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• We are interested in characterization of population synchronization of bursting neurons which exhibit both the slow bursting and the
fast spiking timescales.

• We separate the slow bursting and the fast spiking timescales via frequency filtering, and extend the thermodynamic order parameter
and the statistical-mechanical measure based on the experimental-obtainable instantaneous population firing rate (IPFR) R(t) to the
case of bursting neurons.
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a b s t r a c t

We are interested in characterization of population synchronization of bursting neurons
which exhibit both the slow bursting and the fast spiking timescales, in contrast to spiking
neurons. Population synchronization may be well visualized in the raster plot of neural
spikes which can be obtained in experiments. The instantaneous population firing rate
(IPFR) R(t), which may be directly obtained from the raster plot of spikes, is often used as a
realistic collective quantity describing population behaviors in both the computational and
the experimental neuroscience. For the case of spiking neurons, realistic thermodynamic
order parameter and statistical–mechanical spiking measure, based on R(t), were
introduced in our recent work to make practical characterization of spike synchronization.
Here, we separate the slow bursting and the fast spiking timescales via frequency filtering,
and extend the thermodynamic order parameter and the statistical–mechanical measure
to the case of bursting neurons. Consequently, it is shown in explicit examples that both
the order parameters and the statistical–mechanical measures may be effectively used to
characterize the burst and spike synchronizations of bursting neurons.

© 2015 Published by Elsevier B.V.

1. Introduction

In recent years, brain rhythmswhich are observed in scalp electroencephalogram and local field potentials have attracted
much attention [1]. These brain rhythms emerge via synchronization between individual neuronal firings. Synchronization
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of firing activities may be used for efficient sensory and cognitive processing (e.g., feature integration, selective attention,
and memory formation) [2–4]. This kind of neural synchronization is also correlated with pathological rhythms associated
with neural diseases such as epilepsy, Parkinson’s disease, and Alzheimer’s disease [5–7]. Here, we are interested in
characterization of these synchronous brain rhythms.

There are two basic types of neuronal firing activities, spiking and bursting [8]. We are concerned about synchronization
of bursting neurons. Bursting occurs when neuronal activity alternates, on a slow timescale, between a silent phase and an
active (bursting) phase of fast repetitive spikings [9–13]. Thanks to a repeated sequence of spikes in the bursting, there are
several important bursting activities in the neural information transmission [10,14–17]. For example, (1) bursts are nec-
essary to overcome the synaptic transmission failure, (2) bursts are more reliable than single spikes in evoking responses
in postsynaptic neurons, and (3) bursts can be used for selective communication between neurons, where the interspike
frequency within the bursts encodes the channel of communication. Intrinsically bursting neurons and chattering neu-
rons in the cortex [18,19], thalamocortical relay neurons [20,21], thalamic reticular neurons [22], hippocampal pyramidal
neurons [23], Purkinje cells in the cerebellum [24], pancreatic β-cells [25–27], and respiratory neurons in pre-Botzinger
complex [28,29] are representative examples of bursting neurons. These bursting neurons exhibit two different patterns of
synchronization due to the slow and fast timescales of bursting activity. Burst synchronization (synchrony on the slowburst-
ing timescale) refers to a temporal coherence between the active phase onset or offset times of bursting neurons, while spike
synchronization (synchrony on the fast spike timescale) characterizes a temporal coherence between intraburst spikes fired
by bursting neurons in their respective active phases [30,31]. Recently, many studies on the burst and spike synchroniza-
tions have been made in several aspects (e.g., chaotic phase synchronization, transitions between different states of burst
synchronization, effect of network topology, effect on information transmission, suppression of bursting synchronization,
effect of noise and coupling on burst and spike synchronizations, and delay-induced synchronization) [32–48].

In this paper, we are concerned about practical characterization of the burst and spike synchronizations of bursting
neurons. For illustration of burst and spike synchronizations, refer to Fig. 3 of Ref. [31] where two coupled Hindmarsh–Rose
neurons were considered. For small coupling, there are no burst and spike synchronization (see the first column),
while burst and spike synchronizations occur when the coupling parameter passes a threshold (see the third column).
Population synchronizationmay be well visualized in the raster plot of neural spikes which can be obtained in experiments.
Instantaneous population firing rate (IPFR), R(t), which is directly obtained from the raster plot of spikes, is a realistic
collective quantity describing population behaviors in both the computational and the experimental neuroscience [2,49–54].
In our previous work on spiking neurons [55], we employed R(t) as a population quantity, and developed realistic measures,
based on R(t), to make practical characterization of synchronization of spiking neurons in both the computational and the
experimental neuroscience. Themean square deviation of R(t) plays the role of an order parameterO used for characterizing
synchronization transition of spiking neurons [56]. The order parameter O can be regarded as a ‘‘thermodynamic’’
measure because it concerns just the macroscopic quantity R(t) without considering any quantitative relation between
R(t) and the microscopic individual spikes. Through calculation of O, one can determine the threshold value for the
spike synchronization. Moreover, to quantitatively measure the degree of spike synchronization, a ‘‘statistical–mechanical’’
spiking measure Ms was introduced by taking into consideration both the occupation pattern and the pacing pattern of
spikes in the raster plot. Particularly, the pacing degree between spikes was determined in a statistical–mechanical way
by quantifying the average contribution of (microscopic) individual spikes to the (macroscopic) IPFR R(t). Consequently,
synchronization of spiking neurons may be well characterized in terms of these realistic thermodynamic order parameter
and statistical–mechanical measure, O andMs, based on R(t).

The main purpose of our work is to characterize the burst and spike synchronizations of bursting neurons by extend-
ing the thermodynamic order parameter and the statistical–mechanical measure of spiking neurons [55] to the case of
bursting neurons. Through the fast–slow burster analysis, a bursting system is separated into a fast and a slow subsystem
[11,57–59]. Thus, fast variables of the bursting system are extracted and then slow variables are used as bifurcation param-
eters for bifurcation analysis of the bursting system. For our case, to characterize the burst and spike synchronizations we
separate the slow and fast timescales of the bursting activity via the frequency filtering, and decompose the IPFR R(t) into
Rb(t) (the instantaneous population burst rate (IPBR) describing the bursting behavior) and Rs(t) (the instantaneous popula-
tion spike rate (IPSR) describing the intraburst spiking behavior). Then, themean square deviations of Rb and Rs play the role
of realistic thermodynamic order parameters,Ob andOs, used to determine the bursting and spiking thresholds for the burst
and spike synchronization, respectively.We also consider another raster plot of bursting onset or offset times formore direct
visualization of bursting behavior. From this type of raster plot, we can directly obtain the IPBR, R(on)

b (t) or R(off )
b (t), without

frequency filtering. Then, the time-averaged fluctuations of R(on)
b (t) and R(off )

b (t) also play the role of the order parameters,
O

(on)
b andO

(off )
b , for the bursting transition. These bursting order parametersO

(on)
b andO

(off )
b aremore direct ones thanOb be-

cause theymaybe obtaineddirectlywithout frequency filtering and they yield the samebursting thresholdwhich is obtained
through calculation of Ob. As a next step, in the whole region of burst synchronization, the degree of burst synchronization
seen in the raster plot of bursting onset or offset times may be well measured in terms of a statistical–mechanical bursting
measureMb, introduced by considering both the occupation and the pacing patterns of bursting onset or offset times in the
raster plot. In a similar way, we also develop a statistical–mechanical spiking measure Ms, based on Rs, to quantitatively
measure the degree of the intraburst spike synchronization. Consequently, through separation of the slow bursting and the
fast spiking timescales, burst synchronizationmay bewell characterized in terms of both the bursting order parameters (Ob,
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O
(on)
b and O

(off )
b ) and the statistical–mechanical bursting measure (Mb), while characterization of intraburst spike synchro-

nization can be made well by using the spiking order parameter (Os) and the statistical–mechanical spiking measure (Ms).
To our knowledge, no measures characterizing intraburst spike synchronization of bursting neurons seem to be introduced
previously. Hence, Os and Ms are new realistic measures characterizing the intraburst spike synchronization.

For the case of burst synchronization, our bursting order parameters (Ob, O
(on)
b andO

(off )
b ) and the statistical–mechanical

bursting measure (Mb) are also in contrast to the conventional measures such as the normalized order parameter χ
[60–63] and the burst phase order parameter r [32,35,37,64,65]. The normalized order parameterχ is given through dividing
the order parameter (i.e., the time-averaged fluctuation of the ensemble-averaged potential XG) by the average of time-
averaged fluctuations of individual potentials. However, since XG shows both the bursting and spiking activities, χ plays
the role of an order parameter for the ‘‘whole’’ synchronization (including both the burst and spike synchronizations) of
bursting neurons, which is in contrast to our bursting order parameters characterizing just the burst synchronization. On
the other hand, the burst phase order parameter r is a ‘‘microscopic’’ measure quantifying the degree of coherence between
(microscopic) individual burst phases without any explicit relation to the macroscopic occupation and pacing patterns of
bursting onset or offset times visualizedwell in the raster plot, in contrast to our statistical–mechanical burstingmeasureMb.
For our case ofMb, the pacing degree (between the bursting onset or offset times) is determined in a statistical–mechanical
way by taking into consideration the average of contributions of microscopic individual bursts to the macroscopic IPBR.

This paper is organized as follows. In Section 2, as an example for characterizationwe describe an inhibitory population of
burstingHindmarsh–Rose (HR) neurons [66–70]. In Section 3, through separation of the slow and fast timescales,we develop
realistic order parameters and statistical–mechanical measures, based on IPBR and IPSR, which are applicable in both the
computational and experimental neuroscience. Their usefulness for characterization of the burst and spike synchronizations
is shown in explicit examples of bursting HR neurons. Finally, a summary is given in Section 4.

2. Inhibitory population of bursting Hindmarsh–Rose neurons

A neural circuit in the major parts of the brain consists of a few types of excitatory principal cells and diverse types
of inhibitory interneurons. By providing a synchronous oscillatory output to the principal cells, interneuronal networks
play the role of the backbones of many brain rhythms [1–3,71]. Here, as an example for characterization, we consider an
inhibitory population of N bursting neurons which are globally coupled via GABAergic chemical synapses (involving the
GABAA receptors). As an element in our coupled system, we choose the representative bursting HR neuron model which
was originally introduced to describe the time evolution of the membrane potential for the pond snails [66–70]. Then, the
population dynamics in this coupled neural network is governed by the following set of ordinary differential equations:

dxi
dt

= yi − ax3i + bx2i − zi + IDC + Dξi − Isyn,i, (1)

dyi
dt

= c − dx2i − yi, (2)

dzi
dt

= r [s(xi − xo) − zi] , (3)

dgi
dt

= αg∞(xi)(1 − gi) − βgi, i = 1, . . . ,N, (4)

where

Isyn,i =
J

N − 1

N
j(≠i)

gj(t)(xi − Xsyn), (5)

g∞(xi) = 1/[1 + e−(xi−x∗s )δ
]. (6)

Here, the state of the ith neuron at a time t (measured in units of milliseconds) is characterized by four state variables: the
fast membrane potential xi, the fast recovery current yi, the slow adaptation current zi, and the synaptic gate variable gi
denoting the fraction of open synaptic ion channels. The parameters in the single HR neuron are taken as a = 1.0, b =

3.0, c = 1.0, d = 5.0, r = 0.001, s = 4.0, and xo = −1.6 [69].
Each bursting HR neuron is stimulated by using the common DC current IDC and an independent Gaussian white noise

ξi (see the 5th and the 6th terms in Eq. (1)) satisfying ⟨ξi(t)⟩ = 0 and ⟨ξi(t) ξj(t ′)⟩ = δij δ(t − t ′), where ⟨· · ·⟩ denotes the
ensemble average. In computational neuroscience, both the Poisson noise [50–53] and the Gaussian noise [49,54,62,72] are
usually used tomodel noisy inputs. Although the Poisson noise seems to be a little more realistic, the Gaussian noise is often
used because it yields similar results via more efficient computation. Hence, for convenience we use the Gaussian noise.
The Gaussian noise ξ is a parametric one that randomly perturbs the strength of the applied current IDC , and its intensity
is controlled by using the parameter D. As IDC passes a threshold I∗DC (≃1.26) in the absence of noise, each single HR neuron
exhibits a transition from a resting state (Fig. 1(a)) to a bursting state (Fig. 1(b)). As shown in Fig. 1(c), projection of the
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a b c

Fig. 1. Single bursting HR neuron. Time series of the fast membrane potential x for (a) IDC = 1.2 and (b) IDC = 1.3. (c) Projection of the phase flow onto
the x–z plane for IDC = 1.3.

phase flow onto the x–z plane seems to be a hedgehog-like attractor. Bursting activity (alternating between a silent phase
and an active (bursting) phase of fast repetitive spikings) occurs on the hedgehog-like attractor (the body (spines) of the
hedgehog-like attractor corresponds to the silent (active) phase). Here, we consider the suprathreshold case of IDC = 1.3
where each HR neuron exhibits spontaneous bursting activity without noise.

The last term of Eq. (1) represents the inhibitory coupling between the bursting HR neurons coupled via GABAergic
chemical synapses. Isyn,i of Eq. (5) represents a synaptic current injected into the ith neuron. Here the coupling strength
is controlled by the parameter J and Xsyn is the synaptic reversal potential. For the inhibitory synapse, we set Xsyn = −2.
The synaptic gate variable g obeys the 1st order kinetics of Eq. (4) [62,72]. Here, the normalized concentration of synaptic
transmitters, activating the synapse, is assumed to be an instantaneous sigmoidal function of the membrane potential with
a threshold x∗

s in Eq. (6), where we set x∗
s = 0 and δ = 30 [73]. The transmitter release occurs only when the neuron emits

a spike (i.e., its potential x is larger than x∗
s ). For the inhibitory GABAergic synapse (involving the GABAA receptors), the

synaptic channel opening rate, corresponding to the inverse of the synaptic rise time τr , is α = 10 m s−1, and the synaptic
closing rate β , which is the inverse of the synaptic decay time τd, is β = 0.1 m s−1 [74,75]. Hence, Isyn rises fast and decays
slowly.

As in our previous studies [44,45], in the absence of noise (i.e., D = 0) full synchronization (i.e., all neurons fire together)
occurs for the same value of J = 0.3 in the case of excitatory synapse with Xsyn = 0, α = 10, and β = 0.5, in contrast to
the partial synchronization (i.e., only some fraction of neurons fire together) for the case of inhibitory synapse. However, as
D is increased, due to a destructive role of noise, the degree of synchronization for both cases of inhibitory and excitatory
synapses decrease in a similar way, and eventually when passing a critical value of D a transition to unsynchronization
occurs. Here, our main concern is to characterize the synchronization behavior of bursting neurons. As an example for
characterization, we choose the case of inhibitory synapse. The case of excitatory synapse may also be characterized in
terms of the thermodynamic and statistical–mechanical measures developed in Section 3.

Numerical integration of Eqs. (1)–(4) is done using the Heun method [76] (with the time step 1t = 0.01 ms). For each
realization of the stochastic process, we choose a random initial point [xi(0), yi(0), zi(0), gi(0)] for the ith (i = 1, . . . ,N)
neuron with uniform probability in the range of xi(0) ∈ (−2, 2), yi(0) ∈ (−16, 0), zi(0) ∈ (1.1, 1.4), and gi(0) ∈ (0, 1).

3. Characterization of the burst and spike synchronizations in terms of thermodynamic order parameters and
statistical–mechanical measures

In this section, we extend the order parameter and the statistical–mechanicalmeasure to the case of bursting neurons for
characterization of population synchronization of bursting neurons. For this aim, we separate the slow and fast timescales
of the bursting activity via frequency filtering, and decompose the IPFR R(t) into the IPBR Rb(t) (describing the bursting
behavior) and the IPSR Rs(t) (describing the intraburst spiking behavior). Then, we develop realistic thermodynamic order
parameters and statistical–mechanical measures, based on Rb(t) and Rs(t), and show their usefulness for characterization
of the burst and spike synchronizations in explicit examples of HR bursting neurons.

As an example for characterization, we consider an inhibitory population of N globally-coupled bursting HR neurons for
IDC = 1.3. In the absence of noise (i.e., D = 0), complete unsynchronization exists for small J . However, due to constructive
role of J favoring the synchronization, burst synchronization (without spike synchronization) occurs when passing a lower
threshold Jth,l(∼0.06). Eventually, as J passes a higher threshold Jth,h(∼0.09) complete burst and spike synchronizations
emerge. Here, the effect of noise on the burst and the complete synchronizations are the same; for both cases,with increasing
D the degree of synchronization decreases, and transition to unsynchronization occurs when passing a critical value of D
due to destructive role of noise spoiling the synchronization. Hence, as an example of complete synchronization for D = 0,
we choose J = 0.3, and then we characterize the population behavior of bursting neurons by varying D. In neuroscience, an
ensemble-averaged global potential,

XG(t) =
1
N

N
i=1

xi(t), (7)
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Fig. 2. Population bursting states for various values of D in an inhibitory ensemble of N (=103) globally-coupled bursting HR neurons for IDC = 1.3 and
J = 0.3: synchronized bursting states for D = 0, 0.01, 0.04, and 0.06, and unsynchronized bursting state for D = 0.08. (a) Time series of the ensemble-
averaged global potential XG and time series of the individual potential x1 of the 1st neuron for D = 0. The dotted horizontal line (x∗

b = −1) represents
the bursting threshold (the solid and open circles denote the bursting onset and offset times, respectively), while the dashed horizontal line (x∗

s = 0)
represents the spiking threshold within the active phase. Raster plots of neural spikes for (b1)–(b5), time series of IPFR kernel estimate R(t) for (c1)–(c5),
time series of low-pass filtered IPBR Rb(t) (cut-off frequency = 10 Hz) for (d1)–(d5), raster plots of active phase (bursting) onset times for (e1)–(e5), raster
plots of active phase (bursting) offset times for (f1)–(f5), time series of IPBR kernel estimate R(on)

b (t) for (g1)–(g5), and time series of IPBR kernel estimate
R(off )
b (t) for (h1)–(h5). The band width h of the Gaussian kernel function is 1 ms for the IPFR kernel estimate R(t) and 50 ms for the IPBR kernel estimates

R(on)
b (t) and R(off )

b (t).

is often used for describing emergence of population synchronization. Throughout this study, we consider the population
behaviors after the transient time of 2 × 103 ms. Fig. 2(a) shows an oscillating global potential XG for a synchronous case
of D = 0. For comparison, an individual potential x1 of the 1st HR neuron is also shown in Fig. 2(a). In contrast to XG, each
HR neuron fires sparse burstings about once per three global cycles of XG. An active phase of the bursting activity begins at
a bursting onset time and ends at a bursting offset time. At the bursting onset (offset) time, each individual potential xi of
the ith bursting neuron passes the threshold of x∗

b = −1 from below (above); the bursting onset (offset) times of the 1st
neuron (after the transient time) are denoted by the solid (open) circles in Fig. 2(a). The global potential XG is an important
population-averaged quantity to describe synchronization in neuroscience. Here, instead of XG, we employ the IPFR which
is an experimentally-obtainable population quantity used in both the experimental and the computational neuroscience
[2,49–54]. The IPFR is obtained from the raster plot of neural spikeswhich is a collection of spike trains of individual neurons.
These raster plots of spikes,where population synchronizationmay bewell visualized, are fundamental data in experimental
neuroscience (e.g. epilepsy in human [77–79] and rat [80]). As examples of population bursting states, Fig. 2(b1)–(b5) show
the raster plots of neural spikes for various values of noise intensity D: synchronized bursting states for D = 0, 0.01, 0.04,
and 0.06, and unsynchronized bursting state forD = 0.08. To obtain a smooth IPFR from the raster plot of spikes, we employ
the kernel density estimation (kernel smoother) [81]. Each spike in the raster plot is convoluted (or blurred) with a kernel
function Kh(t) to obtain a smooth estimate of IPFR, R(t):

R(t) =
1
N

N
i=1

ni
s=1

Kh(t − t(i)s ), (8)
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where t(i)s is the sth spiking time of the ith neuron, ni is the total number of spikes for the ith neuron, and we use a Gaussian
kernel function of band width h:

Kh(t) =
1

√
2πh

e−t2/2h2 , −∞ < t < ∞. (9)

Fig. 2(c1)–(c5) show smooth IPFR kernel estimates R(t) of band width h = 1 ms. For D = 0, clear ‘‘bursting bands’’, each of
which is composed of ‘‘stripes’’ of spikes, appear successively at nearly regular time intervals (see Fig. 2(b1)); amagnification
of the 1st bursting band is given in Fig. 6(a1). For this case of D = 0, in addition to burst synchronization (synchrony on the
slowbursting timescale τb (≃215ms)), spike synchronization (synchrony on the fast spike timescale τs(≃14.6ms)) occurs in
eachbursting band. As a result of this complete synchronization, the IPFRkernel estimateR(t) exhibits a bursting activity (i.e.,
fast spikes appear on a slow wave in R(t)), as shown in Fig. 2(c1). However, as D is increased, loss of spike synchronization
begins to occur in each bursting band due to a smearing of spiking stripes. As an example, see the case of D = 0.01 where
the raster plot of spikes and the IPFR kernel estimate R(t) are given in Fig. 2(b2) and (c2), respectively. Smearing of the
spiking stripes is well seen in the magnified 1st bursting band of Fig. 6(a3). Hence, the amplitude of R(t) decreases, as
shown in Fig. 2(c2). As D is further increased and passes a spiking noise threshold D∗

s (≃0.032), complete loss of spike
synchronization occurs in each bursting band (i.e., spikes become incoherent within each bursting band). Consequently,
only the burst synchronization (without spike synchronization) occurs (e.g., see the case of D = 0.04 in Fig. 2(b3) and
(c3)). For this case, R(t) shows a slow-wave oscillation without spikes. With increasing D, such ‘‘incoherent’’ bursting bands
become more and more smeared, and thus the degree of burst synchronization decreases (e.g., see Fig. 2(b4) and (c4) for
D = 0.06). Consequently, the amplitude of R(t) is further decreased. With further increase in D, incoherent bursting bands
begin to overlap, which eventually results in the complete loss of burst synchronization when passing a larger bursting
noise threshold D∗

b(≃0.068). In this way, completely unsynchronized states with nearly stationary R(t) appear, as shown in
Fig. 2(b5) and (c5) for D = 0.08.

We note that the IPFR kernel estimate R(t) is a population quantity describing the ‘‘whole’’ combined collective behaviors
(including both the burst and spike synchronizations) of bursting neurons. For more clear investigation of population
synchronization, we separate the slow bursting timescale and the fast spiking timescale via frequency filtering, and
decompose the IPFR kernel estimateR(t) into the IPBRRb(t) and the IPSRRs(t). Through low-pass filtering ofR(t)with cut-off
frequency of 10 Hz, we obtain the regularly-oscillating IPBR Rb(t) (containing only the bursting behavior without spiking) in
Fig. 2(d1)–(d5). AsD is increased, the amplitude of Rb(t) decreases gradually, and eventually Rb(t) becomes nearly stationary
when passing the bursting noise thresholdD∗

b . Formore direct visualization of bursting behavior, we consider another raster
plot of bursting onset or offset times, from which we can directly obtain the IPBR kernel estimate of band width h = 50 ms,
R(on)
b (t) or R(off )

b (t), without frequency filtering. Fig. 2(e1)–(e5) show the raster plots of the bursting onset times, while the
raster plots of the bursting offset times are shown in Fig. 2(f1)–(f5). From these raster plots of the bursting onset (offset)
times, we obtain smooth IPBR kernel estimates, R(on)

b (t) [R(off )
b (t)] in Fig. 2(g1)(h1)–(g5)(h5). For D = 0, clear ‘‘bursting

stripes’’ (composed of bursting onset (offset) times and indicating burst synchronization) are formed in these raster plots;
the bursting onset and offset stripes are time-shifted (see Fig. 2(e1) and (f1)). The corresponding IPBR kernel estimates,
R(on)
b (t) and R(off )

b (t), forD = 0 show regular oscillationswith the same population bursting frequency fb(≃4.7Hz), as shown
in Fig. 2(g1) and (h1), although they are phase-shifted. As D is increased, the bursting stripes in the raster plots become
smeared and begin to overlap, and thus the degree of the burst synchronization decreases. Consequently, the amplitudes
of both R(on)

b (t) and R(off )
b (t) decrease gradually (e.g., see the cases of D = 0.01, 0.04, and 0.06). Eventually, when passing

the bursting noise threshold D∗

b , bursting onset and offset times become completely scattered in the raster plots, and the
corresponding IPBR kernel estimates, R(on)

b (t) and R(off )
b (t), become nearly stationary, as shown in Fig. 2(g5) and (h5) for

D = 0.08. In this way, R(on)
b (t) and R(off )

b (t) are more direct ones for describing the bursting behaviors than Rb(t).
As is well known, a conventional order parameter, based on the ensemble-averaged global potential XG, is often used

for describing transition from asynchrony to synchrony in computational neuroscience [60–63]. Here, instead of XG, we use
an experimentally-obtainable IPBR Rb(t) (which is obtained from the IPFR kernel estimate R(t) via low-pass filtering), and
develop a realistic bursting order parameter for the bursting transition, which may be applicable in both the computational
and the experimental neuroscience. The mean square deviation of Rb(t),

Ob ≡ (Rb(t) − Rb(t))2, (10)

plays the role of a bursting order parameterOb, where the overbar represents the time average. The order parameterOb may
be regarded as a thermodynamic measure because it concerns just the macroscopic IPBR Rb(t) without any consideration
between Rb(t) and microscopic individual burstings. Here, we discard the first time steps of a trajectory as transients
for 2 × 103 ms, and then we compute Ob by following the trajectory for 3 × 104 ms. As N is increased, Rb(t) exhibits
more regular oscillations for the case of burst synchronization, while Rb(t) becomes more stationary for the case of burst
unsynchronization. Hence, the bursting order parameter Ob, representing time-averaged fluctuations of Rb(t), approaches
a non-zero (zero) limit value for the synchronized (unsynchronized) bursting state in the thermodynamic limit of N → ∞.
Fig. 3(a1) shows plots of the order parameter Ob versus D. For D < D∗

b(≃0.068), synchronized bursting states exist because
the values of Ob become saturated to non-zero limit values. As D passes the bursting noise threshold D∗

b , the bursting order
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a1

a2 a3

b c

Fig. 3. Determination of the bursting noise threshold D∗

b for the bursting transition in terms of realistic thermodynamic bursting order parameters in an
inhibitory ensemble of N globally-coupled bursting HR neurons for IDC = 1.3 and J = 0.3. Plots of bursting order parameters (a1)–(a3) Ob (based on
Rb(t)), (b) O

(on)
b (based on R(on)

b (t)), and (c) O
(off )
b (based on R(off )

b (t)) versus D. For each D, we compute the bursting order parameters, Ob , O
(on)
b , and O

(off )
b

by following a trajectory for 3 × 104 ms after discarding the transients for 2 × 103 ms.

parameter Ob tends to zero as N → ∞, and hence a transition to unsynchronized bursting states occurs because the noise
spoils the burst synchronization. For more clear presentation on the behaviors of the bursting order parameter Ob in the
thermodynamic limit, we consider two cases ofD = 0.05 and 0.08. Fig. 3(a2) and (a3) showplots of log10 Ob versus− log10 N
for D = 0.05 and 0.08, respectively. For D = 0.08, Ob scales proportionally to N−1 and hence an unsynchronized bursting
state appears because Ob tends to zero in the thermodynamic limit. On the other hand, for D = 0.05, Ob approaches a
non-zero limit with increasing N , and hence a synchronized bursting state emerges.

In addition to Rb(t), we also employ another IPBR kernel estimates, R(on)
b (t) and R(off )

b (t), (which are directly obtained
from the raster plots of bursting onset and offset times (e.g., see Fig. 2)). Then, the mean square deviations of R(on)

b (t) and
R(off )
b (t) give another realistic bursting order parameters, O(on)

b and O
(off )
b :

O
(on)
b ≡ (R(on)

b (t) − R(on)
b (t))2 and O

(off )
b ≡ (R(off )

b (t) − R(off )
b (t))2. (11)

Fig. 3(b) and (c) show plots of O
(on)
b and O

(off )
b versus D, respectively. Like the case of Ob, when passing the same bursting

noise threshold D∗

b , the bursting order parameters O
(on)
b and O

(off )
b also go to zero as N → ∞, and hence a transition to burst

unsynchronization occurs. In this way, the noise threshold D∗

b for the bursting transition may be well determined through
calculation of each of the three realistic bursting order parameters,Ob,O

(on)
b andO

(off )
b . Particularly,O(on)

b andO
(off )
b aremore

direct ones than Ob because they are based on the IPBRs R(on)
b (t) and R(off )

b (t) which are directly obtained from the raster
plots of the bursting onset and offset times without frequency filtering, respectively.

As a next step, within the burst-synchronized region (0 ≤ D < D∗

b), we measure the degree of burst synchronization
in terms of a realistic statistical–mechanical bursting measure Mb, based on the IPBR kernel estimates R(on)

b (t) and R(off )
b (t).

Previously, a statistical–mechanical spiking measure, based on the ensemble-averaged global potential XG, was developed
for characterization of spike synchronization of spiking neurons [82]. Instead of XG, we also used the experimentally-
obtainable IPSR kernel estimate, and developed a refined version of statistical–mechanical spiking measure, based on
the IPSR, to characterize spike synchronization of spiking neurons in both the experimental and the computational
neuroscience [55]. Here, we extend the realistic statistical–mechanical measure of spiking neurons (based on the IPSR) to
the case of bursting neurons formeasurement of the degree of the burst synchronization. As shown in Fig. 2(e1)(f1)–(e5)(f5),
burst synchronizationmay bewell visualized in the raster plots of bursting onset (offset) times. For the synchronous bursting
case, bursting stripes (composed of bursting onset (offset) times and indicating population burst synchronization) appear
in the raster plots. As an example, we consider a synchronous bursting case of D = 0. The raster plot in Fig. 4(a1) is
composed of partially-occupied and smeared stripes of bursting onset times. Tomeasure the degree of burst synchronization



S.-Y. Kim, W. Lim / Physica A 438 (2015) 544–559 551

Fig. 4. Realistic statistical–mechanical bursting measures for measurement of the degree of burst synchronization, based on the IPBR kernel estimates,
R(on)
b (t) and R(off )

b (t), in an inhibitory population of N (=103) globally-coupled bursting HR neurons for IDC = 1.3 and J = 0.3 in the case of D = 0. (a1)
Raster plot of bursting onset times, (a2) time series of the IPBR kernel estimate R(on)

b (t), and (a3) the global bursting onset phase Φ
(on)
b (t). (b1) Raster plot

of bursting offset times, (b2) time series of the IPBR kernel estimate R(off )
b (t), and (b3) the global bursting offset phase Φ

(off )
b (t). In (a2)–(a3) and (b2)–(b3),

vertical dashed and dotted lines represent the times at which local minima and maxima (denoted by open and solid circles) of R(on)
b (t) and R(off )

b (t) occur,
respectively, and G(b,on)

i [G(b,off )
i ] (i = 1, 2) denotes the ith global bursting onset (offset) cycle. Plots of (c1) [(c2)] O(b,on)

i [O(b,off )
i ] (occupation degree of

bursting onset (offset) times in the ith global bursting onset (offset) cycle), (d1) [(d2)] P (b,on)
i [P (b,off )

i ] (pacing degree of bursting onset (offset) times in the
ith global bursting onset (offset) cycle), and (e1) [(e2)]M(b,on)

i [M(b,off )
i ] (bursting onset (offset) measure in the ith global bursting onset (offset) cycle).

seen in the raster plot, we develop a statistical–mechanical bursting onset measure M(on)
b , based on R(on)

b (t), by considering
both the occupation pattern and the pacing pattern of the bursting onset times in the bursting onset stripes. The bursting
onset measure M(b,on)

i of the ith bursting onset stripe is defined by the product of the occupation degree O(b,on)
i of bursting

onset times (representing the density of the ith bursting onset stripe) and the pacing degree P (b,on)
i of bursting onset times

(denoting the smearing of the ith bursting onset stripe):

M(b,on)
i = O(b,on)

i · P (b,on)
i . (12)

The occupation degree O(b,on)
i of bursting onset times in the ith bursting onset stripe is given by the fraction of HR neurons

which fire burstings:

O(b,on)
i =

N (b,on)
i

N
, (13)

where N (b,on)
i is the number of HR neurons which fire burstings in the ith bursting onset stripe. For the full occupation

O(b,on)
i = 1, while for the partial occupation O(b,on)

i < 1. The pacing degree P (b,on)
i of bursting onset times in the ith bursting

onset stripe can be determined in a statistical–mechanical way by taking into account their contributions to themacroscopic
IPBR kernel estimate R(on)

b (t). Fig. 4(a2) shows a time series of the IPBR kernel estimate R(on)
b (t) for D = 0; local maxima and

minima are denoted by solid and open circles, respectively. Obviously, central maxima of R(on)
b (t) between neighboring left

and right minima of R(on)
b (t) coincide with centers of bursting onset stripes in the raster plot. The global bursting onset cycle

starting from the left minimum of R(on)
b (t) which appears first after the transient time (=2 × 103 ms) is regarded as the 1st

one, which is denoted by G(b,on)
1 . The 2nd global bursting onset cycle G(b,on)

2 begins from the next following right minimum
of G(b,on)

1 , and so on. (The 1st global bursting onset cycle G(b,on)
1 corresponds to the 2nd bursting onset stripe in Fig. 2(e1)

because the minimum of the global bursting onset cycle, corresponding to the 1st bursting onset stripe in Fig. 2(e1), lies for
t < 2×103 ms.) Then, we introduce an instantaneous global bursting onset phaseΦ

(on)
b (t) of R(on)

b (t) via linear interpolation
in the two successive subregions forming a global bursting onset cycle [55,82,83], as shown in Fig. 4(a3). The global bursting
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onset phaseΦ
(on)
b (t) between the left minimum (corresponding to the beginning point of the ith global bursting onset cycle)

and the central maximum is given by:

Φ
(on)
b (t) = 2π(i − 3/2) + π


t − t(on,min)

i

t(on,max)
i − t(on,min)

i


for t(on,min)

i ≤ t < t(on,max)
i (i = 1, 2, 3, . . .), (14)

and Φ
(on)
b (t) between the central maximum and the right minimum (corresponding to the beginning point of the (i + 1)th

global bursting onset cycle) is given by

Φ
(on)
b (t) = 2π(i − 1) + π


t − t(on,max)

i

t(on,min)
i+1 − t(on,max)

i


for t(on,max)

i ≤ t < t(on,min)
i+1 (i = 1, 2, 3, . . .), (15)

where t(on,min)
i is the beginning time of the ith global bursting onset cycle (i.e., the time at which the left minimum of R(on)

b (t)
appears in the ith global bursting onset cycle) and t(on,max)

i is the time at which the maximum of R(on)
b (t) appears in the

ith global bursting onset cycle. Then, the contribution of the kth microscopic bursting onset time in the ith bursting onset
stripe occurring at the time t(b,on)k to R(on)

b (t) is given by cosΦ
(b,on)
k , where Φ

(b,on)
k is the global bursting onset phase at the

kth bursting onset time (i.e., Φ(b,on)
k ≡ Φ

(on)
b (t(b,on)k )). A microscopic bursting onset time makes the most constructive (in-

phase) contribution to R(on)
b (t) when the corresponding global onset phase Φ

(b,on)
k is 2πn (n = 0, 1, 2, . . .), while it makes

the most destructive (anti-phase) contribution to R(on)
b (t) when Φ

(b,on)
k is 2π(n− 1/2). By averaging the contributions of all

microscopic bursting onset times in the ith bursting onset stripe to R(on)
b (t), we obtain the pacing degree of bursting onset

times in the ith bursting onset stripe:

P (b,on)
i =

1

B(on)
i

B(on)
i
k=1

cosΦ
(b,on)
k , (16)

where B(on)
i is the total number of microscopic bursting onset times in the ith bursting onset stripe. By averaging M(b,on)

i of
Eq. (12) over a sufficiently large numberN (on)

b of bursting onset stripes,weobtain the realistic statistical–mechanical bursting
onset measureM(on)

b , based on the IPSR kernel estimate R(on)
b (t):

M(on)
b =

1
Nb

N(on)
b
i=1

M(b,on)
i . (17)

For D = 0 we follow 500 bursting onset stripes and get O(b,on)
i , P (b,on)

i , andM(b,on)
i in each ith bursting onset stripe, which are

shown in Fig. 4(c1), (d1), and (e1), respectively. Due to sparse burstings of individual HR neurons, the average occupation
degree O(on)

b (=⟨O(b,on)
i ⟩b ≃ 0.33), where ⟨· · ·⟩b denotes the average over bursting onset stripes, is small. Hence, only a

fraction (about 1/3) of the total HRneurons fire burstings in each bursting onset stripe. On the other hand, the average pacing
degree P (on)

b (=⟨P (b,on)
i ⟩b ≃ 0.94) is large in contrast toO(on)

b . Consequently, the realistic statistical–mechanical bursting onset
measureM(on)

b (=⟨M(b,on)
i ⟩b), representing the degree of burst synchronization seen in the raster plot of bursting onset times,

is about 0.31. The main reason for the low degree of burst synchronization is mainly due to partial occupation. In this way,
the realistic statistical–mechanical bursting onset measure M(on)

b can be used effectively to measure the degree of burst
synchronization becauseM(on)

b concerns not only the pacing degree, but also the occupation degree of bursting onset times
in the bursting onset stripes of the raster plot.

In addition to the above case of bursting onset times, we also consider population burst synchronization between the
bursting offset times. Fig. 4(b1) and (b2) show the raster plot composed of two stripes of bursting offset times and the
corresponding IPBR R(off )

b for D = 0, respectively; the 1st and 2nd global bursting offset cycles, G(b,off )
1 and G(b,off )

2 , are shown.
Since the 1st global cycle of offset times, G(b,off )

1 , follows the 1st global cycle of onset times, G(b,on)
1 , the 1st bursting offset

stripe in Fig. 4(b1) corresponds to the 2nd bursting offset stripe in Fig. 2(f1). We also note that both IPBRs R(on)
b in Fig. 4(a2)

and R(off )
b in Fig. 4(b2) are phase shifted. Hence, the global bursting offset cycle G(b,off ) of the IPBR R(off )

b follows the global
bursting onset cycle G(b,on) of the IPBR R(on)

b with time lag τ ∼ 130 ms. Then, as in the case of Φ
(on)
b (t), one can introduce

an instantaneous global bursting offset phase Φ
(off )
b (t) of R(off )

b (t) via linear interpolation in the two successive subregions
forming a global bursting offset cycle (see Fig. 4(b3)). Similar to the case of bursting onset times, we measure the degree
of burst synchronization seen in the raster plot of bursting offset times in terms of a statistical–mechanical bursting offset
measure M(off )

b , based on R(off )
b (t), by considering both the occupation pattern and the pacing pattern of the bursting offset

times in the bursting offset stripes. The bursting offset measure M(b,off )
i in the ith bursting offset stripe also is defined by
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Fig. 5. Measurement of the degree of burst synchronization in terms of the realistic statistical–mechanical bursting measureMb , based on the IPBR kernel
estimates R(on)

b (t) and R(off )
b (t) in an inhibitory population of N (=103) globally-coupled bursting HR neurons for IDC = 1.3 and J = 0.3. (a) Plot of Ob

(average occupation degree of burstings) versusD. (b) Plot of Pb (average pacing degree of burstings) versusD. (c) Plot ofMb (realistic statistical–mechanical
bursting measure) versus D. To obtain Ob , Pb , andMb in (a)–(c), we follow 500 global bursting onset and 500 global bursting offset cycles for each D.

the product of the occupation degree O(b,off )
i of bursting offset times and the pacing degree P (b,off )

i of bursting offset times
in the ith bursting offset stripe. We also follow 500 bursting offset stripes and get O(b,off )

i , P (b,off )
i , and M(b,off )

i in each ith
bursting offset stripe for D = 0, which are shown in Fig. 4(c2), (d2), and (e2), respectively. For this case of bursting offset
times, O(off )

b (=⟨O(b,off )
i ⟩b) ≃ 0.33, P (off )

b (=⟨P (b,off )
i ⟩b) ≃ 0.92, and M(off )

b (=⟨M(b,off )
i ⟩b) ≃ 0.30. The pacing degree of offset

times is a little smaller than the pacing degree of the onset times (P (on)
b ≃ 0.94), although the occupation degrees (≃0.33)

of the onset and offset times are the same. We take into consideration both cases of the onset and offset times equally and
define the average occupation degree Ob, the average pacing degree Pb, and the statistical–mechanical bursting measureMb
as follows:

Ob = [O(on)
b + O(off )

b ]/2, Pb = [P (on)
b + P (off )

b ]/2, and Mb = [M(on)
b + M(off )

b ]/2. (18)

By increasing the noise intensity D, we follow 500 bursting onset and 500 bursting offset stripes and characterize burst
synchronization in terms of Ob (average occupation degree), Pb (average pacing degree), and Mb (statistical–mechanical
bursting measure) for 15 values of D in the whole region of burst synchronization [0 ≤ D < D∗

b(≃0.068)], and the results
are shown in Fig. 5(a)–(c). As D is increased, the average occupation degree Ob (denoting the average density of bursting
stripes in the raster plot) decreases very slowly around Ob ∼ 0.32, because a little tendency for noise-induced skipping
of burstings in individual HR neurons occurs [62]. On the other hand, with increasing D, the average pacing degree Pb
(representing the average smearing of the bursting stripes in the raster plot) decreases rapidly due to destructive role of
noise spoiling burst synchronization. The statistical–mechanical bursting measure Mb also makes a rapid decrease because
of a rapid drop in Pb. Both Pb and Mb show quadratic decreases because they are well fitted with quadratic functions:
Pb ≃ −254.18D2

+ 4.35D + 0.93 and Mb ≃ −73.26D2
+ 1.26D + 0.31. In this way, we measure the degree of burst

synchronization in terms of the realistic statistical–mechanical bursting measureMb in the whole synchronized region, and
find thatMb reflects the degree of burst synchronization seen in the raster plot of onset and offset times very well.

Unlike the case of spiking neurons (showing only the spike synchronization), bursting neurons may exhibit both the
burst and the spike synchronizations. From now on, we investigate the intraburst spike synchronization of bursting HR
neurons by varying the noise intensityD. Fig. 6(a1)–(a6) and Fig. 6(b1)–(b6) show the raster plots of intraburst spikes and the
corresponding IPFR kernel estimates R(t) during the 1st global bursting cycle of the low-pass filtered IPBR Rb(t), respectively
for various values of D: synchronized spiking states for D = 0, 0.005, 0.01, and 0.02, and unsynchronized spiking states for
D = 0.04 and 0.08. As mentioned above, R(t) exhibits the whole combined population behaviors including the burst and
spike synchronizations with both the slow bursting and the fast spiking timescales. Hence, through band-pass filtering of
R(t) (with the lower and the higher cut-off frequencies of 30 Hz (high-pass filter) and 90 Hz (low-pass filter)), we obtain the
IPSRs Rs(t), which are shown in Fig. 6(c1)–(c6). Then, the intraburst spike synchronization may be well described in terms
of the IPSR Rs(t). For D = 0, clear 8 ‘‘spiking stripes’’ (composed of spikes and indicating population spike synchronization)
appear in the bursting band of the 1st global bursting cycle of the IPBR Rb(t) (see Fig. 6(a1)), and the IPFR kernel estimate R(t)
exhibits a bursting activity (i.e., fast spikes appear on a slow wave in R(t)) due to the complete synchronization (including
both the burst and spike synchronizations), as shown in Fig. 6(b1). However, the band-pass filtered IPSR Rs(t) shows only
the fast spiking oscillations (without a slow wave) with the population spiking frequency fs(≃68.5 Hz) (see Fig. 6(c1)). As
D is increased, spiking stripes in the bursting band become more and more smeared (e.g., see the cases of D = 0.005,
0.01, and 0.02). As a result, the amplitude of the IPSR Rs(t) decreases due to loss of spike synchronization. Eventually,
when passing the spiking noise threshold D∗

s (≃0.032), spikes become completely scattered within the bursting band (i.e.,
intraburst spikes become completely incoherent), and hence complete loss of spike synchronization occurs in the bursting
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Fig. 6. Population intraburst spiking states for various values ofD anddetermination of the spiking noise thresholdD∗
s for the intraburst spiking transition in

terms of the realistic spiking order parameter in an inhibitory ensemble ofN globally-coupled bursting HR neurons for IDC = 1.3 and J = 0.3: synchronized
spiking states for D = 0, 0.005, 0.01, and 0.02, and unsynchronized spiking states for D = 0.04 and 0.08. N = 103 except for the case of (d). (a1)–(a6)
Raster plots of neural spikes, (b1)–(b6) time series of IPFR kernel estimate R(t), and (c1)–(c6) time series of band-pass filtered IPSR Rs(t) (lower and higher
cut-off frequencies of 30 Hz (high-pass filter) and 90 Hz (low-pass filter)) in the 1st global bursting cycle of the low-pass filtered IPBR Rb(t) shown in
Fig. 2(d1)–(d5) (after the transient time of 2 × 103 ms) for each D. Determination of D∗

s for the intraburst spiking transition: (d) plots of spiking order
parameters Os (based on Rs(t)) versus D.

band. As an example, see the case of D = 0.04. For this case, the IPSR Rs(t) becomes nearly stationary, while the IPFR kernel
estimate R(t) shows a slow-wave oscillation (without spikes) due to the burst synchronization. Thus, for D > D∗

s only the
burst synchronizationmay occur. With further increase in D, the incoherent bursting band expands, fills the whole region of
the global bursting cycle, and overlaps with nearest bursting bands. Consequently, complete loss of burst synchronization
also occurs when passing the larger bursting noise threshold D∗

b(≃0.068). Thus, for D > D∗

b completely unsynchronized
states with nearly stationary R(t) appear (e.g., see the case of D = 0.08).

For characterization of the intraburst spiking transition, we employ the experimentally-obtainable IPSR Rs(t) (which is
obtained from the IPFR kernel estimate R(t) via band-pass filtering), and develop a realistic spiking order parameter Os,
which may be applicable in both the computational and the experimental neuroscience. The mean square deviation of Rs(t)
in the ith global bursting cycle,

O(i)
s ≡ (Rs(t) − Rs(t))2, (19)

plays the role of a spiking order parameterO
(i)
s in the ith global bursting cycle of the low-pass filtered IPBRRb(t). By averaging

O
(i)
s over a sufficiently large number Nb of global bursting cycles, we obtain the realistic spiking order parameter:

Os =
1
Nb

Nb
i=1

O(i)
s . (20)

By following 500 bursting cycles, we obtain the spiking order parameter Os. Fig. 6(d) shows plots of Os versus D. For
D < D∗

s (≃0.032), synchronized spiking states exist because the values of Os become saturated to non-zero limit values in
the thermodynamic limit ofN → ∞. However, when passing the spiking noise thresholdD∗

s , the spiking order parameterOs
tends to zero as N → ∞, and hence a transition to unsynchronized spiking states occurs because the noise spoils the spike
synchronization. In this way, the spiking noise threshold D∗

s may be well determined through calculation of the realistic
spiking order parameter Os.

Finally, within the whole region of the intraburst spike synchronization (0 ≤ D < D∗
s ), we measure the degree of

intraburst spike synchronization in terms of a realistic statistical–mechanical spiking measure Ms, based on the IPSR Rs(t).
As shown in Fig. 6(a1)–(a6), spike synchronization may be well visualized in the raster plot of spikes. For the synchronous
spiking case, spiking stripes (composed of spikes and indicating population spike synchronization) appear within the
bursting bands of the raster plot. As an example, we consider a synchronous spiking case of D = 0. Fig. 7(a1) and (a2)
show a magnified raster plot of neural spikes and the IPSR Rs(t), corresponding to the 1st global bursting cycle of the low-
pass filtered IPBR Rb(t) (bounded by a vertical dash-dotted lines: t(b)1 (=2022 ms) < t < t(b)2 (=2238 ms)). Within the
1st global cycle, the bursting band (bounded by the vertical dotted lines: t(b,on)1 (=2059 ms) < t < t(b,off )2 (=2190 ms)),
corresponding to the 1st global active phase, is composed of 8 stripes of spikes, as shown in Fig. 7(a1); t(b,on)1 (maximum of
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Fig. 7. Statistical–mechanical intraburst spiking measure for measurement of the degree of intraburst spike synchronization, based on the IPSR kernel
estimates, Rs(t) in an inhibitory population of N (=103) globally-coupled bursting HR neurons for IDC = 1.3 and J = 0.3. For D = 0, (a1) a magnified
raster plot of neural spikes, (a2) time series of the IPSR Rs(t), and (a3) time series of the global spiking phase Φs(t) in the 1st global bursting cycle of Rb(t)
(bounded by vertical dash-dotted lines: t(b)1 (=2022 ms) < t < t(b)2 (=2238 ms)). Within the 1st global bursting cycle, the bursting band (bounded by
vertical dotted lines: t(b,on)1 (=2059ms) < t < t(b,off )2 (=2190ms)) in (a1), corresponding to the 1st global active phase, is composed of 8 stripes of spikes;
t(b,on)1 (maximum of R(on)

b (t) within the 1st global bursting cycle) is the global bursting onset time, and t(b,off )1 (maximum of R(off )
b (t) within the 1st global

bursting cycle) is the global bursting offset time. In the bursting band, the maxima (minima) of Rs(t) are denoted by solid (open) circles, and 8 spiking
cycles G(s)

1,j (j = 1, . . . , 8) exist in the 1st global bursting cycle. For D = 0, (b1) plot of O(s)
1,j (occupation degree of spikes), (b2) plot of P (s)

1,j (pacing degree of

spikes), and (b3)M(s)
1,j (spiking measure) in the jth spiking phase G(s)

1,j of the 1st global bursting cycle of Rb(t) versus j. For D = 0, (c1) plot of O(s)
i (occupation

degree of spikes), (c2) plot of P (s)
i (pacing degree of spikes), and (c3) M(s)

i (spiking measure) in the ith global bursting cycle versus i. Measurement of the
degree of intraburst spike synchronization: (d1) plot of ⟨Os⟩r (average occupation degree of spikes). (d2) plot of ⟨Ps⟩r (average pacing degree of spikes), and
(d3) plot of ⟨Ms⟩r (average statistical–mechanical intraburst spiking measure) versus D. For each D, we follow 100 bursting cycles in each realization, and
obtain ⟨Os⟩r , ⟨Ps⟩r , and ⟨Ms⟩r via average over 20 realizations.

R(on)
b (t) within the 1st global bursting cycle) is the global active phase onset time, and t(b,off )1 (maximum of R(off )

b (t) within
the 1st global bursting cycle) is the global active phase offset time. In the bursting band, the maxima (minima) of Rs(t) are
denoted by solid (open) circles, and 8 global spiking cycles G(s)

1,j (j = 1, . . . , 8) exist in the 1st global bursting cycle of Rb(t),
as shown in Fig. 7(a2). For 1 < j < 8, each jth global spiking cycle G(s)

1,j , containing the jthmaximumof Rs(t), begins at the left
nearest-neighboringminimum of Rs(t) and ends at the right nearest-neighboringminimum of Rs(t), while for both extreme
cases of j = 1 and 8, G(s)

1,1 begins at t
(b)
1 (the beginning time of the 1st global bursting cycle of Rb(t)) and G(s)

1,8 ends at t
(b)
2 (the

ending time of the 1st global bursting cycle of Rb(t)). Then, as in the case of the global bursting phase, one can introduce an
instantaneous global spiking phaseΦs(t) of Rs(t) via linear interpolation in the two successive subregions (the left subregion
joining the left beginning point and the centralmaximumand the right subregion joining the centralmaximumand the right
ending point) forming a global spiking cycle (see Fig. 7(a3)). Similar to the case of burst synchronization, we measure the
degree of the intraburst spike synchronization seen in the raster plot in terms of a statistical–mechanical spiking measure,
based on Rs(t), by considering both the occupation pattern and the pacing pattern of spikes in the global spiking cycles.
The spiking measure M(s)

1,j of the jth global spiking cycle in the 1st global bursting cycle is defined by the product of the
occupation degree O(s)

1,j of spikes (representing the density of spikes in the jth global spiking cycle) and the pacing degree
P (s)
1,j of spikes (denoting the smearing of spikes in the jth global spiking cycle). Fig. 7(b1)–(b3) show the plots of O(s)

1,j, P (s)
1,j ,

and M(s)
1,j , respectively. For the 1st global bursting cycle, the spiking-averaged occupation degree O(s)

1 (=⟨O(s)
1,j⟩s) ≃ 0.25, the

spiking-averaged pacing degree P (s)
1 (=⟨P (s)

1,j ⟩s) ≃ 0.56, and the spiking-averaged statistical–mechanical spiking measure
M(s)

1 (=⟨M(s)
1,j ⟩b) ≃ 0.14, where ⟨· · ·⟩s represents the average over the spiking cycles. We also follow 500 bursting cycles and



556 S.-Y. Kim, W. Lim / Physica A 438 (2015) 544–559

get O(s)
i , P (s)

i , and M(s)
i in each ith global bursting cycle for D = 0, which are shown in Fig. 7(c1), (c2), and (c3), respectively.

Then, through average over all bursting cycles, we obtain the bursting-averaged occupation degreeOs (=⟨O(s)
i ⟩b ≃ 0.25), the

bursting-averaged pacing degree Ps (=⟨P (s)
i ⟩b ≃ 0.56), and the bursting-averaged statistical–mechanical spiking measure

Ms (=⟨M(s)
i ⟩b ≃ 0.14) forD = 0.Wenote thatOs, Ps, andMs are obtained through double-averaging ⟨⟨· · ·⟩s⟩b over the spiking

and bursting cycles. When compared with the bursting case of Ob ≃ 0.33 and Pb ≃ 0.93 for D = 0, a fraction (about 3/4) of
the HR neurons exhibiting the bursting active phases fire spikings in the spiking cycles, and the pacing degree of spikes Ps is
about 60% of the pacing degree of burstings Pb. Consequently, the statistical–mechanical spikingmeasureMs becomes about
45% of the statistical–mechanical burstingmeasureMb forD = 0.We increase the noise intensityD and obtainOs, Ps, andMs.
However, aswill be seen below,with increasingD, Ps decreases very rapidly in an exponentialway, in contrast to the bursting
case. Hence, for more accurate results, we repeat the process to get Os, Ps, and Ms for multiple realizations. Thus, we obtain
⟨Os⟩r (average occupation degree of spikes in the global spiking cycles), ⟨Ps⟩r (average pacing degree of spikes in the global
spiking cycles), and ⟨Ms⟩r (average statistical–mechanical spiking measure in the global spiking cycles) through average
over all realizations. For each realization, we follow 100 bursting cycles, and obtain ⟨Os⟩r , ⟨Ps⟩r , and ⟨Ms⟩r via average over
20 realizations. Through these multiple-realization simulations, we characterize intraburst spike synchronization in terms
of ⟨Os⟩r , ⟨Ps⟩r , and ⟨Ms⟩r for 8 values of D in the whole region of spike synchronization [0 ≤ D < D∗

s (≃0.032)], which are
shown in Fig. 7(d1)–(d3), respectively. As D is increased, the average occupation degree ⟨Os⟩r decreases very slowly around
⟨Os⟩r ∼ 0.24 due to a little tendency for noise-induced subtracting of spikes in individual HR neurons, while the average
pacing degree ⟨Ps⟩r decreases very rapidly due to destructive role of noise spoiling spike synchronization. The average
statistical–mechanical spiking measure ⟨Ms⟩r also makes a rapid decrease because of a rapid drop in ⟨Ps⟩r . Both ⟨Ps⟩r and
⟨Ms⟩r exhibit exponential decreases because they are well fitted with exponential functions: ⟨Ps⟩r ≃ 0.58 e−97.55D

− 0.019
and ⟨Ms⟩r ≃ 0.15 e−98.05D

− 0.005. In this way, we measure the degree of intraburst spike synchronization in terms of
the realistic statistical–mechanical spiking measure ⟨Ms⟩r in the whole synchronized region, and find that ⟨Ms⟩r reflects the
degree of intraburst spike synchronization seen in the raster plot very well. Finally, we note that the exponential loss in the
degree of spike synchronization is much faster than the quadratic loss in the degree of the burst synchronization. As a result,
the break-up of the spike synchronization occurs first at the smaller spiking noise threshold D∗

s (≃0.032), and then the burst
synchronization disappears at the larger bursting noise threshold D∗

b(≃0.068).

4. Summary

We have extended the order parameter and the statistical–mechanical measure to the case of bursting neurons. Their
usefulness for characterization of the burst and spike synchronizations has been shown in explicit examples of bursting HR
neurons by varying the noise intensity D. We note that population synchronization may be well visualized in the raster plot
of neural spikes which may be obtained in experiments. Unlike the case of spiking neurons, bursting neurons show firing
patterns with two timescales: a fast spiking timescale and a slow bursting timescale that modulates the spiking activity.
Hence, the IPFR kernel estimate R(t), which is obtained from the raster plot of spikes, shows collective behaviors with
both the slow bursting and the fast spiking timescales. For our purpose, we separate the slow bursting and the fast spiking
timescales via frequency filtering, and decompose the IPFR kernel estimate R(t) into the IPBR Rb(t) and the IPSR Rs(t). Based
on Rb(t) and Rs(t), we have developed the bursting and spiking order parametersOb andOs whichmay be used to determine
the bursting and spiking noise thresholds, D∗

b and D∗
s , for the burst and spike synchronizations.When passing D∗

b and D∗
s , loss

of the burst and spike synchronizations occurs due to destructive role of noise spoiling the burst and spike synchronizations,
respectively. As a next step, the degree of burst synchronization seen in the raster plot of bursting onset or offset times has
been well measured in the whole region of burst synchronization in terms of a statistical–mechanical bursting measureMb,
introduced by considering both the occupation and the pacing patterns of bursting onset or offset times in the raster plot.
Similarly, we have also developed a statistical–mechanical spiking measureMs, based on Rs(t), and measured the degree of
the intraburst spike synchronization well. Thus, the statistical–mechanical bursting and spiking measures have been found
to reflect both the occupation and the pacing degrees of bursting onset or offset times and spikes seen in the raster plot
very well. Furthermore, it has also been found that the exponential loss in the degree of spike synchronization is much
faster than the quadratic loss in the degree of the burst synchronization. Hence, the intraburst spike synchronization breaks
up first at the smaller spiking noise threshold D∗

s (≃0.032), and then the burst synchronization disappears at the larger
bursting noise threshold D∗

b(≃0.068). Consequently, we have shown in explicit examples that the order parameters and
the statistical–mechanical measures may be effectively used to determine the bursting and spiking thresholds for the burst
and the spike synchronizations and also to quantitatively measure the degree of the burst and the spike synchronizations,
respectively.

Finally, we compare our statistical–mechanical bursting and spiking measures with the conventional measures and
discuss their applications to real experimental data. Through frequency filtering,we separate the slowand the fast timescales
of the bursting activity, and characterize the burst and the spike synchronizations separately, in contrast to the conventional
measures (e.g., burst phase order parameter [32,35,37,64,65] and standard deviation and covariance measures of individual
membrane potentials [47,48]) which characterize the whole combined collective behaviors without separation of the burst
and the spike synchronizations. Population burst and spike synchronizations may be visualized well in the raster plots
of bursting and spiking times, respectively (i.e., bursting (spiking) stripes appear in the raster plot of bursting (spiking)
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times). The degree of burst (spike) synchronization visualized well in the raster plots of bursting (spiking) times may
be well measured in terms of our statistical–mechanical bursting (spiking) measure which is given by the product of
the occupation degree of bursting (spiking) times (denoting the density of the bursting (spiking) stripes) and the pacing
degree of bursting (spiking) times (representing the smearing of the bursting (spiking) stripes). Particularly, the pacing
degree of bursting (spiking) times is determined in a statistical–mechanical way by taking into consideration contributions
of microscopic bursting (spiking) times to the macroscopic IPBR (IPSR) kernel estimate which is also obtained from the
raster plot of bursting (spiking) times. In contrast to these statistical–mechanical measures, the conventional burst phase
order parameter and the conventional standard deviation and covariance measures of individual membrane potentials
are microscopic measures because they quantify the degree of coherence between microscopic individual burst phases
(membrane potentials) without any explicit relation to the macroscopic occupation and the pacing patterns of bursting
(spiking) times visualized well in the raster plot. Consequently, in a statistical–mechanical sense our busting and spiking
measures (which directly measure the occupation and the pacing degrees of the burst and the spike synchronizations
visualizedwell in the raster plots) supplement the conventional microscopicmeasures. Next, we briefly discuss possibilities
of applications of our statistical–mechanical bursting and spiking measures to real experimental data in bursting neuronal
systems, similar to applications of statistical–mechanical spiking measure for spiking neurons [55]. For characterization of
population synchronization in real experiments on a population of bursting neurons, one may get a raster plot of bursting
(spiking) times, and then characterize the burst (spike) synchronization (well visualized in the raster plot) in terms of the
statistical–mechanical bursting (spiking) measure which is employed to measure the occupation and the pacing degrees of
bursting (spiking) stripes in the raster plot. As a second example, we consider burst- and spike-timing reliability of cortical
neurons [84,85]. One may obtain trains of bursting (spiking) times in response to repeated trials of presenting the same
stimulus to a single bursting neuron, forms a raster plot of bursting (spiking) times (trials versus times), and then apply
statistical–mechanical bursting (spiking)measure for characterization of burst-timing (spike-timing) reliability. For the case
of bursting (spiking) times, the occupation degree and the pacing degree correspond to the conventional burst-timing (spike-
timing) reliability and precision, respectively. As a final example, we discuss stimulus discrimination of cortical neurons
[86,87]. As an example, we consider 20 songs for classification in songbirds. For each song, one may get burst (spike)
trains (i.e., trains of bursting (spiking) times) in response to 50 repeated trials of presenting the same song, and obtain
‘‘template’’ raster plot of burst (spike) trains and the corresponding template IPBR (IPSR) kernel estimate for the song. Thus,
we have 1000 burst (spike) trains and 20 template IPBRs (IPSRs). Our template IPBR (IPSR) for each song is a ‘‘macroscopic’’
one, in contrast to the conventional randomly chosen ‘‘microscopic’’ template burst (spike) train [86,87]. Then, we get the
statistical–mechanical pacing degree between each burst (spike) train and the 20 template IPBRs (IPSRs), assign each burst
(spike) train to the closest template IPBR (IPSR), and compute correct percentage. In this way, our statistical–mechanical
pacing degree may also be used as a ‘‘similarity’’ measure to quantify neural discrimination.
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