of the ISI

histogram versus n (random-spike-skipping peak index)
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We now characterize population firing behavior in the

SSR of the GCs by employing the thermodynamic ampli-

tude measure and the statistical-mechanical spiking mea-

sure (Kim and Lim 2021c, 2014). The thermodynamic

amplitude measure Ma is given by the time-averaged

amplitude of the macroscopic IPSR RGCðtÞ (Kim and Lim

2021c):

Ma ¼ Ai;Ai ¼
R
ðiÞ
GC;maxðtÞ � R

ðiÞ
GC;minðtÞ

2
; ð14Þ

where the overline represents time average, and R
ðiÞ
GC;maxðtÞ

and R
ðiÞ
GC;minðtÞ are the maximum and the minimum of

RGCðtÞ in its ith global cycle (corresponding to the ith

spiking stripe). As Ma increases (i.e., the time-averaged

amplitude of RGCðtÞ is increased), the synchronization

degree of the SSR becomes higher. Figure 2b1 shows the

plot of the amplitude Ai versus the spiking stripe index i.

We follow the 392 stripes during the stimulus period Ts
(¼ 3 � 104 msec), and thus thermodynamic amplitude

measure Ma (corresponding to the time-averaged ampli-

tude Ai) is found to be 3.568.

Next, we characterize the population firing behaviors in

terms of the statistical-mechanical spiking measure (Kim

and Lim 2014). For a synchronous case, spiking stripes

appear successively in the raster plot of spikes. The spiking

measure Ms;i of the ith stripe is defined by the product of

the occupation degree Oi of spikes (denoting the spike

density of the ith stripe) and the pacing degree Pi of spikes

(representing the degree of phase coherence between

spikes in the ith stripe):

Ms;i ¼ Oi � Pi: ð15Þ

The occupation degree Oi of spikes in the ith stripe is given

by the fraction of spiking neurons:

Oi ¼
N

ðsÞ
i

Na
; ð16Þ

where N
ðsÞ
i is the number of spiking cells in the ith stripe,

and Na is the total number of active cells (e.g., Na ¼ 104

for the GCs). In the case of sparse synchronization, Oi\1,

in contrast to the case of full synchronization with Oi ¼ 1.

The pacing degree Pi of spikes in the ith stripe can be

determined in a statistical-mechanical way by considering

their contributions to the macroscopic IPSR RGCðtÞ. Cen-

tral maxima of RGCðtÞ between neighboring left and right

minima of RGCðtÞ coincide with centers of spiking stripes

in the raster plot. A global cycle begins from a left mini-

mum of RGCðtÞ, passes a maximum, and ends at a right

minimum. An instantaneous global phase UðtÞ of RGCðtÞ
was introduced via linear interpolation in the region

forming a global cycle [for details, refer to Eqs. (16) and

(17) in (Kim and Lim 2014)]. Then, the contribution of the

kth microscopic spike in the ith stripe occurring at the time

t
ðsÞ
k to RGCðtÞ is given by cosUk, where Uk is the global

phase at the kth spiking time [i.e., Uk � UðtðsÞk Þ]. A

microscopic spike makes the most constructive (in-phase)

contribution to RGCðtÞ when the corresponding global

phase Uk is 2pn (n ¼ 0; 1; 2; . . .). In contrast, it makes the

most destructive (anti-phase) contribution to RGCðtÞ when

Uk is 2pðn� 1=2Þ. By averaging the contributions of all

microscopic spikes in the ith stripe to RGCðtÞ, we get the

pacing degree of spikes in the ith stripe [refer to Eq. (18) in

(Kim and Lim 2014)]:

Pi ¼
1

Si

XSi

k¼1

cosUk; ð17Þ

where Si is the total number of microscopic spikes in the ith

stripe. Then, via averaging Ms;i of Eq. (15) over a suffi-

ciently large number Ns of stripes (e.g., Ns ¼ 392 for the

GCs), we obtain the statistical-mechanical spiking measure

Ms [refer to Eq. (19) in (Kim and Lim 2014)]:

Ms ¼
1

Ns

XNs

i¼1

Ms;i: ð18Þ

Figures 2b2-b4 show the plots of Oi, Pi; and Ms;i, respec-

tively, in the 13 spiking stripes in Fig. 2a1. By following

the 392 stripes during the stimulus period Ts (¼ 3 � 104

msec), we get the average occupation hOiið¼ 0:140Þ, the

average pacing degree hPiið¼ 0:447Þ, and the statistical-

mechanical spiking measure Msð¼ 0:0626Þ. Since hOii is

much less than 1, sparse synchronization occurs. In con-

trast, moderate pacing (hPii ¼ 0:447) takes place between

spikes in each stripe. Thus, the statistical-mechanical

spiking measure Msð¼ 0:0626Þ, representing the overall

synchronization degree, becomes so small, mainly due to

low occupation degree.

In addition to the population firing behavior, we also

characterize individual spiking behaviors in the SSR. We

obtain the ISI histogram for each active GC by collecting

the ISIs during the stimulus period Ts (¼ 3 � 104 msec), and

then get the population-averaged ISI histogram by aver-

aging the individual ISI histograms for all the active GCs.

Figure 2c shows the population-averaged ISI histogram.

Each active GC exhibits intermittent spikings, phase-

locked to RGCðtÞ at random multiples of its global period

T
ðGCÞ
G ð¼ 76:3 msec). Due to the random spike skipping,

distinct 13 multiple peaks appear at the integer multiples of

T
ðGCÞ
G (denoted by the vertical dotted lines). This is in

contrast to the case of full synchronization where only one

dominant peak appears at the global period TG; all cells fire

regularly at each global cycle without skipping. Hereafter,

these peaks will be called as the random-spike-skipping
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peaks. The middle 6th- and 7th-order peaks are the highest

ones, and hence spiking may occur most probably after 5-

or 6-times spike skipping. This kind of structure in the ISI

histogram is a little different from that in the case of fast

sparse synchronization where the highest peak appears at

the 1st-order peak, and then the heights of the higher-order

peaks decrease successively (Wang 2010; Brunel and

Wang 2003; Geisler et al. 2005; Brunel and Hakim 2008;

Kim and Lim 2018).

In the case of the active GCs, the average ISI (hISIi) is

498.55 msec. Hence, the population-averaged MFR

hf ðGCÞ
i ið¼ 1=hISIi) is 2.01 Hz, which is much less than the

population frequency f
ðGCÞ
p ð¼ 13:1 Hz) of the SSR, in

contrast to the case of full synchronization (with full

occupation) where the population-averaged MFR is the

same as the population frequency.

We introduce a new random phase-locking degree,

denoting how well intermittent spikes make phase-locking

to RGCðtÞ at random multiples of its global period T
ðGCÞ
G ,

and characterize the degree of random spike skipping seen

in the ISI histogram. By following the approach developed

in the case of pacing degree (Kim and Lim 2014), we

introduce the random phase-locking degree to examine the

regularity of individual firings (represented well in the

sharpness of the random-spike-skipping peaks).

We first locate the random-spike-skipping peaks. The

range of ISI in the nth-order peak is as follows:

ðn� 1

2
ÞT ðGCÞ

G \ISI\ðnþ 1

2
ÞT ðGCÞ

G for n� 2; ð19Þ

0\ISI \
3

2
T
ðGCÞ
G for n ¼ 1: ð20Þ

For each nth-order peak, we get the normalized weight wn,

given by:

wn ¼
N

ðnÞ
ISI

N
ðtotÞ
ISI

; ð21Þ

where N
ðtotÞ
ISI is the total number of ISIs obtained during the

stimulus period (Ts ¼ 3 � 104 msec) and N
ðnÞ
ISI is the number

of the ISIs in the nth-order peak. For the GCs,

N
ðtotÞ
ISI ¼ 6; 266. Figure 2d1 shows the plot of wn versus n

(peak index) for all the 13 peaks. The middle highest 6th

and 7th-order peaks have w6 ¼ 0:153 and w7 ¼ 0:154.

We now consider the sequence of the ISIs,

fISI
ðnÞ
i ; i ¼ 1; . . .;N

ðnÞ
ISIg, within the nth-order peak, and get

the random phase-locking degree LðnÞ
d of the nth-order

peak. Similar to the case of the pacing degree (Kim and

Lim 2014), we provide a phase w to each ISI
ðnÞ
i via linear

interpolation:

w DISI
ðnÞ
i

� �
¼ p

T
ðGCÞ
G

DISI
ðnÞ
i for n� 2; ð22Þ

where DISI
ðnÞ
i ¼ ISI

ðnÞ
i � nT

ðGCÞ
G , leading to

�T
ðGCÞ
G

2
\DISI

ðnÞ
i \T

ðGCÞ
G

2
. However, for n ¼ 1, w varies

depending on whether the ISI lies in the left or the right

part of the 1st-order peak:

wðDISI
ð1Þ
i Þ ¼

p

2T
ðGCÞ
G

DISI
ð1Þ
i for � T

ðGCÞ
G

2
\ISI

ð1Þ
i \0;

p

T
ðGCÞ
G

DISI
ð1Þ
i for0\ISI

ð1Þ
i \

T
ðGCÞ
G

2
:

8
>>>><

>>>>:

ð23Þ

Then, the contribution of the ISI
ðnÞ
i to the locking degree

LðnÞ
d is given by cosðwðnÞ

i Þ; wðnÞ
i ¼ wðDISI

ðnÞ
i Þ. An ISI

ðnÞ
i

makes the most constructive contribution to LðnÞ
d for

wðnÞ
i ¼ 0, while it makes no contribution to LðnÞ

d for w ¼ p
2

or �p
2
. By averaging the matching contributions of all the

ISIs in the nth-order peak, we obtain:

LðnÞ
d ¼ 1

N
ðnÞ
ISI

XN
ðnÞ
ISI

i

cosðwðnÞ
i Þ: ð24Þ

Finally, we get the (overall) random phase-locking degree

Ld via weighted average of the random phase-locking

degrees LðnÞ
d of all the peaks:

Ld ¼
XNp

n¼1

wn � LðnÞ
d ¼ 1

N
ðtotÞ
ISI

XNp

n¼1

XN
ðtotÞ
ISI

i¼1

cosðwðnÞ
i Þ; ð25Þ

where Np is the number of peaks in the ISI histogram.

Thus, Ld corresponds to the average of contributions of all

the ISIs in the ISI histogram. Figure 2d2 shows the plot of

LðnÞ
d versus n (peak index) for the 13 random-spike-skip-

ping peaks. In this case, the random phase-locking degree

Ld, characterizing the sharpness of all the peaks, is 0.911.

Hence, the GCs make intermittent spikes which are well

phase-locked to RGCðtÞ at random multiples of its global

period T
ðGCÞ
G .

Population and individual behaviors
in the sparsely synchronized rhythms of the MCs
and the BCs

In our DG network, the hilar MCs and the GCs are

mutually connected with the 20% random connection

probabilities pðMC;GCÞ (GC ! MC) and pðGC;MCÞ

(MC ! GC), which leads to formation of the GC-MC

dynamical loop. Then, SSR emerges in the population of
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the MCs via interaction with the GCs. Also, each BC

receives excitation from all the GCs in the same GC

cluster, and it provides feedback inhibition to all the GCs.

Thus, the GC-BC dynamical loop is formed, and SSR

appears in the population of the BCs through interaction

with the GCs.

Here, we investigate the population and individual firing

behaviors in the SSRs of the MCs and the BCs. Unlike the

case of the GCs, all the MCs (NMC ¼ 80) and all the BCs

(NBC ¼ 20) are active ones (i.e., their activation degrees Da

are 100%). Their raster plots of spikes and the corre-

sponding IPSRs [i.e., RMCðtÞ and RBCðtÞ] are shown in

Fig. 3a1-a2 and e1-e2, respectively. As in the case of the

GCs, SSRs with the population frequency f
ðXÞ
p ð¼ 13:1 Hz;

X ¼ MC and BC) appear in the populations of the MCs and

the BCs via interaction in the GC-MC-BC loop,

respectively.

We note that the population frequencies of the IPSRs

RXðtÞ (X ¼ GC, MC, and BC) are the same through mutual

interaction in the GC-MC-BC loop; for convenience,

sometimes we denote the population frequency just as fp
without the superscript. However, phase shifts between the

SSRs occur as follows. With respect to the excitatory EC

input, starting at t ¼ 300 msec, the firings of the GCs begin

at a delayed time t ’ 340 msec. The GCs provide the

excitatory inputs to the MCs which then give the excitatory

inputs to the BCs. Thus, time-delay occurs for the firings of

the MCs and the BCs with respect to the firings of the GCs.

This delayed firing of the MCs (BCs) may be seen clearly

in the cross-correlation between the IPSR RMCðtÞ [RBCðtÞ]
and RGCðtÞ;

CX�GCðsÞ ¼
DRGCðt þ sÞDRXðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DR2

GCðtÞ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DR2
XðtÞ

q ;X ¼ MC or BC; ð26Þ

where DRGCðtÞ ¼ RGCðtÞ � RGCðtÞ,
DRXðtÞ ¼ RXðtÞ � RXðtÞ, and the overline denotes the time

average. It is thus found that CMC�GCðtÞ and CBC�GCðtÞ
have the maxima at s ¼ 10 and 20 msec, respectively.

Consequently, the MCs and the BCs begin to fire at delayed

time t ’ 350 and 360 msec, respectively.

As in the case of the GCs, we characterize population

firing behaviors in the SSRs of the MCs and the BCs. We

first employ the thermodynamic amplitude measure Ma,

given by the time-averaged amplitude of the macroscopic

IPSRs, RMCðtÞ and RBCðtÞ (Kim and Lim 2021c). Fig-

ure 3b1 and f1 show the plots of the amplitude Ai versus i

(spiking stripe index) in the case of the MCs and the BCs,

respectively. We follow the 392 stripes during the stimulus

time Ts (¼ 3 � 104 msec), and thus the thermodynamic

amplitude measures Ma (corresponding to the time-aver-

aged amplitude Ai) for the MCs and the BCs are found to

be 99.05 and 112.73, respectively, which are mush larger

than Ma (= 3.568) for the GCs. Hence, the synchronization

degrees of the SSRs for the MCs and the BCs are much

higher (about 30 times) than that for the GCs.

Next, we use the occupation degree Oi, the pacing

degree Pi, and the statistical-mechanical spiking measure

Ms;i (Kim and Lim 2014) for characterization of the pop-

ulation firing behaviors in the SSRs of the MCs and the

BCs (Kim and Lim 2014). Figure 3b2-b4 and f2-f4 show

(f4)

(f3)

(f2)

(f1)

(b4)

(b3)

(b2)

(b1)

(d2)

(d1)

(e2)

(e1)

(a2)

(c)

(g)

(a1)

(h2)

(h1)

Fig. 3 Emergence of SSR of the MCs. a1 Raster plot of spikes of

MCs. a2 IPSR RMCðtÞ of MCs. Plots of b1 amplitude Ai of the IPSR

RMCðtÞ, b2 occupation degree Oi, b3 pacing degree Pi, and b4
statistical-mechanical spiking measure Ms;i vs. i (spiking stripe

index). c Population-averaged ISI histogram. Vertical dotted lines in

c represent the integer multiples of the global period T
ðMCÞ
G (=76.3

msec) of RMCðtÞ. Plots of d1 normalized weight wn and d2 random

phase-locking degree LðnÞ
d for the nth-order peak of the ISI histogram

versus n (random-spike-skipping peak index). Emergence of SSR of

the BCs. e1 Raster plot of spikes of BCs. e2 IPSR RBCðtÞ of BCs.

Plots of f1 amplitude Ai of the IPSR RBCðtÞ, f2 occupation degree Oi,

f3 pacing degree Pi, and f4 statistical-mechanical spiking measure

Ms;i vs. i (spiking stripe index). g Population-averaged ISI histogram.

Vertical dotted lines in (g) represent the integer multiples of the

global period T
ðBCÞ
G (=76.3 msec) of RBCðtÞ. Plots of h1 normalized

weight wn and h2 random phase-locking degree LðnÞ
d for the nth-order

peak of the ISI histogram versus n (random-spike-skipping peak

index)
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the plots of Oi, Pi; and Ms;i in the ith spiking stripes for the

MCs and the BCs, respectively. We follow the 392 stripes

during the stimulus period Ts (¼ 3 � 104 msec), and get the

average occupation hOii, the average pacing degree hPii,
and the statistical-mechanical spiking measure Ms. The

average occupation degrees hOii of the MCs and the BCs

are 0.86 and 0.92, respectively, which are much larger

(about 6 times) than that (= 0.14) of the GCs. However,

since hOii of the MCs and the BCs are still less than 1,

MCs and BCs also exhibit sparsely synchronized firings,

but these firings are much less sparse than those of the GCs.

Also, the average pacing degrees hPii of the MCs and

the BCs are 0.73 and 0.77, respectively, which are larger

than that (= 0.447) of the GCs; the pacing between spikings

for the MCs and the BCs are better than that for the GCs.

Consequently, the statistical-mechanical spiking measure

Ms (representing the overall degree of population syn-

chronization) of the MCs and the BCs are 0.63 and 0.71,

respectively, which are much larger (at least 10 times) than

that (= 0.0626) of the GCs. As explained in Subsec. 3.1, Ms

for the GCs becomes very small mainly due to low average

occupation degree hOii (= 0.14) (resulting from the sparse

firings of the GCs).

In addition to the population behaviors, we also char-

acterize individual spiking behaviors in the SSRs of the

MCs and BCs in terms of their ISIs. Figure 3c and g show

the population-averaged ISI histograms for the MCs and

the BCs, respectively; these ISI histograms are obtained in

the same way as in the GCs. Unlike the case of the GCs, the

MCs and the BCs exhibit ‘‘intrastripe bursting’’ (corre-

sponding to repeatedly firing bursts of spikes) within the

stripes, in addition to the random-spike-skipping spikes; no

intrastripe bursting occurs for the GCs.

Thus, the ISI histograms consist of the dominant ‘‘in-

trastripe bursting peak’’ [located near the ISI (’ 1:10

msec)], arising from the intrastripe burstings, as well as the

random-spike-skipping peaks [located at the integer mul-

tiples of the global period T
ðXÞ
G ð¼ 76:3 msec); X ¼ MC and

BC], resulting from the random-spike-skipping spikes; the

fractions of the ISIs at the intrastripe bursting peaks are

0.75 and 0.78 for the MCs and the BCs, respectively. In

this way, the structure of the ISI histograms for the MCs

and the BCs is distinctly different from that for the GCs,

due to the occurrence of intrastripe burstings. Conse-

quently, for the MCs (BCs), the average ISI (hISIi) is 23.5

(17.8) msec, and hence the population-averaged MFR

hf ðMCÞ
i i (hf ðBCÞ

i i) (=1=hISIi) is 42.6 (56.2) Hz, which is

higher than the population frequency fpð¼ 13:1 Hz) of the

SSRs, in contrast to the case of the GCs with hf ðGCÞ
i i ¼

2:01 Hz (much lower than fp).

As in the case of the GCs, we also characterize the

random spike skipping, leading to the random-spike-

skipping peaks in the ISI histograms, in terms of the ran-

dom phase-locking degree Ld, representing how well

intermittent random-spike-skipping spikes make phase-

locking to RXðtÞ at random multiples of its global period

T
ðXÞ
G ð¼ 76:3 msec; X ¼ MC and BC). Unlike the case of

the GCs (with the 13 peaks), only the 3 (2) random-spike-

skipping peaks appear for the MCs (BCs), due to appear-

ance of the dominant intrastripe bursting peak. In this case,

the normalized weight wn for the nth-order random-spike-

skipping peak is given by:

wn ¼
N

ðn;skipÞ
ISI

N
ðtot;skipÞ
ISI

; ð27Þ

where N
ðtot;skipÞ
ISI is the total number of random-spike-skip-

ping ISIs and N
ðn;skipÞ
ISI is the number of the ISIs in the nth-

order random-spike-skipping peak. Figure 3d1 and h1 show

the plots of the normalized weights wn versus n (random-

spike-skipping peak index) for the MCs and the BCs,

respectively. Unlike the GCs, the 1st-order skipping peak is

dominant; w1 ¼ 0.811 and 0.986 for the MCs and the BCs,

respectively; the weights of the remaining higher-order

skipping peaks are very low.

We now examine the regularity of individual random-

spike-skipping (represented well in the sharpness of the

random-spike-skipping peaks) in terms of the random

phase-locking degree Ld, introduced in Eq. (25). Fig-

ure 3d2 and h2 show the plots of the random phase-locking

degree LðnÞ
d of the nth-order random-spike-skipping peak

versus n (random-spike-skipping peak index) for the MCs

and the BCs, respectively. Then, Ld, corresponding to the

average of contributions of all the ISIs in the ISI histogram,

is given by the weighted mean of the random phase-locking

degrees LðnÞ
d of the nth-order random-spike-skipping peak;

Ld is 0.934 and 0.940 for the MCs and the BCs, respec-

tively. Similar to the case of the GC with Ld=0.911, the

values of Ld are also very high, which implies that the

intermittent random-spike-skipping spikes for the MCs and

the BCs are well phase-locked to RXðtÞ at random multiples

of its global period T
ðXÞ
G ðX ¼ MC and BC).

Effect of the hilar MCs on population
and individual behaviors in the sparsely
synchronized rhythms

The hilar MCs control the firing activity of the GC-BC loop

by providing excitation to both the GCs and the BCs.

Through such control, the MCs were found to play an

important role of enhancing the winner-take-all competi-

tion in each GC cluster (Kim and Lim 2021d). However,

MC loss may occur during epileptogenesis (Santhakumar

et al. 2005; Morgan et al. 2007; Sloviter 1991, 1994;
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Santhakumar et al. 2000; Ratzliff et al. 2002, 2004), which

might be a cause of impaired pattern separation leading to

memory interference. Through ablation of the MCs, we

study their effect on the firing behaviors in the SSRs of the

GCs, MCs, and BCs.

We decrease NMC (number of the MCs) from 80 (in the

original whole network) to 0 (complete loss); in this case,

the fraction of MCs (FMC) is given by NMC=80. With

decreasing NMC or equivalently FMC in the above way, we

investigate change in the population and individual spiking

behaviors in the SSRs of the GCs, the MCs, and the BCs,

and compare them with those for NMC ¼ 80 (i.e., FMC ¼ 1)

in Figs. 2 and 3. It is thus found that the MCs play an

essential role to enhance the synchronization degree and

the random phase-locking degree in the SSRs.

We first consider the case of SSR of the GCs. Fig-

ures 4a1-a3 show the raster plots of spikes and the IPSRs

RGCðtÞ for NMC ¼ 60 (FMC ¼ 0:75), 30 (FMC ¼ 0:375),

and 0 (FMC ¼ 0), respectively. We note that sparsely syn-

chronized spiking stripes appear successively in the rater

plot of spikes and the corresponding IPSR RGCðtÞ exhibits

synchronous oscillations. As NMC is decreased, the interval

between the neighboring spiking stripes becomes narrower,

and hence the population frequency f
ðGCÞ
p of the SSR

becomes increased.

With decreasing NMC from 80, the firing activity of the

BCs becomes weakened, which leads to decrease in the

feedback inhibition to the GCs. Thus, the activation degree

Da of the GCs was found to increase (Sloviter 1991, 1994;

Kim and Lim 2021d). Due to such increase in the firing

activity of the GCs, spikes in the raster plot become more

and more dense, as shown in the case of NMC ¼ 60, 30, and

0, which results in increase of the occupation degree Oi

(representing the fraction of spiking neurons in each

spiking stripe). In contrast, the spiking stripes become

more and more smeared, and hence the pacing degree Pi

(a2) (a3)

(b1)

(c)

(e) (f)

(a1)

(b2) (b3)

(d4)

(d3)

(d2)

(d1)

Fig. 4 Effect of the hilar MCs

on the population and individual

behaviors in the SSR of the

active GCs. Raster plots of

spikes and IPSRs RGCðtÞ for a1
NMC ¼ 60, a2 NMC ¼ 30, and

a3 NMC ¼ 0. Population-

averaged ISI histograms for b1
NMC ¼ 60, b2 NMC ¼ 30, and

b3 NMC ¼ 0. Vertical dotted

lines in the ISI histograms

represent the integer multiples

of the global period T
ðGCÞ
G of the

SSR; T
ðGCÞ
G ¼ 73.5, 62.9, 47.4

msec for NMC ¼ 60, 30, and 0,

respectively. c Plot of the

population frequency f ðGCÞ
p

versus FMC (fraction of MCs).

Plots of d1 the thermodynamic

amplitude measure Ma, d2 the

average occupation degree hOii,
d3 the average pacing degree

hPii, and d4 the statistical-

mechanical spiking measure Ms

versus FMC. e Plot of the

population-averaged MFRs

hf ðGCÞ
i i versus FMC. f Plot of the

random phase-locking degree

Ld versus FMC
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(denoting the degree of phase coherence between spikes)

becomes decreased.

Through competition between the occupation and the

pacing degrees, the overall synchronization degree of the

SSR is determined, which may be well shown in the change

in the amplitude Ai of the IPSR RGCðtÞ; Ai in the ith global

cycle of RGCðtÞ (i.e., the ith spiking stripe) is given by the

difference between the maximum and the minimum of

RGCðtÞ divided by 2 [see Eq. (14)]. With decreasing NMC,

the maximum R
ðiÞ
GC;maxðtÞ is found to show an increasing

tendency, mainly due to the effect of the increased Oi; the

time-averaged maximum R
ðiÞ
GC;maxðtÞ ¼ 7.884, 8.112, and

8.551 for NMC ¼ 60, 30, and 0, respectively. However, the

minimum R
ðiÞ
GC;minðtÞ exhibits more increasing tendency

because of the effects of the increased Oi and the decreased

Pi; the time-averaged minimum R
ðiÞ
GC;minðtÞ ¼ 1.042, 2.376,

and 5.145 for NMC ¼ 60, 30, and 0, respectively. Conse-

quently, with decreasing NMC the thermodynamic ampli-

tude measure Ma (representing the time-averaged

amplitude) becomes decreased (i.e., the overall synchro-

nization degree decreases).

By decreasing FMC from 1 to 0, we make more quan-

titative characterization of the population firing behavior

for various values of FMC. Figure 4c and d1-d4 show the

plot of the population frequency f
ðGCÞ
p versus FMC and the

plots of the amplitude measure Ma, the average occupation

degree hOii, the average pacing degree hPii, and the sta-

tistical-mechanical spiking measure Ms versus FMC,

respectively; all these quantities are obtained by following

all the spiking stripes appearing during the stimulus period

Ts (= 3 � 104 msec). As a result of the increased firing

activity of the GCs, the population frequency f
ðGCÞ
p is found

to increase from 13.1 to 21.3 Hz [see Fig. 4c]. The fre-

quency range of the SSR corresponds to the beta rhythm.

The synchronization degree of the SSR with the beta-

range f
ðGCÞ
p is characterized in terms of the thermodynamic

amplitude measure Ma and the statistical-mechanical

spiking measure Ms. As FMC is decreased from 1 to 0, Ma;

[representing the time-averaged amplitude of RGCðtÞ], is

found to decrease from 3.568 to 1.703, as shown in

Fig. 4d1. Hence, the overall synchronization degree of the

SSR becomes decreased. Due to increase in the firing

activity of the GCs with decreasing FMC, the average

occupation degree hOii of the spikes becomes increased

from 0.14 to 0.175; less sparse spikes appear in the raster

plot. In contrast, as FMC is decreased, the average pacing

degree hPii between the spikes is found to decrease from

0.447 to 0.154. Then, the overall synchronization degree of

the SSR is determined through competition between the

(increasing) occupation and the (decreasing) pacing

degrees. In this case, the pacing between the spikes

becomes much worse, and hence the statistical-mechanical

spiking measure Ms, given by the product of the occupation

and the pacing degrees, is found to decrease from 0.0626 to

0.027, which is in consistent with the decrease in Ma.

Next, we consider the individual firing behavior in the

SSR of the GCs. Figure 4b1-b3 show the ISI histograms for

NMC ¼ 60, 30, and 0, respectively. The GCs exhibit

intermittent random-spike-skipping spikings, locked to

RGCðtÞ at random multiples of the global period T
ðGCÞ
G of

RGCðtÞ. Due to random spike skipping, the ISI histograms

consist of multiple random-spike-skipping peaks. The

mean ISIs (hISIi) are 491.1, 479.3, and 451.1 msec,

respectively, in the case of NMC ¼ 60, 30, and 0. Hence, the

corresponding population-averaged MFRs hf ðGCÞi i (=

1=hISIi) are 2.04, 2.09, and 2.22 Hz, respectively, due to

increased activity of the GCs. Moreover, we also note that,

as NMC is decreased, the random-spike-skipping peaks

become more and more smeared, which results in decrease

in the random phase-locking degree Ld [representing the

degree of random phase-locking to RGCðtÞ].
As in the case of the population behavior, with

decreasing FMC from 1 to 0, we make more quantitative

characterization of the individual firing behavior for vari-

ous values of FMC. Figures 4e and f show the plots of the

population-averaged MFR hf ðGCÞi i and the random phase-

locking degree Ld, respectively. As FMC is decreased from

1 to 0, hf ðGCÞ
i i (given by the reciprocal of the mean ISI) is

found to increase from 2.01 to 2.22 Hz, because of the

increased firing activity of the GCs. We note that hf ðGCÞi i is

much less than the population frequency f
ðGCÞ
p , due to

random spike skipping. Also, the random phase-locking

degree Ld (characterizing the degree of random spike

skipping) is found to exhibit decreasing tendency from

0.911 to 0.641, due to smearing of the random-spike-

skipping peaks, as in the decrease in the population syn-

chronization degrees, Ma and Ms.

From now on, with decreasing NMC, we study the pop-

ulation and individual firing behaviors in the SSRs of the

MCs and the BCs. We first consider the cases of NMC ¼ 60,

30, and 0; NMC ¼ 0 may apply to only the case of the BCs.

Figure 5a1-a2 and c1-c3 show the raster plots of spikes and

the IPSRs RXðtÞ (X ¼ MC and BC) for the MCs and the

BCs, respectively. As in the case of the GCs, sparsely

synchronized spiking stripes appear successively in the

rater plots of spikes and the corresponding IPSRs exhibit

synchronous oscillations. As NMC is decreased, the interval

between the neighboring spiking stripes becomes narrower,

and hence the population frequency f
ðXÞ
p of the SSR

becomes increased.
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With decreasing NMC from 80, the firing activities of

both the MCs and the BCs become weakened. Hence,

unlike the case of the GCs, spikes in the raster plot become

more and more sparse, which leads to decrease in the

occupation degree Oi (denoting the fraction of spiking

neurons in each spiking stripe). Moreover, the spiking

stripes become more and more smeared, and hence the

pacing degree Pi (representing the degree of phase coher-

ence between spikes) also becomes decreased, as in the

case of the GCs.

The overall synchronization degree of the SSRs may be

characterized in terms of the thermodynamic amplitude

measure Ma, given by the time-averaged amplitude Ai of

the IPSR RXðtÞ; Ai is given by the difference between the

maximum and the minimum of RXðtÞ divided by 2. Unlike

the case of the GCs, with decreasing NMC, the maximum

R
ðiÞ
GC;maxðtÞ is found to show a decreasing tendency, mainly

due to the effect of the decreased Oi. Due to decrease in Pi,

R
ðiÞ
GC;maxðtÞ becomes more decreased. The minimum

(e)

(g) (h)

(f4)

(f3)

(f2)

(f1)

(d3)(d2)(d1)

(c3)(c2)(c1)

(a2)
(b1)

(a1)

(b2)

Fig. 5 Effect of the hilar MCs

on the population and individual

behaviors in the SSRs of the

MCs and the BCs. Raster plots

of spikes of the MCs and IPSR

RMCðtÞ for a1 NMC ¼ 60 and a2
NMC ¼ 30. Population-averaged

ISI histograms for the MCs for

b1 NMC ¼ 60 and b2 NMC ¼ 30.

Vertical dotted lines in the ISI

histograms represent the integer

multiples of the global period

T
ðMCÞ
G of RMCðtÞ; TðMCÞ

G ¼ 73.5

and 62.9 msec for NMC ¼ 60

and 30, respectively. Raster

plots of spikes of the BCs and

IPSR RBCðtÞ for c1 NMC ¼ 60;
c2 NMC ¼ 30, and c3 NMC ¼ 0.

Population-averaged ISI

histograms for the BCs for d1
NMC ¼ 60; d2 NMC ¼ 30; and

d3 NMC ¼ 0. Vertical dotted

lines in the ISI histograms

represent the integer multiples

of the global period T
ðBCÞ
G of

RBCðtÞ; T ðBCÞ
G ¼ 73.5, 62.9, and

47.4 msec for NMC ¼ 60, 30,

and 0, respectively. e Plot of the

population frequency f ðXÞp versus

FMC (fraction of MCs); X ¼ MC

(open circle) and BC (cross).

Plots of f1 the thermodynamic

amplitude measure Ma, f2 the

average occupation degree hOii,
f3 the average pacing degree

hPii, and f4 the statistical-

mechanical spiking measure Ms

versus FMC; MC (open circle)

and BC (cross). g Plot of the

population-averaged MFRs

hf ðXÞi i versus FMC; X ¼ MC

(open circle) and BC (cross). h
Plot of the random phase-

locking degree Ld versus FMC;

MC (open circle) and BC

(cross)
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R
ðiÞ
GC;minðtÞ is also found to decrease due to decrease in Oi.

However, because of decrease in Pi, R
ðiÞ
GC;minðtÞ becomes

less decreased. As a result, as NMC is decreased, the

amplitude measure Ma becomes decreased, as in the case

of the GCs. Thus, the synchronization degrees of all the

SSRs for the GCs, the MCs, and the BCs decrease with

decreasing NMC.

Moreover, by decreasing FMC from 1 to 0, we make

more quantitative characterization of the population firing

behavior for various values of FMC; for the MCs, instead of

NMC ¼ 0, we consider the case of NMC ¼ 2 (i.e.,

FMC ¼ 0:025) which corresponds to the simplest coupled

case. All relevant quantities are obtained by following all

the spiking stripes appearing during the stimulus period Ts
(= 3 � 104 msec). Figure 5e shows the plot of the population

frequency f
ðXÞ
p [X ¼ MC (open circle) and BC (cross)]

versus FMC. As FMC is decreased from 1 to 0.025 (MC) and

0 (BC), through interaction with the GCs in the GC-MC

and the GC-BC loops, the population frequencies f
ðXÞ
p of

the SSRs for the MCs and the BCs are found to increase

from 13.1 to 20.8 Hz (MC) and 21.3 Hz (BC) in the same

way as that for the GCs in Fig. 4c. Thus, the GCs, the MCs,

and the BCs exhibit SSRs with the same beta-range pop-

ulation frequency fp which increases with decreasing FMC.

The synchronization degree of the SSR for the MCs and

the BCs may be characterized in terms of the thermody-

namic amplitude measure Ma and the statistical-mechan-

ical spiking measure Ms. Figures 5f1-f4 show the plots of

the amplitude measure Ma, the average occupation degree

hOii, the average pacing degree hPii, and the statistical-

mechanical spiking measure Ms versus FMC, respectively;

MC (open circle) and BC (cross). As FMC is decreased

from 1 to 0.025 (MC) and 0 (BC), the thermodynamic

amplitude measure Ma [denoting the time-averaged

amplitude of RXðtÞ (X ¼ MC and BC)] for the MCs (BCs)

is found to decrease rapidly from 99.05 (112.73) to 18.59

(0.98), as in the case of the GCs.

Unlike the case of the GCs, due to decreased firing

activity of the MCs (BCs) with decreasing FMC from 1 to

0.025 (0), the average occupation degree hOii of the spikes

becomes decreased from 0.86 (0.92) to 0.26 (0.087); more

sparse spikes appear in the raster plot. Similarly, with

decreasing FMC, the average pacing degree hPii between

the sparse spikes is also found to decrease from 0.73 (0.77)

to 0.27 (0.21) for the MCs (BCs). Then, the statistical-

mechanical spiking measure Ms for the MCs (BCs), given

by the product of the occupation and the pacing degrees, is

found to decrease from 0.63 (0.71) to 0.07 (0.018), which is

in consistent with the decrease in Ma. In this way, as FMC

is decreased, the synchronization degrees of the SSRs for

the GCs, the MCs, and the BCs become decreased together.

In addition to the population behaviors, we also study

the individual firing behaviors in the SSRs of the MCs and

the BCs. Figure 5b1-b2 and d1-d3 show the ISI histograms

for the MCs and the BCs, respectively. Unlike the GCs,

both the MCs and the BCs exhibit intrastripe burstings as

well as intermittent random-spike-skipping spikings,

locked to the IPSR RXðtÞ (X ¼ MC and BC) at random

multiples of the global period T
ðXÞ
G of RXðtÞ. As a result, the

ISI histograms for the MCs and the BCs consist of both the

intrastripe bursting peak and the random-spike-skipping

peaks.

We note that, with decreasing NMC, the intrastripe

bursting activity of the MCs and the BCs becomes weak-

ened, and hence the height of the intrastripe bursting peak

becomes decreased, which results in development of the

random-spike-skipping peaks; e.g., more and more higher-

order skipping peaks appear, in comparison to the case of

NMC ¼ 80 in Fig. 3. Particularly, in the case of the BCs,

when passing NMC ¼ 9 (i.e., FMC ¼ 0:1125), intrastripe

bursting peak is found to disappear; for the MCs intrastripe

bursting peak persists for NMC ¼ 2. Thus, only the random-

spike-skipping peaks appear for NMC ¼ 0 in Fig. 5d3. In

this way, with decreasing NMC the random-spike-skipping

peaks become more and more developed; particularly,

more development occurs for the BCs than the MCs.

Hence, the mean ISIs (hISIi) become increased for the MCs

and the BCs, which results in decrease in the population-

averaged MFRs hf ðXÞi i (X ¼ MC and BC).

Thus, as FMC is decreased from 1 to 0.025 (0) for the

MCs (BCs), hf ðXÞi i (X ¼ MC and BC) is found to decrease

from 42.6 (56.2) to 10.6 (1.3) Hz [see Fig. 5g], in contrast

to the increase in hf ðGCÞ
i i for the GCs in Fig. 4e. Unlike the

case of the GCs, for large FMC with strong intrastripe

burstings, the population-averaged MFRs hf ðXÞi i are higher

than the population frequency fp. However, as FMC is

decreased, the intrastripe bursting activity becomes

decreased, and then the random-spike-skipping activity

becomes intensified. Then, for small FMC with strong

random-spike-skipping activity (i.e., intrastripe burstings is

very weak), hf ðXÞi i becomes less than fp, as in the case of the

GCs (without intrastripe burstings).

We also note that, as FMC is decreased, the random-

spike-skipping peaks become more and more smeared,

which leads to decrease in the random phase-locking

degree Ld [denoting the degree of random phase-locking to

RXðtÞ]. With decreasing FMC from 1 to 0.025 (0) for the

MCs (BCs), Ld is found to decrease from 0.934 (0.940) to

0.661 (0.612), as shown in Fig. 5h, as in the case of the

GCs. Thus, as FMC is decreased, the random phase-locking

degrees for the GCs, the MCs, and the BCs become
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decreased together, as in the synchronization degrees of the

SSRs.

Finally, we compare the firing behaviors between the

MCs and the BCs. For large FMC, the BCs exhibit firing

activity with higher MFR hf ðBCÞ
i i than the MCs, due to

stronger intraburst bursting activity. However, as FMC is

sufficiently decreased, the bursting activity of the BCs

becomes very weak due to weak excitation from the MCs.

Then, hf ðBCÞ
i i begins to decrease so rapidly and it becomes

lower than hf ðMCÞ
i i [see Fig. 5g]. Similarly, for large FMC

with strong intrastripe bursting activity, the random phase-

locking degree Ld for the BCs is also a little larger than

that for the MCs, while for sufficiently small FMC with so

weak intrastripe bursting activity, Ld for the BCs decreases

rapidly and it becomes less than that for the MCs, as shown

in Fig. 5h. The population firing behaviors for the MCs and

the BCs are also similarly as follows. For large FMC with

strong intrastripe bursting burst activity, Ma, hOii, hPii,
and Ms for the BCs are larger than those for the MCs, while

for sufficiently small FMC (with very weak intrastripe

bursting activity), those for the MCs become larger than

those for the BCs [see Figs. 5f1-f4].

Quantitative relationship between the sparsely
synchronized rhythm and the winner-take-all
competition

The main encoding GCs was found to exhibit sparse acti-

vation via winner-take-all competition in each GC cluster;

only strongly active GCs survive under the feedback

inhibition of the BC (Kim and Lim 2021d). Such sparsity

was thought to improve pattern separation in the DG

(Treves and Rolls 1994; O’Reilly and McClelland 1994;

Schmidt et al. 2012; Rolls 2016; Knierim and Neunuebel

2016; Myers and Scharfman 2009, 2011; Myers et al.

2013; Scharfman and Myers 2016; Chavlis et al. 2017;

Kassab and Alexandre 2018). In Subsec. 3.1, SSR is found

to appear in the population of the GCs, along with occur-

rence of the winner-take-all competition. We investigate

the quantitative association between the SSR and the

winner-take-all competition.

We first consider association between the measures

characterizing the SSR of the GCs. Figure 6a shows the

plot of the thermodynamic amplitude measure Ma versus

the statistical-mechanical spiking measure Ms; plots of Ma

and Ms versus FMC are shown in Fig. 4d1 and d4, respec-

tively. The thermodynamic and statistical-mechanical

synchronization degrees, Ma and Ms, (characterizing the

population firing behavior in the SSR) are strongly corre-

lated with the Pearson’s correlation coefficient r ¼ 0:9957

(Pearson 1895).

Individual firing behaviors of the GCs are characterized

in terms of the ISIs. Due to the random spike skipping, the

ISI histogram consists of the random-spike-skipping peaks.

The random phase-locking degree Ld is used to charac-

terize the degree of random spike skipping (i.e., degree of

sharpness of the random-spike-skipping peaks in the ISI

histogram). Figure 6b shows the plot of Ld versus the

average pacing degree hPii; plots of Ld and hPii versus

FMC are shown in Fig. 4f and d3, respectively. Ld is found

to be strongly correlated with hPii (characterizing the

smearing degree of the spiking stripes in the raster plot of

spikes) with the Pearson’s correlation coefficient

r ¼ 0:9983.

We now consider the winner-take-all competition

occurring in each GC cluster via competition between the

firing activity of the GCs and the feedback inhibition of the

BC; for details, refer to (Kim and Lim 2021d). The firing

activity of the GCs is determined through competition

between the external excitatory (E) to inhibitory (I) inputs

to the GCs; two types of E inputs from the EC cells and the

MCs and one kind of I input from the HIPP cells. The E-I

conductance ratio RðconÞ
E�I

�
[given by the time-average of the

external E to I conductances in Eq. (22) in (Kim and Lim

2021d)] was found to represent well the degree of the

external E-I input competition. GCs with larger RðconÞ
E�I

�

than a threshold survived in response to the feedback of the

BC (i.e., they became winners). It was thus shown that GCs

become active winners when their RðconÞ
E�I

�
lies within the

winner threshold percentage Wth% of the maximum

RðconÞ
E�I

�
(max) of the GC with the strongest activity; see

Eq. (23) for Wth% in (Kim and Lim 2021d). As FMC is

decreased from 1 to 0, Wth% is found to increase from 15.1

% to 55 %. Due to the increased Wth%, more active GCs

appear with decreasing FMC, and hence the winner-take-all

competition becomes weaker.

Here, we introduce the winner-take-all competition

degree Wd which is reciprocally related to the winner

threshold percentage Wth%:

Wd ¼
100

Wth%
: ð28Þ

The smaller Wth% is, the larger Wd is. Figure 6c shows the

plot of Wd versus FMC. With decreasing FMC, Wd is

decreased, and hence the winner-take-all competition

becomes weaker.

Figure 6d and 6e show plots of Ma and Ld versus Wd,

respectively. Population (Ma) and individual (Ld) firing

behaviors in the SSR are found to be positively correlated

with the winner-take-all competition (Wd) with the Pear-

son’s correlation coefficients r ¼ 0:9705 and 0.9495,

respectively. Hence, as the winner-take-all competition is
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stronger, the synchronization and the random phase-lock-

ing degrees in the SSR of the GCs become higher.

Summary and discussion

We investigated population and individual behaviors in the

SSRs in a spiking neural network of the hippocampal DG.

Through interaction of excitation of the GCs with inhibi-

tion of the BCs, SSRs have been found to appear in each

population of the GCs and the BCs, along with occurrence

of the winner-take-all competition in each GC cluster,

leading to sparse activation of the GCs. Such sparsity has

been known to be directly associated with pattern separa-

tion, facilitating pattern storage and retrieval in the area

CA3.

In each case of the GCs and the BCs, sparsely syn-

chronized stripes have been found to appear successively in

the raster plots of spikes, and the corresponding IPSR RXðtÞ
(X ¼ GC and BC) exhibited oscillatory behavior with the

population frequency fpð¼ 13:1 Hz). Such SSR has also

been found to appear in the population of the hilar MCs

(controlling the firing activity of the GC-BC loop) via

interaction with the GCs in the GC-MC loop. Thus, SSRs

of the GCs, the MCs, and the BCs emerged in the whole

DG network. Various SSRs, related to diverse cognitive

functions, were observed in the hippocampus, the neocor-

tex, the cerebellum, and the olfactory system (Csicsvari

et al. 1999; Destexhe and Paré 1999; Fellous and

Sejnowski 2000; Hasenstaub et al. 2005; Solages et al.

2008; Rojas-Lı́bano and Kay 2008).

We have made intensive characterization of the popu-

lation behaviors in the SSRs of the GCs, the MCs, and the

BCs by employing the following diverse synchronization

measures introduced in our prior works. As a thermody-

namic synchronization degree, we used the amplitude

measure Ma, given by the time-averaged amplitude of the

macroscopic IPSR RXðtÞ (X ¼ GC, MC, and BC) (Kim and

Lim 2021c), and characterized the overall synchronization

degree of the SSRs. The SSR of the GCs was found to have

the lowest amplitude measure (Ma = 3.568, 99.05, and

112.73 for the GCs, MCs, and BCs, respectively). Next, we

also made characterization of the population behaviors in

terms of the statistical-mechanical spiking measure Ms

(based on the microscopic spikes in the raster plot), given

by the product of the occupation degree hOii and the

pacing degree hPii (Kim and Lim 2014). Among the 3

SSRs, the SSR of the GCs was the most sparse, because its

occupation degree hOii (= 0.14) was so much less than

those in the SSRs of the MCs and the BCs; hOii ¼ 0.86 and

0.92 for the MCs and the BCs, respectively. Also, its

pacing degree hPii between the spikes in the raster plot was

lower than those for the MCs and the BCs; hPii = 0.447,

0.73, and 0.77, respectively. Consequently, the statistical-

mechanical spiking measure Ms of the SSR for the main

encoding GCs became the lowest (Ms = 0.063, 0.63, and

0.71 for the GCs, MCs and the BCs, respectively), mainly

due to sparse firing of the GCs (resulting from the winner-

take-all competition).

(a) (b)

(e)(d)

(c)

Fig. 6 Quantitative relationship

between the SSR and the

winner-take-all competition. a
Plot of the thermodynamic

amplitude measure Ma versus

the statistical-mechanical

spiking measure Ms. b Plot of

the random phase-locking

degree Ld versus the average

pacing degree hPii. c Plot of the

winner-take-all competition

degree Wd versus FMC (fraction

of the MCs). d Plot of Ma

versus Wd . e Plot of Ld versus

Wd . Fitted dashed lines are

given in a-e
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In addition to the population behaviors, we have also

investigated individual firing activities in the SSRs of the

GCs, the MCs, and the GCs. In the case of GCs, active GCs

exhibited intermittent spikings, phase-locked to the IPSR

RGCðtÞ at random multiples of its global period TGð¼ 76:3

msec). Due to the random spike skipping, the ISI histogram

has been found to consist of distinct multiple peaks (called

the random-spike-skipping peaks) at the integer multiples

of TG, similar to the cases of previously-found ‘‘standard’’

sparse synchronization (Wang 2010; Brunel and Wang

2003; Geisler et al. 2005; Brunel and Hakim 2008; Kim

and Lim 2018, 2014). However, unlike the standard sparse

synchronization where the 1st-order peak was the highest

one, the middle 6th- and 7th-order peaks were the highest

ones. In this multi-peaked ISI histogram, the mean ISI

(hISIi) was 498.55 msec. Then, the population-averaged

MFR of the GCs \f
ðGCÞ
i [ ð¼ 1=hISIiÞ was 2.0 Hz, which

was much less than the population frequency fp (= 13.1

Hz), mainly due to random spike skipping.

Unlike the case of GCs, MCs and BCs have been found

to exhibit bursting-like multi-spikings within the stripes.

Consequently, the ISI histograms for the MCs and the BCs

have been found to have the intrastripe bursting peak, in

addition to the random-spike-skipping multi-peaks, in

contrast to the standard sparse synchronization with only

the random-spike-skipping multi-peaks (Wang 2010; Bru-

nel and Wang 2003; Geisler et al. 2005; Brunel and Hakim

2008; Kim and Lim 2018, 2014). Due to the dominance of

the intrastripe bursting peak, the mean ISI (hISIi) became

shorter; hISIi ¼ 23.5 and 17.8 msec for the MCs and the

BCs, respectively. Then, the population-averaged MFR for

the MCs and the BCs were hf ðXÞi ið¼ 1=hISIi) (X= MC or

HIPP) were 42.6 and 56.2 Hz, respectively, which were

higher than the population frequency fp (= 13.1 Hz), due to

the intrastripe burstings, which was in contrast to the case

of the GCs where hf ðGCÞ
i i is less then fp.

We also introduced a new random phase-locking degree

Ld and characterized the ‘‘sharpness’’ of the random-spike-

skipping peaks representing how well the intermittent

spikes make phase-locking to RGCðtÞ at random multiples

of its global period TG. The random phase-locking degree

Ld, characterizing the degree of random spike skipping for

the GCs, was a little lower than those of the MCs and the

BCs; Ld ¼ 0.911, 0.934, and 0.940 for the GCs, the MCs,

and the BCs, respectively. The order in magnitude of Ld

was the same as that in the synchronization degrees, Ma

and Ms, for the SSRs.

MC loss may occur during epileptogenesis (Santhaku-

mar et al. 2005; Morgan et al. 2007; Sloviter 1991, 1994;

Santhakumar et al. 2000; Ratzliff et al. 2002, 2004). With

decreasing FMC (fraction of the MCs) from 1 to 0, we

investigated the effect of the MCs on the population and

individual firing behaviors in the SSRs of the GCs, the

MCs, and the BCs. As FMC was decreased, the interval

between the spiking stripes in the raster plot became nar-

rowed, and the spiking stripes became more and more

smeared. Hence, the population frequency fp of the SSRs

showed an increasing tendency and their synchronization

degrees became decreased. In the ISI histogram for the

GCs, the mean ISI (hISIi) became shorter, mainly due to

weakened inhibition from the BCs, and hence the popula-

tion averaged MFR \f
ðGCÞ
i [ increased. Moreover, the

random-spike-skipping peaks became more and more

smeared, leading to decrease in the random phase-locking

degree Ld.

In the case of the MCs and the BCs, with decreasing

FMC, the heights of the intrastripe bursting peaks in their

ISI histograms became decreased mainly due to decrease in

the firing activity of the MCs, which resulted in intensi-

fying the random-spike-skipping peaks (i.e. more and more

higher-order random-spike-skipping peaks appeared).

Consequently, the mean ISI (hISIi) became longer, which

led to decrease in the population-averaged MFR hf ðXÞi i
(X ¼ MC or BC), in contrast to the increase in \f

ðGCÞ
i [

for the GCs. Similar to the case of the GCs, the random

phase-locking degree Ld decreased because the random-

spike-skipping peaks became more and more smeared.

We note that the SSR of the GCs appeared along with

occurrence of the winner-take-all competition in the GC

clusters. Hence, we became concerned about the quantita-

tive correlation between the population and individual

behaviors in the SSR and the winner-take-all competition

for the GCs. It was thus found that both the synchronization

degrees, Ma and Ms, and the random phase-locking degree

Ld were positively correlated with the winner-take-all

competition degree Wd. Therefore, with decreasing FMC

(fraction of the MCs), the synchronization degree of the

SSR of the GCs becomes lower, together with decrease in

the winner-take-all competition degree Wd. Then, the pat-

tern separation (directly proportional to Wd) in the DG

becomes worse. As a result of worsened pattern separation,

pattern storage and retrieval in the CA3 would be impaired,

which might lead to memory interference

For confirmation of appearance of the SSR of the prin-

cipal GCs and its relationship with the pattern separation

via winner-take-all competition [see Fig. 6d], we propose a

real experiment via MC ablation for the SSR of the GCs

appearing during the pattern separation. By varying FMC

(fraction of MCs), the thermodynamic amplitude measure

Ma (representing the synchronization degree of the SSR)

may be experimentally measured by obtaining the time-

averaged amplitude of the IPSR of the SSR. Also, we note

that the winner-take-all competition degree Wd is inversely

correlated to the activation degree Da which can also be
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experimentally obtained (Kim and Lim 2021d). In this

way, a set of ðMa;DaÞ may be obtained for several values

of FMC. Then, the relationship between Ma of the SSR and

1=Da (correlated with the winner-take-all competition

degree) may be confirmed experimentally. In this way,

correlation between the SSR of the GCs and the pattern

separation via winner-take-all competition may be exam-

ined experimentally; the larger the synchronization degree

of the SSR is, the better the pattern separation via the

winner-take-all competition becomes.

Finally, we discuss limitations of our present work and

future works. In the present work, the population and

individual behaviors in the SSRs were found to be posi-

tively correlated with the winner-take-all competition.

However, this kind of correlation does not imply causal

relationship. Hence, in future work, it would be interesting

to make intensive investigation on their dynamical causa-

tion. Also, in the present work, we studied only the case of

ablating the MCs for investigation of their role. Another

way to manipulate the function of the MCs is to reduce

their effect on the GCs by leaving the MCs intact. Hence,

in future, it would also be interesting to study the popu-

lation and the individual behaviors in the SSRs by varying

the synaptic strength K
ðBC;MCÞ
R ðR ¼ NMDA and AMPAÞ

of the synapse between the MC and the BC for change in

the disynaptic effect of the MCs on the GCs (MC ! BC !
GC).

As the MC loss is increased, the activation degree Da of

the GCs is increased [see Fig. 6c; note that the winner-

take-all competition degree Wd is inversely correlated to

Da], mainly due to decrease in the disynaptic inhibition

from the MCs, mediated by the BCs (Sloviter 1991, 1994).

In this case, the brain might try to keep the homeostatic

equilibrium between excitation and inhibition (i.e., to keep

the activation degree Da of the GCs) (Roux et al. 2006;

Trapp et al. 2018). In the present work, we did not consider

such homeostatic equilibrium. In a future work, for

examining occurrence of homeostatic equilibrium, it would

be interesting to investigate a possibility that the weight for

the inhibitory synapses between the BCs and the GCs (BC

! GC) might be adapted to be increased via synaptic

plasticity, which could reduce the increased activation

degree of the GCs (resulting from the MC loss).

Moreover, in the present work, we took into consider-

ation the disynaptic inhibitory effect of the MCs on the

GCs (i.e., disynaptic inhibition to the GCs, mediated by the

BC). However, in our present DG network, we did not

consider the synaptic connection from the HIPP cells to the

BCs, and hence we could not study the disynaptic effect of

the HIPP cells on the GCs (i.e., HIPP ! BC ! GC). The

HIPP cells are known to disinhibit the BC (Santhakumar

et al. 2005; Morgan et al. 2007), which results in decrease

in the inhibitory effect of the BC on the GCs. Then, the

activity of the GCs may increase. In this way, the disy-

naptic effect of the HIPP cells on the GCs, mediated by the

BC, which tends to increase the activity of the GCs, is in

contrast to the disynaptic inhibition from the MCs to the

GCs (decreasing the firing activity of the GCs). Hence, in

future work, it would be meaningful to investigate the

disynaptic effect of the HIPP cells on the GC in a modified

DG network (including the synaptic connections from the

HIPP cells to the BCs).

As in other works in (Myers and Scharfman 2009, 2011;

Myers et al. 2013; Scharfman and Myers 2016; Chavlis

et al. 2017), we considered the two kinds of projections

from the EC via the PPs (perforant paths): EC ! GC

(direct excitatory path to the GCs) and EC ! HIPP ! GC

(disynaptic feedforward inhibitory path to the GCs, medi-

ated by the HIPP cells). The HIPP cells have both dendrites

and axons extending into the molecular layer (i.e., the

location where the PP terminates) (Myers and Scharfman

2009; Scharfman 1991; Savanthrapadian et al. 2014). Such

HIPP cells with dendrites in the molecular layer were also

known to have lower threshold for stimulation of the EC

via PPs than the GCs (Scharfman 1991), and hence they are

more easily driven by the stimulation of the PPs than the

GCs. In this way, the EC may control the activity of the

GCs via balance between the direct excitation and the

disynaptic feedforward inhibition (mediated by the HIPP

cells). These direct excitatory and the indirect feedforward

inhibitory projections from the EC may be a minimal

choice necessary for controlling the activity of the GCs.

There is another disynaptic feedforward inhibitory path,

mediated by the BCs: EC ! BC ! GC (Ewell and Jones

2010; Kneisler and Dingledine 1995). In (Yim et al. 2015;

Santhakumar et al. 2005; Morgan et al. 2007), the authors

considered the disynaptic feedforward inhibition, mediated

by the BCs; but, they did not consider the disynaptic

feedforward inhibition, mediated by the HIPP cells. We

expect that the disynaptic feedforward inhibition effect,

mediated by the BCs, would be essentially similar to that,

mediated by the HIPP cells in the present study. In a future

work, it would be interesting to include another disynaptic

feedforward path, mediated by the BCs and compare its

effect on the SSR and the pattern separation via the winner-

take-all competition with that in the disynaptic feedforward

inhibition effect, mediated by the HIPP cells in the present

work. Also, study on the combined effect (including both

EC ! HIPP and EC ! BC) would also be interesting in

the future work.

Like other previous works in (Myers and Scharfman

2009; Chavlis et al. 2017), we considered a neural network

for the DG, receiving the inputs from the EC. In addition to

the work in the DG (Myers and Scharfman 2009), the

authors extended their DG model to incorporate the CA3
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area, which resulted in a combined DG-CA3 network with

backprojection from the pyramidal cells in the CA3 to the

DG, for investigation of the effect of backprojection on the

pattern separation and completion (Myers and Scharfman

2011). Because of the inhibitory backprojection, the acti-

vation degree Da of the GCs was found to be decreased,

which led to enhance pattern separation. Hence, as a future

work, it would be interesting to study the SSR in a com-

bined DG-CA3 network with backprojection, along with

study of pattern separation and completion. Due to inhi-

bition of the backprojection, it is expected that the acti-

vation degree Da of the GCs would be decreased, which

would result in increase in the synchronization degree of

the SSR in the DG, together with increase in the pattern

separation degree via winner-take-all competition. This

expectation could be examined in the future work.

Also, in the present study, for simplicity, we did not

consider the lamellar organization for the hilar MCs and

the HIPP cells, as in (Myers and Scharfman 2009; Chavlis

et al. 2017). For more refined DG network, in future work,

it would be necessary to take into consideration the

lamellar organization for the MCs and the HIPP cells;

particularly, in the combined DG-CA3 network, as in

(Myers and Scharfman 2011; Myers et al. 2013; Scharfman

and Myers 2016).
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