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Abstract We consider an excitatory population of sub-

threshold Izhikevich neurons which exhibit noise-induced

firings. By varying the coupling strength J, we investigate

population synchronization between the noise-induced fir-

ings which may be used for efficient cognitive processing

such as sensory perception, multisensory binding, selective

attention, and memory formation. As J is increased, rich

types of population synchronization (e.g., spike, burst, and

fast spike synchronization) are found to occur. Transitions

between population synchronization and incoherence are

well described in terms of an order parameter O. As a final

step, the coupling induces oscillator death (quenching of

noise-induced spikings) because each neuron is attracted to

a noisy equilibrium state. The oscillator death leads to a

transition from firing to non-firing states at the population

level, which may be well described in terms of the time-

averaged population spike rate R. In addition to the sta-

tistical-mechanical analysis using O and R, each popula-

tion and individual state are also characterized by using the

techniques of nonlinear dynamics such as the raster plot of

neural spikes, the time series of the membrane potential,

and the phase portrait. We note that population synchro-

nization of noise-induced firings may lead to emergence of

synchronous brain rhythms in a noisy environment, asso-

ciated with diverse cognitive functions.

Keywords Population synchronization � Cognitive

functions � Subthreshold Izhikevich neurons

Introduction

Recently, much attention has been paid to brain rhythms

observed in scalp electroencephalogram (EEG) and local

field potentials (LFP) with electrodes inserted into the brain

(Buzsáki 2006). These brain rhythms emerge via synchro-

nization between individual firings in neural circuits. Popu-

lation synchronization between neural firing activities may

be used for efficient sensory and cognitive processing such as

sensory perception, multisensory integration, selective

attention, and working memory (Wang 2010). Many recent

works have been investigated in diverse views of population

synchrony (Wang et al. 2008, 2010, 2011, 2012; Wang and

Zheng 2011; Zhang et al. 2010; Wang et al. 2003; Wang and

Jiao 2006; Qu et al. 2012; Wang and Zhang 2011; Liu et al.

2010; Wang et al. 2009; Jiao and Wang 2009). This kind of

population synchronization is also correlated with patho-

logical rhythms associated with neural diseases (Traub and

Whittington 2010). Here, we are interested in these syn-

chronous brain rhythms. Population synchronization has

been intensively investigated in neural circuits composed of

spontaneously firing suprathreshold neurons exhibiting

clock-like regular discharges (Wang 2010, 2003). For this

case, population synchronization may occur via cooperation

of regular firings of suprathreshold self-firing neurons. In

contrast to the suprathreshold case, the case of subthreshold

neurons has received little attention. For an isolated single

case, a subthreshold neuron cannot fire spontaneously; it can

fire only with the help of noise. Here we are interested in

population synchronization between complex noise-induced

firings of subthreshold neurons which exhibit discharges like
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Geiger counters. Recently, noise-induced population syn-

chronization was studied by varying the noise intensity

observed in a population of subthreshold neurons, and thus

collective coherence between noise-induced firings has been

found to occur in an intermediate range of noise intensity

(Wang et al. 2000; Lim and Kim 2007, 2009a, 2011; Hong

et al. 2011; Kim et al. 2012a, b).

In this paper, we investigate coupling-induced popula-

tion synchronization which leads to emergence of syn-

chronous brain rhythms by varying the coupling strength

J in an excitatory population of globally coupled sub-

threshold Izhikevich neurons, and thus rich types of pop-

ulation synchronization are found to emerge. As an element

in our coupled neural system, we choose a simple Izhike-

vich neuron (Izhikevich 2003, 2004, 2007; Izhikevich and

Edelman 2008) which is as biologically plausible as the

Hodgkin-Huxley model (Hodgkin and Huxley 1952), yet as

computationally efficient as the integrate-and-fire model

(Lapicque 1907; Abbott 1999). These Izhikevich neurons

interact via excitatory AMPA synapses in our computa-

tional study. For small J individual neurons fire spikings

independently, and thus the population state is incoherent.

However, when passing a lower threshold Jl
*, population

spike synchronization occurs because the coupling stimu-

lates coherence between noise-induced spikings. As in

globally-coupled chaotic systems, this kind of transition

between population synchronization and incoherence may

be well described in terms of an order parameter O (Baek

and Ott 2004; Topaj et al. 2001; Sakaguchi 2000; Manru-

bia et al. 2004); in our case, the time-averaged fluctuation

of the population-averaged membrane potential plays the

role of O. As J is further increased and passes another

threshold Jb
*, noise-induced burstings appear in individual

membrane potentials, and population burst synchronization

also emerges. In contrast to spiking activity, bursting

activity alternates between a silent phase and an active

phase of repetitive spikings (Izhikevich 2007; Coombes

and Bressloff 2005; Izhikevich 2000). This type of burs-

tings are known to play the important roles in neural

communication (Izhikevich 2003, 2004; Izhikevich and

Edelman 2008). As J continues to increase, the length of

active phase in individual bursting potential increases, and

eventually a transition from bursting to fast spiking occurs

at a threshold Jfs
* . Consequently, breakup of population

burst synchronization occurs and incoherent states appear

because individual fast spikings keep no pace with each

other. However, as J is further increased, coupling stimu-

lates population synchronization between fast spikings in a

range of Jh1
* \ J \ Jh2

* . For J [ Jh2
* population states

become incoherent and slow spikings appear in individual

membrane potentials. As a final step, when J passes a high

threshold Jod
* , coupling induces oscillator death (i.e.,

quenching of noise-induced slow spikings of individual

neurons) because each neuron is attracted to a noisy

equilibrium state. This stochastic oscillator death in the

presence of noise (Lim and Kim 2008, 2009b) is in contrast

to the deterministic oscillator death occurring in the

absence of noise (Suárez-Vargas et al. 2009). At the pop-

ulation level, a transition from firing to non-firing states

results from stochastic oscillator death. We also charac-

terize the firing-nonfiring transition in terms of the time-

averaged population spike rate R which plays a role similar

to that of the order parameter O for the incoherence-

coherence transition. In addition to the statistical-mechan-

ical analysis using O and R, these diverse population and

individual states are well characterized by using the tech-

niques of nonlinear dynamics such as the raster plot of

spikes, the time series of the membrane potential, and the

phase portrait.

Subthreshold Izhikevich neuron model

We consider an excitatory population of N globally-cou-

pled subthreshold neurons. As an element in our coupled

neural system, we choose the simple Izhikevich neuron

model which is not only biologically plausible, but also

computationally efficient (Izhikevich 2003, 2004, 2007;

Izhikevich and Edelman 2008). The population dynamics

in this neural network is governed by the following set of

ordinary differential equations:

dvi

dt
¼ f ðviÞ � ui þ IDC þ Dni � Isyn;i; ð1Þ

dui

dt
¼ aðbvi � uiÞ; ð2Þ

dsi

dt
¼ as1ðviÞð1� siÞ � bsi; i ¼ 1; . . .;N; ð3Þ

with the auxiliary after-spike resetting:

if vi� vp; then vi  c and ui  ui þ d; ð4Þ

where

f ðviÞ ¼ 0:04v2
i þ 5vi þ 140; ð5Þ

Isyn;i ¼
J

N � 1

XN

jð6¼iÞ
sjðtÞðvi � VsynÞ; ð6Þ

s1ðviÞ ¼ 1=½1þ e�ðvi�v�Þ=d�: ð7Þ

We note that f(v) of Eq. (5) was obtained by fitting the

spike initiation dynamics of cortical neurons so that the

membrane potential v has mV scale and the time t has ms

scale (Izhikevich 2003, 2004; Izhikevich and Edelman

2008). The state of the ith neuron at a time t is

characterized by three dimensionless state variables: the
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membrane potential vi, the recovery variable ui

representing the activation of the K? ionic current and

the inactivation of the Na? ionic current, and the synaptic

gate variable si denoting the fraction of open synaptic ion

channels. After the spike reaches its apex vp (=30 mV), the

membrane voltage and the recovery variable are reset

according to Eq. (4). There are four dimensionless

parameters, a, b, c, and d representing the time scale of

the recovery variable u, the sensitivity of u to the

subthreshold fluctuations of v, and the after-spike reset

value of v and u, respectively. Tuning the four parameters,

the Izhikevich neuron model may produce 20 of the most

prominent neuro-computational features of cortical neurons

(Izhikevich 2003, 2004; Izhikevich and Edelman 2008).

Unlike Hodgkin-Huxley-type conductance-based models,

the Izhikevich model matches neuronal dynamics instead

of matching neuronal electrophysiology.

Each Izhikevich neuron is stimulated by the common

DC current IDC and an independent Gaussian white noise n
[see the 2nd and 3rd terms in Eq. (1)] satisfying hniðtÞi ¼ 0

and hniðtÞ njðt0Þi ¼ dij dðt � t0Þ, where h� � �i denotes the

ensemble average. The noise n is a parametric one which

randomly perturbs the strength of the applied current IDC,

and its intensity is controlled by the parameter D. The last

term in Eq. (1) represents the coupling of the network.

Each neuron is connected to all the other ones through

global couplings via excitatory AMPA synapses. Isyn,i of

Eq. (6) represents such synaptic current injected into the ith

neuron. Here the coupling strength is controlled by the

parameter J and Vsyn is the synaptic reversal potential. We

use Vsyn = 10 mV for the excitatory synapse. The synaptic

gate variable s obeys the 1st order kinetics of Eq. (3)

(Golomb and Rinzel 1994; Wang and Buzsáki 1996). Here,

the normalized concentration of synaptic transmitters,

activating the synapse, is assumed to be an instantaneous

sigmoidal function of the membrane potential with a

threshold v* in Eq. (7), where we set v* = 0 mV and d = 2

mV. The transmitter release occurs only when the neuron

emits a spike (i.e., its potential v is larger than v*). For the

excitatory glutamate synapse (involving the AMPA

receptors), the synaptic channel opening rate, correspond-

ing to the inverse of the synaptic rise time sr, is a = 10

ms-1, and the synaptic closing rate b, which is the inverse

of the synaptic decay time sd, is b = 0.5 ms-1 (Börgers

and Kopell 2003, 2005).

Here we consider the case of regular-spiking cortical

excitatory neurons for a = 0.02, b = 0.2, c = -65, and

d = 8. Depending on the system parameters, the Izhikevich

neurons may exhibit either type-I or type-II excitability

(Izhikevich 2000, 2003, 2004; Izhikevich and Edelman

2008); for the case of type-I (type-II) neurons, the firing

frequency begins to increase from zero (non-zero finite

value) when IDC passes a threshold (Hodgkin 1948; Rinzel

and Ermentrout 1948). For our case, a deterministic Iz-

hikevich neuron (for D = 0) exhibits a jump from a resting

state (denoted by solid line) to a spiking state (denoted by

solid circles) via a subcritical Hopf bifurcation for

IDC,h
* = 3.80 by absorbing an unstable limit cycle born via

a fold limit cycle bifurcation for IDC,l
* = 3.78, as shown in

Fig. 1a. Hence, the Izhikevich neuron shows the type-II

excitability because it begins to fire with a non-zero fre-

quency that is relatively insensitive to the change in IDC.

Throughout this paper, we consider a subthreshold case of

IDC = 3.6. An isolated subthreshold Izhikevich neuron

cannot fire spontaneously without noise. Figure 1b, c show

a time series of the membrane potential v of a subthreshold

neuron and the interspike interval histogram for D = 3.0.

Complex noise-induced subthreshold oscillations and spi-

kings with irregular interspike intervals appear. Population

synchronization is investigated in an excitatory population

of these subthreshold Izhikevich neurons coupled via

AMPA synapses. Hereafter, we fix the value of the noise

intensity as D = 3.0. Numerical integration of the gov-

erning Eqs. (1)–(3) is done using the Heun method (San

Miguel and Toral 2000) (with the time step Dt ¼ 0:01 ms).

For each realization of the stochastic process in Eqs. (1)–

(3), we choose a random initial point [vi(0), ui(0), si(0)] for

the ith ði ¼ 1; . . .;NÞ neuron with uniform probability in

the range of við0Þ 2 ð�70; 30Þ; uið0Þ 2 ð�10;�6Þ, and

sið0Þ 2 ð0; 1Þ.

Coupling-induced population synchronization

By varying the coupling strength J, we investigate popu-

lation synchronization, via which synchronous brain

rhythms emerge, by using diverse techniques of statistical

mechanics and nonlinear dynamics. Emergence of popu-

lation synchronization may be described by the population-

averaged membrane potential VG (corresponding to the

global potential) and the global recovery variable UG,

VGðtÞ ¼
1

N

XN

i¼1

viðtÞ and UGðtÞ ¼
1

N

XN

i¼1

uiðtÞ: ð8Þ

Figure 2a shows rich phase portraits of the representative

coherent and incoherent population states in the VG - UG

phase plane. Population synchronization appears on noisy

limit cycles for J = 0.5, 5 and 10, while incoherent states

occur on noisy equilibrium points for J = 0.2, 8, and 12.

Particularly, for J = 5 population burst synchronization

emerges on a noisy hedgehoglike limit cycle; spines and

body correspond to active and silent phases of the bursting

activity, respectively. A schematic phase diagram of these

population states on the J axis is shown in Fig. 2b.
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Transitions between incoherent and coherent states may be

well described in terms of the order parameter. For our

case, the mean square deviation of the global potential

VG(t) (i.e., time-averaged fluctuations of VG(t)),

O � ðVGðtÞ � VGðtÞÞ2; ð9Þ

plays the role of an order parameter, where the overbar

represents the time averaging. Here, we discard the first

time steps of a stochastic trajectory as transients during 103

ms, and then we numerically compute O by following the

stochastic trajectory for 3 9 104 ms when N = 102, 103,

and 104. For the coherent (incoherent) state, the order

parameter O approaches a nonzero (zero) limit value in the

thermodynamic limit of N !1. Figure 2c shows a plot of

the order parameter versus the coupling strength. For

J \ Jl
* (^ 0.37), the order parameter O tends to zero as

N !1, and hence incoherent states exist. As J passes the

lower threshold Jl
*, a coherent transition to spike synchro-

nization occurs because the coupling stimulates coherence

between noise-induced spikings. Thus, spike synchroniza-

tion appears for Jl
* \ J \ Jb

* (^0.68). However, when

passing another threshold Jb
*, individual neurons exhibit

noise-induced burstings and population burst synchroni-

zation occurs. As J is further increased and passes a

threshold Jfs
* (^6.08), a transition from bursting to fast

spiking occurs in individual potentials and the burst syn-

chronization breaks up because individual fast spikes keep

no pace with each other. Thus, for J [ Jfs
* the order

parameter O tends to zero as N !1, and incoherent states

appear. However, with further increase in J, coupling-

induced fast spike synchronization occurs in a range of Jh1
*

(^9.0) \ J \ Jh2
* (^10.6). For J [ Jh2

* incoherent states

reappear as shown in Fig. 2c, and individual neurons

exhibit slow spikings. As a final step, when passing a high

threshold Jod
* (^18.6), coupling induces stochastic oscil-

lator death (i.e., cessation of noise-induced slow spikings)

because each neuron is attracted to a noisy equilibrium

state. This stochastic oscillator death leads to a transition

from firing to non-firing state at the population level. In this

way, three kinds of population synchronization (i.e., spike,

burst, and fast spike synchronization) emerge in the gray

regions of Fig. 2b, c.

We present population synchronization clearly in terms

of the raster plots of spikes and the time series of the global

potential VG. The first spike synchronization appears in a

range of Jl
* \ J \ Jb

*. An example for J = 0.5 is shown in

Fig. 3a. Stripes (composed of spikes), indicating popula-

tion synchronization, appear regularly with the mean time

interval (^83.6 ms) in the raster plot, and VG shows a

small-amplitude negative-potential population rhythm with

frequency fg = 12 Hz. The second burst synchronization

occurs in a range of Jb
* \ J \ Jfs

* . Figure 3b1 shows

bursting synchronization for J = 5. Clear burst bands,

composed of stripes of spikes, appear successively at

nearly regular time intervals (^210.7 ms) in the raster plot,

and the corresponding global potential VG exhibits a large-

amplitude bursting rhythm with fg = 4.75 Hz. In contrast

to spiking rhythm in Fig. 3a, much more hyperpolarization

occurs in the bursting rhythm. For a clear view, magnifi-

cations of a single burst band and VG are given in Fig. 3b2.

For this kind of burstings, burst synchronization refers to a

temporal relationship between the active phase onset or

(a)

(b)
(c)

Fig. 1 a Bifurcation diagram in

the single type-II regular-

spiking Izhikevich neuron for

D = 0. Solid line denotes a

stable equilibrium point.

Maximum and minimum values

of v for the spiking state are

represented by solid circles.

b Time series of the membrane

potential v(t) and c the

interspike interval histogram in

the single subthreshold

Izhikevich neuron for IDC = 3.6

and D = 3.0
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offset times of bursting neurons, while spike synchroniza-

tion characterizes a temporal relationship between spikes

fired by different bursting neurons in their respective active

phases (Rubin 2007). In addition to burst synchronization,

spike synchronization also occurs in each burst band, as

shown in Fig. 3b2; as we go from the onset to the offset

times, wider stripes appear in the burst band. Hence, this

kind of burst synchronization occurs on a hedgehoglike

limit cycle (see Fig. 2a), and VG exhibits bursting activity

like individual potentials. Finally, the third fast spike

synchronization emerges in a range of Jh1
* \ J \ Jh2

* . An

example for J = 10 is shown in Fig. 3c. In contrast to

Fig. 3a, stripes appear successively at short time intervals

(^2.8 ms) in the raster plot, and VG shows a small-

amplitude positive-potential fast rhythm with fg ^ 356 Hz.

With increasing J, change in firing patterns of individual

neurons and the corresponding population states are

discussed. For small J individual neurons exhibit noise-

induced spikings. Figure 4a1 shows the time series of the

membrane potential v1 and the recovery variable u1 of the

1st neuron for J = 0.6. Here, the slow variable u1 provides

a negative feedback to the fast variable v1. Spiking v1

pushes u1 outside the spiking area. Then, u1 slowly decays

into the quiescent area (see Fig. 4a1), which results in

termination of spiking. This quiescent v1 pushes u1 outside

the quiescent area; then, u1 revisits the spiking area, which

leads to spiking of v1. Through repetition of this process,

spikings appear successively in v1, as shown in Fig. 4a1.

Population synchronization between these individual spi-

kings appear for Jl
* \ J \ Jb

*. However, as J passes a

threshold Jb
*, the coherent synaptic input into the first

neuron becomes so strong that a tendency that a spike in v1

cannot push u1 outside the spiking area occurs. As an

example, see the case of J = 0.75 in Fig. 4a2. For this case,

(a)

(b)

(c)

Fig. 2 Population coherent and

incoherent states in N globally-

coupled excitatory subthreshold

Izhikevich neurons for

IDC = 3.6 and D = 3.0. a Phase

portraits of the population states

in the VG - UG plane for

N = 103. b Schematic diagram

of populations states on the

J axis c transition between

coherence and incoherence:

plots of log10O versus

log10 J for N = 102, 103,

and 104. Spike, burst, and fast

spike synchronizations occur in

the gray regions in (b) and (c)

Cogn Neurodyn (2013) 7:495–503 499

123

Author's personal copy



both spikings (singlets) and burstings (doublets consisting

of two spikes) appear, as shown in Fig. 4a2; 69 % of firings

are singlets, while 31 % of firings are doublets (see

Fig. 4b1). For J = 0.75, after the 2nd spike in v1, u1 at

first decreases a little (with nearly zero slope) and then

increases abruptly up to a peak value of u1, which is larger

than that of u1 for J = 0.6. Thus, after the 2nd spike, u1

remains inside the spiking area; hence, a third spike, con-

stituting a doublet, appears in v1. After this 3rd spike, u1 is

pushed away from the spiking area and slowly decays into

the quiescent area, which results in the termination of

repetitive spikings. In this way, doublets appear in v1 for J

= 0.75. As J is further increased, the coherent synaptic

input becomes stronger, so the number of spikes in a burst

increases (e.g., see the doublets and triplets for J = 0.8 in

Fig. 4a3); 88.7 % of firings are doublets, while 11.3 % of

firings are triplets (see Fig. 4b2). Figure 4c shows the

average number of spikes hni per burst versus J, and hni
becomes larger than unity (i.e., burstings appear) for J [ Jb

*

Population synchronization between these burstings occurs

for Jb
* \ J \ Jfs

* . With increase in J, longer burst lengths

(i.e., lengths of the active phase for the bursting activity)

appear as shown in Fig. 4d1, d2, and eventually the

average burst length, hBLi, diverges to the infinity (i.e., its

inverse, hBLi�1
, decreases to zero) as J goes to Jfs

* (see

Fig. 4e). Then, for J [ Jfs
* individual neurons exhibit fast

spikings as shown in Fig. 4d for J = 6.09. Since these fast

spikes keep no pace with each other, incoherent states

appear as shown in Fig. 2c. However, as J is further

increased, the coupling induces fast spike synchronization

in a range of Jh1
* \ J \ Jh2

* . Then, slow spikings with

longer spiking phases appear, as shown in Fig. 4f1, f2.

Figure 4g shows the mean firing frequency f (i.e., the

inverse of the average interspike interval) versus the cou-

pling strength. As J approaches a threshold Jod
* , f goes to

zero. Consequently, for J [ Jod
* stochastic oscillator death

(i.e., quenching of noise-induced slow spikings) occurs

(e.g., see Fig. 4f3 for J = 20).

The stochastic oscillator death of individual neurons

leads to a transition from firing to non-firing states at the

population level. This firing-nonfiring transition may be

well described in terms of the average population spike rate

R which is a time average of the instantaneous population

spike rate. To get a smooth instantaneous population spike

rate R(t), each spike in the raster plot is convoluted with a

(c)

(b1) (b2)

(a)Fig. 3 Three types of

population synchronization in

N (= 103) globally-coupled

excitatory subthreshold

Izhikevich neurons for

IDC = 3.6 and D = 3.0. Raster

plots of spikes and time series of

the global potential VG(t) for a
spike synchronization (J = 0.5),

b1 and b2 burst synchronization

(J = 5), and c fast spike

synchronization (J = 10)
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Gaussian kernel function (Shimazaki and Shinomoto

2010):

RðtÞ ¼ 1

N

XN

i¼1

Xni

s¼1

Khðt � tðiÞs Þ; ð10Þ

where i is the neuron index, ts
(i) is the sth spike of the ith

neuron, ni is the total number of spikes for the ith neuron,

N is the total number of neurons, and the Gaussian kernel

of band width h (= 1ms) is given by

KhðtÞ ¼
1ffiffiffiffiffiffi
2p
p

h
e�t2=2h2

: ð11Þ

Here, we discard the first time steps of a stochastic tra-

jectory as transients during 103 ms, and then we numeri-

cally compute R by following the stochastic trajectory for

3 9 104 ms when N = 102, 103, and 104. For the firing

(non-firing) state, the average population spike rate R

approaches a non-zero (zero) limit value in the thermody-

namic limit of N !1. Figure 5 shows a plot of the

average population spike rate versus the coupling strength.

For J [ J�od; R tends to zero as N goes to the infinity, and

hence non-firing states appear due to the stochastic oscil-

lator death of individual neurons.

Summary

We have studied coupling-induced population synchroni-

zation which may be used for efficient cognitive processing

by changing the coupling strength J in an excitatory

(a1) (a2) (a3)

(b1) (b2) (c)

(d1) (d2) (d3) (e)

(f1) (f2) (f3) (g)

Fig. 4 Various transitions in

individual membrane potentials

in N (= 103) globally-coupled

excitatory subthreshold

Izhikevich neurons for

IDC = 3.6 and D = 3.0.

Transition from spiking to

bursting in individual potentials:

time series of the membrane

potential v1 and the recovery

variable u1 of the 1st neuron for

J = a1 0.6, a2 0.75, a3 0.8.

Plots of fraction n (number of

spikes per burst) versus n for

J = b1 0.75 and b2 0.8.

Average number of spikes n per

burst versus J is shown in (c).

Transition from bursting to fast

spiking in individual potentials:

time series of the membrane

potential v1 for J = d1 6.06, d2
6.07, and d3 6.09. Inverse of

average burst length, \BL [-1,

versus J is shown in (e).

Transition from fast spiking to

oscillator death in individual

potentials: time series of the

membrane potential v1 for

J = d1 15, d2 18, and d3 20.

Mean firing frequency f versus

J is shown in (g)
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population of subthreshold Izhikevich neurons. As J is

increased, rich population states have appeared in the fol-

lowing order: incoherent state! spike synchronization !
burst synchronization ! incoherent state ! fast spike

synchronization ! incoherent state ! non-firing state.

Particularly, three types of population synchronization (i.e.,

spike, burst, and fast spike synchronization) have been

found to occur. Transitions between population synchro-

nization and incoherence have been well described in terms

of a thermodynamic order parameter. These various tran-

sitions between population states have occurred due to

emergence of the following diverse individual states:

spiking ! bursting ! fast spiking ! slow spiking !
oscillator death. Each population synchronization and

individual state were well characterized by using the

techniques of nonlinear dynamics such as the raster plot of

spikes, the time series of membrane potentials, and the

phase portrait. As a final step, stochastic oscillator death

(cessation of individual noise-induced slow spikings)

occurred because each individual neuron is attracted to a

noisy equilibrium state. This stochastic oscillator death

leads to a transition from firing to non-firing states at the

population level. The firing-nonfiring transition has also

been characterized in terms of the average population spike

rate. Since the Izhikevich model we employed for our

study is a canonical model (Izhikevich 2003, 2004, 2007;

Izhikevich and Edelman 2008), we expect that our results

are still valid in other neuronal models. Finally, we note

that population synchronization of noise-induced firings

may lead to emergence of synchronous brain rhythms in a

noisy environment which contribute to cognitive functions

such as sensory perception, multisensory integration,

selective attention, and working memory.
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