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Abstract
We study the disynaptic effect of the hilar cells on pattern separation in a spiking neural network of the hippocampal

dentate gyrus (DG). The principal granule cells (GCs) in the DG perform pattern separation, transforming similar input

patterns into less-similar output patterns. In our DG network, the hilus consists of excitatory mossy cells (MCs) and

inhibitory HIPP (hilar perforant path-associated) cells. Here, we consider the disynaptic effects of the MCs and the HIPP

cells on the GCs, mediated by the inhibitory basket cells (BCs) in the granular layer; MC ! BC ! GC and HIPP ! BC !
GC. The MCs provide disynaptic inhibitory input (mediated by the intermediate BCs) to the GCs, which decreases the

firing activity of the GCs. On the other hand, the HIPP cells disinhibit the intermediate BCs, which leads to increasing the

firing activity of the GCs. In this way, the disynaptic effects of the MCs and the HIPP cells are opposite. We investigate

change in the pattern separation efficacy by varying the synaptic strength KðBC;XÞ [from the pre-synaptic X (= MC or HIPP)

to the post-synaptic BC]. Thus, sparsity for the firing activity of the GCs is found to improve the efficacy of pattern

separation, and hence the disynaptic effects of the MCs and the HIPP cells on the pattern separation become opposite ones.

In the combined case when simultaneously changing both KðBC;MCÞ and KðBC;HIPPÞ, as a result of balance between the two

competing disynaptic effects of the MCs and the HIPP cells, the efficacy of pattern separation is found to become the

highest at their original default values where the activation degree of the GCs is the lowest. We also note that, while the

GCs perform pattern separation, sparsely synchronized rhythm is found to appear in the population of the GCs. Hence, we

examine quantitative association between population and individual firing behaviors in the sparsely synchronized rhythm

and pattern separation. They are found to be strongly correlated. Consequently, the better the population and individual

firing behaviors in the sparsely synchronized rhythm are, the more pattern separation efficacy becomes enhanced.

Keywords Hippocampal dentate gyrus � Granule cells � Pattern separation � Mossy cells � HIPP cells � Disynaptic effect �
Sparsely synchronized rhythm

Introduction

The hippocampus, consisting of the dentate gyrus (DG) and

the areas CA3, CA2, CA1, and subiculum, plays important

roles in memory formation, storage, and retrieval (e.g.,

episodic and spatial memory) (Gluck and Myers 2001;

Squire 1987; Dudek et al. 2016). Particularly, the area CA3

has been considered as an autoassociative network, due to

extensive recurrent collateral synapses between the pyra-

midal cells found in this area (Marr 1971; Willshaw and

Buckingham 1990; McNaughton and Morris 1987; Rolls

1989a, b, c; Treves and Rolls 1991, 1992, 1994; O’Reilly

and McClelland 1994). This autoassociative network

operates in the two storage and recall modes. In the storage

mode, it stores input patterns in plastic collateral synapses

between the pyramidal cells. In the recall mode, when a

partial or noisy version of the ‘‘cue’’ pattern is presented,

activity of pyramidal cells propagates through the previ-

ously-strengthened pathways and reinstates the complete

stored pattern, which is called the pattern completion.
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Storage capacity of the autoassociative network implies

the number of distinct patterns that can be stored and

accurately retrieved. Such storage capacity may be

increased if the input patterns are sparse (containing few

active elements in each pattern) and orthogonalized (non-

overlapping; active elements in one pattern are unlikely to

be active in other patterns). This process of transforming a

set of input patterns into sparser and orthogonalized pat-

terns is called pattern separation (Marr 1971; Willshaw and

Buckingham 1990; McNaughton and Morris 1987; Rolls

1989a, b, c; Treves and Rolls 1991, 1992, 1994; O’Reilly

and McClelland 1994; Schmidt et al. 2012; Rolls 2016;

Knierim and Neunuebel 2016; Myers and Scharfman

2009, 2011; Myers et al. 2013; Scharfman and Myers

2016; Yim et al. 2015; Chavlis et al. 2017; Kassab and

Alexandre 2018; Beck et al. 2000; Nitz and McNaughton

2004; Leutgeb et al. 2007; Bakker et al. 2008; Yassa and

Stark 2011; Santoro 2013; van Dijk and Fenton 2018).

The DG is the gateway to the hippocampus, and its

excitatory granule cells (GCs) receive excitatory inputs

from the entorhinal cortex (EC) via the perforant paths

(PPs). As a preprocessor for the CA3, the principal GCs

perform pattern separation on the input patterns from the

EC by sparsifying and orthogonalizing them, and send the

pattern-separated outputs to the pyramidal cells in the CA3

through the mossy fibers (MFs) (Treves and Rolls 1994;

O’Reilly and McClelland 1994; Schmidt et al. 2012; Rolls

2016; Knierim and Neunuebel 2016; Myers and Scharfman

2009, 2011; Myers et al. 2013; Scharfman and Myers

2016; Yim et al. 2015; Chavlis et al. 2017; Kassab and

Alexandre 2018). Then, the sparse, but strong MFs play a

role of ‘‘teaching inputs,’’ causing synaptic plasticity

between the pyramidal cells in the CA3. Thus, a new

pattern may be stored in modified synapses. In this way,

pattern separation in the DG may facilitate pattern storage

in the CA3.

The whole GCs are grouped into the lamellar clusters

(Andersen et al. 1971; Amaral and Witter 1989; Andersen

et al. 2000; Sloviter and Lømo 2012). In each lamella,

there exists one inhibitory basket cell (BC) together with

excitatory GCs. In the process of pattern separation, the

GCs exhibit sparse firing activity through the winner-take-

all competition (Coultrip et al. 1992; Almeida et al. 2009;

Petrantonakis and Poirazi 2014, 2015; Houghton 2017;

Espinoza et al. 2018; Su et al. 2019; Barranca et al. 2019;

Bielczyk et al. 2019; Wang et al. 2020). Only strongly

active GCs survive under the feedback inhibition of the

BC. The sparsity (resulting from the winner-take-all com-

petition) has been considered to improve the pattern sep-

aration (Treves and Rolls 1994; O’Reilly and McClelland

1994; Schmidt et al. 2012; Rolls 2016; Knierim and

Neunuebel 2016; Myers and Scharfman 2009, 2011; Myers

et al. 2013; Scharfman and Myers 2016; Chavlis et al.

2017; Kassab and Alexandre 2018).

In this paper, we consider a spiking neural network of

the hippocampal DG, and investigate the disynaptic effect

of the hilar cells on pattern separation. Our work is in

contrast to the previous work on the monosynaptic effect of

the hilar cells on the pattern separation (Myers and

Scharfman 2009). In our DG network, the hilus is com-

posed of two kinds of hilar cells: excitatory mossy cells

(MCs) and inhibitory HIPP (hilar perforant path-associ-

ated) cells. We are focused on the disynaptic effect of the

MCs and the HIPP cells on the GCs (performing pattern

separation), mediated by the inhibitory BCs; MC ! BC !
GC and HIPP ! BC ! GC, in contrast to their monosy-

naptic effect on pattern separation (MC ! GC and HIPP

! GC) (Myers and Scharfman 2009). In our case, the MCs

provide disynaptic inhibition (mediated by the intermediate

BCs) to the GCs, which tends to reduce the firing activity

of the GCs. On the other hand, the HIPP cells have ten-

dency of increasing the firing activity of the GCs by dis-

inhibiting the intermediate BCs. In this way, the disynaptic

effects of the MCs and the HIPP cells are opposite.

Here, we investigate change in the pattern separation

efficacy by varying the synaptic strength KðBC;XÞ [from the

pre-synaptic X (= MC or HIPP) to the post-synaptic BC].

As KðBC;MCÞ is increased, due to increased disynaptic

inhibition, the GCs make more sparsifying and orthogo-

nalizing the input patterns (i.e., pattern separation efficacy

becomes improved). In contrast, when increasing

KðBC;HIPPÞ, the pattern separation efficacy becomes low-

ered, because the intermediate BCs are more disinhibited,

leading to increase in the activity of the GCs. Thus, sparsity

for the firing activity of the GCs is found to improve the

pattern separation efficacy, and hence the (individual)

disynaptic effects of the MCs and the HIPP cells on pattern

separation become opposite ones. In the combined case

when simultaneously changing both KðBC;MCÞ and

KðBC;HIPPÞ, as a result of balance between the two com-

peting disynaptic effects of the MCs and the HIPP cells, the

efficacy of pattern separation is found to become the

highest at the original default values of synaptic strengths

where the activation degree of the GCs is the lowest.

We also note that, during the pattern separation, sparsely

synchronized rhythm is found to appear in the population

of the GCs. Hence, it would be interesting and worthwhile

to examine quantitative association between population

and individual firing behaviors in the sparsely synchronized

rhythm and pattern separation. Both of them are thus found

to be strongly correlated. Consequently, the larger the

population synchronization degree and the regularity

degree in individual firing activity of the sparsely

Cognitive Neurodynamics

123



synchronized rhythm are, the better the pattern separation

efficacy becomes.

This paper is organized as follows. In Sec. 2, we

describe a spiking neural network for pattern separation in

the hippocampal DG. Then, in the main Sec. 3, we inves-

tigate the disynaptic effects of the MCs and the HIPP cells

on pattern separation and its association with the popula-

tion and the individual activities in the sparsely synchro-

nized rhythm of the GCs. Finally, we give summary and

discussion in Sec. 4.

Spiking neural network for the pattern
separation in the dentate gyrus

In this section, we describe our spiking neural network for

the pattern separation in the DG. Based on the anatomical

and the physiological properties given in (Myers and

Scharfman 2009; Chavlis et al. 2017), we developed the

DG spiking neural network in the work for the winner-

take-all competition (Kim and Lim 2022) and the sparsely

synchronized rhythms (Kim and Lim 2021d). In the present

work, we start with the DG network for the sparsely syn-

chronized rhythm (Kim and Lim 2021d), and modify it for

the study on the disynaptic effect of the hilar cells on

pattern separation.

There is no disynaptic connections from the HIPP cells

to the GCs, mediated by the BCs (HIPP ! BC ! GC) in

(Kim and Lim 2021d). For our present study, we make

such disynaptic connections from the HIPP cells in the DG

network for the pattern separation, in addition to the (pre-

existing) disynaptic connections from the MCs, mediated

by the BCs (MC ! BC ! GC). To keep the same acti-

vation degree Da (= 5.2 %) of the GCs as in the case of

sparsely synchronized rhythm, we make a little changes in

the following synaptic strengths: increase in the synaptic

strength for HIPP ! GC and increase in the activity of the

GC-MC-BC loop via increasing the synaptic strengths for

GC ! MC and MC ! BC. We also determine the synaptic

strength for the new disynaptic connection (HIPP ! BC),

based on the information in (Santhakumar et al. 2005;

Morgan et al. 2007).

Obviously, our spiking neural network will not capture

all the detailed anatomical and physiological complexity of

the DG. But, with a limited number of essential elements

and synaptic connections in our DG network, disynaptic

effect on the pattern separation could be successfully

studied. Hence, our spiking neural network model would

build a foundation upon which additional complexity may

be added and guide further research.

Architecture of the spiking neural network
of the dentate gyrus

Figure 1a shows the box diagram for the DG network for

our study on patten separation. In the DG, there exist the

granular layer (consisting of the excitatory GCs and the

inhibitory BCs) and the hilus (composed of the excitatory

MCs and the inhibitory HIPP cells). The DG receives the

input from the external EC via the PPs and projects its

output to the CA3 via the MFs. Inside the DG, disynaptic

paths from the MCs and the HIPP cells to the GCs,

mediated by the BCs, are represented in red color, while

direct monosynaptic paths from the MCs and the HIPP

cells are denoted in blue color.

Based on the anatomical information given in (Myers

and Scharfman 2009; Chavlis et al. 2017), we choose the

numbers of the GCs, BCs, MCs, and HIPP cells in the DG

and the EC cells and the connection probabilities between

them. As in the work for the sparsely synchronized rhythm

(Kim and Lim 2021d), we develop a scaled-down spiking

neural network where the total number of excitatory GCs

(NGC) is 2,000, corresponding to 1
500

of the 106 GCs found

in rats (West et al. 1991). The GCs are grouped into the

Nc ð¼ 20Þ lamellar clusters (Andersen et al. 1971; Amaral

and Witter 1989; Andersen et al. 2000; Sloviter and Lømo

2012). Then, in each GC cluster, there are n
ðcÞ
GC ð¼ 100Þ

GCs and one inhibitory BC. As a result, the number of the

BCs (NBC) in the whole DG network become 20, corre-

sponding to 1/100 of NGC (Buckmaster et al. 1996; Buck-

master and Jongen-Rêlo 1999; Buckmaster et al. 2002;

Nomura et al. 1997a, b; Morgan et al. 2007). In this way,

in each GC cluster, a dynamical GC-BC loop is formed,

and the BC (receiving the excitation from all the GCs)

provide the feedback inhibition to all the GCs.

The EC layer II projects the excitatory inputs to the GCs

and the HIPP cells via the PPs, as shown in Fig. 1 in

Ref. (Myers and Scharfman 2009). The HIPP cells have

dendrites extending into the outer molecular layer, where

they are targeted by the PPs, together with axons projecting

to the outer molecular layer (Myers and Scharfman 2009;

Scharfman 1991; Savanthrapadian et al. 2014; Hosp et al.

2014; Hsu et al. 2016; Liu et al. 2014). In this way, the EC

cells and the HIPP cells become the excitatory and the

inhibitory input sources to the GCs, respectively. The

estimated number of the EC layer II cells (NEC) is about

200,000 in rats, which corresponds to 20 EC cells per 100

GCs (Amaral et al. 1990). Hence, we choose NEC ¼ 400 in

our DG network. Also, the activation degree Da of the EC

cells is chosen as 10% (McNaughton et al. 1991). Thus, we

randomly choose 40 active ones among the 400 EC cells.

Each active EC cell is modeled in terms of the Poisson

spike train with frequency of 40 Hz (Hafting et al. 2005).
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The random-connection probability pðGC;ECÞ (pðHIPP;ECÞ)
from the pre-synaptic EC cells to a post-synaptic GC (HIPP

cell) is 20 % (Myers and Scharfman 2009; Chavlis et al.

2017). Thus, each GC or HIPP cell is randomly connected

with the average number of 80 EC cells.

Next, we consider the hilus, composed of the excitatory

MCs and the inhibitory HIPP cells (Scharfman and Myers

2013; Scharfman 2018; Lübke et al. 1998; Amaral et al.

2007; Jinde et al. 2012, 2013; Ratzliff et al. 2004;

Danielson et al. 2017). In rats, the number of MCs (NMC) is

known to change from 30,000 to 50,000, which corre-

sponds to 3-5 MCs per 100 GCs (West et al. 1991;

Buckmaster and Jongen-Rêlo 1999). In our DG network,

we choose NMC ¼ 80. Also, the estimated number of HIPP

cells (NHIPP) in rats is about 12,000 (Buckmaster and

Jongen-Rêlo 1999), corresponding to about 2 HIPP cells

per 100 GCs. Hence, we chose NHIPP ¼ 40 in our DG

network. For simplicity, as in (Myers and Scharfman 2009;

Chavlis et al. 2017), we do not consider the lamellar cluster

organization for the hilar cells.

In our DG network, the whole MCs and the GCs in each

GC cluster were mutually connected with the same 20 %

random-connection probabilities pðMC;GCÞ (GC ! MC) and

pðGC;MCÞ (MC ! GC), independently of the GC clusters

(Myers and Scharfman 2009; Chavlis et al. 2017). In this

way, the GCs and the MCs form a dynamical E-E loop.

Also, the BC in each GC cluster is randomly connected

with the whole MCs with the connection probability

pðBC;MCÞ ¼ 20 %, in contrast to the case of sparsely syn-

chronized rhythm (Kim and Lim 2021d) where all the MCs

provide excitation to the BC in each GC cluster (Chavlis

et al. 2017). In this way, the MCs control the firing activity

in the GC-BC loop by providing excitation to both the

randomly-connected GCs and BCs.

We also note that each GC in the GC cluster receive

inhibition from the randomly-connected HIPP cells with

(a)

(b1) (b2) (b3)

Fig. 1 Hippocampal dentate gyrus (DG) network. a Box diagram for

the hippocampal dentate gyrus (DG) network. Lines with triangles

and circles denote excitatory and inhibitory synapses, respectively. In

the DG, there are the granular layer [consisting of GC (granule cell)

and BC (basket cell)] and the hilus [composed of MC (mossy cell)

and HIPP (hilar perforant path-associated) cell]. The DG receives

excitatory input from the EC (entorhinal cortex) via PPs (perforant

paths) and provides its output to the CA3 via MFs (mossy fibers). Red

and blue lines represent disynaptic and monosynaptic connections

into GCs, respectively. Three kinds of ring networks in (b1)-(b3). (b1)

Schematic diagram for the EC ring network, composed of NEC EC

cells (black circles). (b2) Schematic diagram for the granular-layer

ring network with concentric inner GC and outer BC rings. Numbers

represent GC clusters (bounded by dotted lines). Each GC cluster

(I ¼ 1; . . .;Nc) consists of n
ðcÞ
GC GCs (black circles) and one BC (red

diamonds). (b3) Schematic diagram for the hilar ring network with

concentric inner MC and outer HIPP rings, consisting of NMC MCs

(blue circles) and NHIPP HIPP cells (purple triangles), respectively
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the connection probability pðGC;HIPPÞ ¼ 20 % (Myers and

Scharfman 2009; Chavlis et al. 2017). Hence, the firing

activity of the GCs may be determined through competition

between the excitatory inputs from the EC cells and from

the MCs and the inhibitory inputs from the HIPP cells.

With the above information on the numbers of the rel-

evant cells and the connection probabilities between them,

we develop a one-dimensional ring network for the pattern

separation in the DG, as in the case of sparsely synchro-

nized rhythm and winner-take-all competition in the DG

(Kim and Lim 2022, 2021d). Due to the ring structure, our

network has advantage for computational efficiency, and its

visual representation may also be easily made. Schematic

diagrams for three kinds of ring networks are shown in

Fig. 1b1–b3. Figure 1b1 shows a schematic diagram for the

EC ring network, consisting of NEC EC cells (black cir-

cles). A schematic diagram for the granular-layer ring

network with concentric inner GC and outer BC rings is

given in Fig. 1(b2). Here, numbers represent GC clusters

(bounded by dotted lines). Each GC cluster (I ¼ 1; . . .;
Nc) consists of GCs (black circles) and one BC (red dia-

monds). Figure 1b3 shows a schematic diagram for the

hilar ring network with concentric inner MC and outer

HIPP rings, composed of NMC MCs (blue circles) and NHIPP

HIPP cells (purple triangles), respectively

Elements in the DG spiking neural network

As elements of our DG spiking neural network, we choose

leaky integrate-and-fire (LIF) neuron models with addi-

tional afterhyperpolarization (AHP) currents which deter-

mines refractory periods, like our prior study of cerebellar

network (Kim and Lim 2021a, b). This LIF neuron model

is one of the simplest spiking neuron models (Gerstner and

Kistler 2002). Due to its simplicity, it may be easily ana-

lyzed and simulated.

The governing equations for evolutions of dynamical

states of individual cells in the X population are as follows:

CX
dv

ðXÞ
i ðtÞ
dt

¼ �I
ðXÞ
L;i ðtÞ � I

ðXÞ
AHP;iðtÞ þ I

ðXÞ
ext � I

ðXÞ
syn;iðtÞ; i

¼ 1; � � � ;NX; ð1Þ

where NX is the total number of cells in the X population,

X ¼ GC and BC in the granular layer and X ¼ MC and

HIPP in the hilus. In Eq. (1), CX (pF) denotes the mem-

brane capacitance of the cells in the X population, and the

state of the ith cell in the X population at a time t (msec) is

characterized by its membrane potential v
ðXÞ
i ðtÞ (mV). We

note that the time-evolution of v
ðXÞ
i ðtÞ is governed by 4

types of currents (pA) into the ith cell in the X population;

the leakage current I
ðXÞ
L;i ðtÞ, the AHP current I

ðXÞ
AHP;iðtÞ, the

external constant current I
ðXÞ
ext (independent of i), and the

synaptic current I
ðXÞ
syn;iðtÞ. Here, we consider a subthreshold

case of I
ðXÞ
ext ¼ 0 for all X (Chavlis et al. 2017).

The leakage current I
ðXÞ
L;i ðtÞ for the ith cell in the X

population is given by:

I
ðXÞ
L;i ðtÞ ¼ g

ðXÞ
L ðvðXÞi ðtÞ � V

ðXÞ
L Þ; ð2Þ

where g
ðXÞ
L and V

ðXÞ
L are conductance (nS) and reversal

potential for the leakage current, respectively. The ith cell

fires a spike when its membrane potential v
ðXÞ
i reaches a

threshold v
ðXÞ
th at a time t

ðXÞ
f ;i . Then, the 2nd type of AHP

current I
ðXÞ
AHP;iðtÞ follows after spiking (i.e., t� t

ðXÞ
f ;i ), :

I
ðXÞ
AHP;iðtÞ ¼ g

ðXÞ
AHPðtÞ ðv

ðXÞ
i ðtÞ � V

ðXÞ
AHPÞ for t� t

ðXÞ
f ;i : ð3Þ

Here, V
ðXÞ
AHP is the reversal potential for the AHP current,

and the conductance g
ðXÞ
AHPðtÞ is given by an exponential-

decay function:

g
ðXÞ
AHPðtÞ ¼ �g

ðXÞ
AHP e�ðt�t

ðXÞ
f ;i

Þ=sðXÞ
AHP ; ð4Þ

where, �g
ðXÞ
AHP and sðXÞAHP are the maximum conductance and

the decay time constant for the AHP current. With

increasing sðXÞAHP, the refractory period becomes longer.

The parameter values of the capacitance CX , the leakage

current I
ðXÞ
L ðtÞ, and the AHP current I

ðXÞ
AHPðtÞ are the same as

those in the DG networks for sparsely synchronized rhythm

and winner-take-all competition in (Kim and Lim

2022, 2021d), and refer to Table 1 in (Kim and Lim 2022);

these parameter values are based on physiological proper-

ties of the GC, BC, MC, and HIPP cell (Chavlis et al. 2017;

Lübke et al. 1998).

Synaptic currents in the DG spiking neural
network

In Eq. (1), we consider the synaptic current I
ðXÞ
syn;iðtÞ into the

ith cell in the X population, consisting of the following 3

types of synaptic currents:

I
ðXÞ
syn;iðtÞ ¼ I

ðX;YÞ
AMPA;iðtÞ þ I

ðX;YÞ
NMDA;iðtÞ þ I

ðX;ZÞ
GABA;iðtÞ: ð5Þ

Here, I
ðX;YÞ
AMPA;iðtÞ and I

ðX;YÞ
NMDA;iðtÞ are the excitatory AMPA

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)

receptor-mediated and NMDA (N-methyl-D-aspartate)

receptor-mediated currents from the pre-synaptic source Y

population to the post-synaptic ith neuron in the target X

population, respectively. On the other hand, I
ðX;ZÞ
GABA;iðtÞ is

the inhibitory GABAA (c-aminobutyric acid type A)

receptor-mediated current from the pre-synaptic source
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Z population to the post-synaptic ith neuron in the target

X population.

As in the case of the AHP current, the R (= AMPA,

NMDA, or GABA) receptor-mediated synaptic current

I
ðT ;SÞ
R;i ðtÞ from the pre-synaptic source S population to the ith

post-synaptic cell in the target T population is given by:

I
ðT ;SÞ
R;i ðtÞ ¼ g

ðT ;SÞ
R;i ðtÞ ðvðTÞi ðtÞ � V

ðSÞ
R Þ; ð6Þ

where g
ðT ;SÞ
ðR;iÞ ðtÞ and V

ðSÞ
R are synaptic conductance and

synaptic reversal potential (determined by the type of the

pre-synaptic source S population), respectively.

In the case of the R (=AMPA and GABA)-mediated

synaptic currents, we obtain the synaptic conductance

g
ðT ;SÞ
R;i ðtÞ from:

g
ðT ;SÞ
R;i ðtÞ ¼ K

ðT ;SÞ
R

XNS

j¼1

w
ðT ;SÞ
ij s

ðT ;SÞ
j ðtÞ: ð7Þ

Here, K
ðT ;SÞ
R is the synaptic strength per synapse for the R-

mediated synaptic current from the jth pre-synaptic neuron

in the source S population to the ith post-synaptic cell in

the target T population. The inter-population synaptic

connection from the source S population (with Ns cells) to

the target T population is given by the connection weight

matrix W ðT ;SÞ (¼ fwðT ;SÞ
ij g) where w

ðT ;SÞ
ij ¼ 1 if the jth cell in

the source S population is pre-synaptic to the ith cell in the

target T population; otherwise w
ðT ;SÞ
ij ¼ 0. The fraction of

open ion channels at time t is also represented by sðT ;SÞðtÞ.
On the other hand, in the NMDA-receptor case, some of

the post-synaptic NMDA channels are blocked by the

positive magnesium ion Mg2þ (Jahr and Stevens 1990).

Therefore, the conductance in the case of NMDA receptor

is given by (Chavlis et al. 2017):

g
ðT ;SÞ
R;i ðtÞ ¼ eK ðT ;SÞ

R f ðvðTÞðtÞÞ
XNS

j¼1

w
ðT ;SÞ
ij s

ðT ;SÞ
j ðtÞ: ð8Þ

Here, eK ðT ;SÞ
R is the synaptic strength per synapse, and the

fraction of NMDA channels that are not blocked by the

Mg2þ ion is given by a sigmoidal function f ðvðTÞðtÞÞ:

f ðvðTÞðtÞÞ ¼ 1

1 þ g � ½Mg2þ�o � expð�c � vðTÞðtÞÞ
: ð9Þ

Here, vðTÞðtÞ is the membrane potential of the target cell,

½Mg2þ�o is the outer Mg2þ concentration, g denotes the

sensitivity of Mg2þ unblock, c represents the steepness of

Mg2þ unblock, and the values of parameters change

depending on the target cell (Chavlis et al. 2017). For

simplicity, some approximation to replace f ðvðTÞðtÞÞ with

hf ðvðTÞðtÞÞi [i.e., time-averaged value of f ðvðTÞðtÞÞ in the

range of vðTÞðtÞ of the target cell] has been made in (Kim

and Lim 2021d). Then, an effective synaptic strength

K
ðT ;SÞ
NMDAð¼ eK ðT ;SÞ

NMDAhf ðvðTÞðtÞÞi) was introduced by absorb-

ing hf ðvðTÞðtÞÞi into K
ðT ;SÞ
NMDA. Thus, with the scaled-down

effective synaptic strength K
ðT ;SÞ
NMDA (containing the blockage

effect of the Mg2þ ion), the conductance g for the NMDA

receptor may also be well approximated in the same form

of conductance as other AMPA and GABA receptors in

Eq. (7). In this way, we obtain all the effective synaptic

strengths K
ðT ;SÞ
NMDA from the synaptic strengths eK ðT ;SÞ

NMDA in

(Chavlis et al. 2017) by considering the average blockage

effect of the Mg2þ ion. As a result, we can use the same

form of synaptic conductance of Eq. (7) in all the cases of

R ¼ AMPA, NMDA, and GABA.

The post-synaptic ion channels are opened because of

binding of neurotransmitters (emitted from the source S

population) to receptors in the target T population. The

fraction of open ion channels at time t is denoted by

sðT ;SÞðtÞ. The time course of s
ðT ;SÞ
j ðtÞ of the jth cell in the

Table 1 Parameters for the

synaptic currents I
ðGC;SÞ
R ðtÞ into

the GC. The GCs receive the

direct excitatory input from the

entorhinal cortex (EC) cells, the

inhibitory input from the HIPP

cells, the excitatory input from

the MCs, and the feedback

inhibition from the BCs

Target Cells (T) GC

Source Cells (S) EC cell HIPP cell MC BC

Receptor (R) AMPA NMDA GABA AMPA NMDA GABA

K
ðT;SÞ
R

0.89 0.15 0.13 0.05 0.01 25.0

sðT ;SÞR;r
0.1 0.33 0.9 0.1 0.33 0.9

sðT ;SÞR;d
2.5 50.0 6.8 2.5 50.0 6.8

sðT ;SÞR;l
3.0 3.0 1.6 3.0 3.0 0.85

V
ðSÞ
R

0.0 0.0 -86.0 0.0 0.0 -86.0
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source S population is given by a sum of double expo-

nential functions E
ðT ;SÞ
R ðt � t

ðjÞ
f � sðT ;SÞR;l Þ:

s
ðT ;SÞ
j ðtÞ ¼

XF
ðsÞ
j

f¼1

E
ðT ;SÞ
R ðt � t

ðjÞ
f � sðT ;SÞR;l Þ: ð10Þ

Here, t
ðjÞ
f and F

ðsÞ
j are the fth spike time and the total

number of spikes of the jth cell in the source S population,

respectively, and sðT ;SÞR;l is the synaptic latency time constant

for R-mediated synaptic current. The exponential-decay

function E
ðT ;SÞ
R ðtÞ (corresponding to contribution of a pre-

synaptic spike occurring at t ¼ 0 in the absence of synaptic

latency) is given by:

E
ðT ;SÞ
R ðtÞ ¼ 1

sðT ;SÞR;d � sðT ;SÞR;r

e�t=sðT ;SÞ
R;d � e�t=sðT ;SÞR;r

� �
�HðtÞ:

ð11Þ

Here, HðtÞ is the Heaviside step function: HðtÞ ¼ 1 for

t� 0 and 0 for t\0, and sðT ;SÞR;r and sðT ;SÞR;d are synaptic rising

and decay time constants of the R-mediated synaptic cur-

rent, respectively.

In comparison to those in the case of sparsely syn-

chronized rhythms (Kim and Lim 2021d), most of the

parameter values, related to the synaptic currents, are the

same, except for changes in the strengths for the synapses,

HIPP ! GC, GC ! MC, and MC ! BC; these changes

are made to keep the same activation degree of the GCs as

in the case of sparsely synchronized rhythm (Kim and Lim

2021d). In the present DG network for the pattern separa-

tion, a new disynaptic connection from HIPP cells to GCs,

mediated by BCs, is added, in addition to the (pre-existing)

disynaptic path from MCs to GCs in (Kim and Lim 2021d).

The strength for the synapse, HIPP ! BC, is determined,

based on the information in (Santhakumar et al. 2005;

Morgan et al. 2007). For completeness, we include

Tables 1 and 2 which show the parameter values for the

synaptic strength per synapse K
ðT ;SÞ
R , the synaptic rising

time constant sðT ;SÞR;r , synaptic decay time constant sðT ;SÞR;d ,

synaptic latency time constant sðT ;SÞR;l , and the synaptic

reversal potential V
ðSÞ
R for the synaptic currents into the

GCs and for the synaptic currents into the HIPP cells, the

MCs and the BCs, respectively. These parameter values are

also based on the physiological properties of the relevant

cells (Chavlis et al. 2017; Kneisler and Dingledine 1995;

Geiger et al. 1997; Bartos et al. 2001; Schmidt-Hieber

et al. 2007; Larimer and Strowbridge 2008; Schmidt-Hie-

ber and Bischofberger 2010; Krueppel et al. 2011; Chiang

et al. 2012).

All of our source codes for computational works were

written in C language. Then, using the GCC compiler we

run the source codes on personal computers with CPU (i5-

10210U; 1.6 GHz) and 8 GB RAM; the number of used

personal computers change (from 1 to 70) depending on the

type of jobs. Numerical integration of the governing

Eq. (1) for the time-evolution of states of individual spik-

ing neurons is done by employing the 2nd-order Runge-

Kutta method with the time step 0.1 msec. We will release

our source codes at the public database such as ModelDB.

Disynaptic effect of the hilar cells on pattern
separation

In this section, we study the disynaptic effect of the exci-

tatory MCs and the inhibitory HIPP cells on pattern sepa-

ration (performed by the GCs). Disynaptic inhibition from

the MCs, mediated by the BCs, decreases the firing activity

of the GCs, while due to their disinhibition of the BCs, the

disynaptic effect of the HIPP cells results in increase in the

Table 2 Parameters for the synaptic currents I
ðT ;SÞ
R ðtÞ into the HIPP cell, MC, and BC. The HIPP cells receive the excitatory input from the EC

cells, the MCs receive the excitatory input from the GCs, and the BCs receive the excitatory inputs from both the GCs and the MCs

Target Cells (T) HIPP cell MC BC

Source Cells (S) EC cell GC GC MC HIPP cell

Receptor (R) AMPA NMDA AMPA NMDA AMPA NMDA AMPA NMDA GABA

K
ðT;SÞ
R

12.0 3.04 7.25 1.31 1.24 0.06 5.3 0.29 8.05

sðT ;SÞR;r
2.0 4.8 0.5 4.0 2.5 10.0 2.5 10.0 0.4

sðT ;SÞR;d
11.0 110.0 6.2 100.0 3.5 130.0 3.5 130.0 5.8

sðT ;SÞR;l
3.0 3.0 1.5 1.5 0.8 0.8 3.0 3.0 1.6

V
ðSÞ
R

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -86.0
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spiking activity of the GCs. Thus, sparsity of the firing

activity of the GCs is found to improve the pattern sepa-

ration efficacy, and hence the disynaptic effects of the MCs

and the HIPP cells on pattern separation become opposite

ones. As a result of balance between the two competing

disynaptic effects of the MCs and the HIPP cells, in the

combined case when simultaneously varying both KðBC;MCÞ

and KðBC;HIPPÞ from their original default values in Table 2,

the pattern separation degree Sd is found to form a bell-

shaped curve with an optimal maximum at their default

values where the activation degree of the GCs is the lowest.

We note that, during the pattern separation, sparsely syn-

chronized rhythm also appears in the population of the

GCs. The amplitude measure Ma (representing population

synchronization degree) and the random-phase-locking

degree Ld (denoting the regularity degree in individual

firing activities) in the sparsely synchronized rhythm of the

GCs are found to be correlated with the pattern separation

degree Sd. Hence, the larger Ma and Ld of the sparsely

synchronized rhythm are, the more the pattern separation

efficacy becomes enhanced.

Characterization of pattern separation
by varying the overlap percentage
between the two input patterns

As explained in the subsect. 2.1, the EC provides external

excitatory inputs to the principal GCs via PPs (see Fig. 1a)

(Myers and Scharfman 2009, 2011; Myers et al. 2013;

Scharfman and Myers 2016; Chavlis et al. 2017; Kim and

Lim 2022, 2021d). We characterize pattern separation

between the input patterns of the EC cells and the output

patterns of the GCs via integration of the governing

equations (1). In each realization, we have a break stage

(0–300 msec) (for which the network reaches a

stable state), and then a stimulus stage (300–1300 msec)

follows; the stimulus period Ts (for which network analysis

is done) is 1000 msec. During the stimulus stage, we obtain

the output firings of the GCs. For characterization of pat-

tern separation between the input and the output patterns,

30 realizations are done.

The input (spiking) patterns of the 400 EC cells and the

output (spiking) patterns of the 2000 GCs are given in

terms of binary representations (Myers and Scharfman

2009; Chavlis et al. 2017); active and silent cells are rep-

resented by 1 and 0, respectively. Here, active cells show at

least one spike during the stimulus stage; otherwise, silent

cells. In each realization, we first make a random choice of

an input pattern AðinÞ for the EC cells, and then construct

input patterns B
ðinÞ
i (i ¼ 1; . . .; 9) from the base input pat-

tern AðinÞ with the overlap percentage POL ¼ 90 %; . . .; and

10 %, respectively, in the following way (Myers and

Scharfman 2009; Chavlis et al. 2017). Among the active

EC cells in the pattern AðinÞ, we randomly choose active

cells for the pattern B
ðinÞ
i with the probability POL (e.g., in

the case of POL ¼ 80 %, we randomly choose 32 active EC

cells among the 40 active EC cells in the base pattern AðinÞ).

The remaining active EC cells in the pattern B
ðinÞ
i are

randomly chosen in the subgroup of silent EC cells in the

pattern AðinÞ (e.g., for POL ¼ 80 %, 8 additional active EC

cells in the pattern B
ðinÞ
i are randomly chosen in the sub-

group of 360 silent EC cells in the pattern AðinÞ).
Figure 2a1–2a10 show binary-representation plots of

spiking activity of the 400 EC cells [active (silent) cell: 1

(0)] for the input patterns AðinÞ and B
ðinÞ
i (i ¼ 1; . . .; 9Þ in the

case of 9 values of overlap percentage POL. Through

integration of the governing equations (1), we also get the

output patterns AðoutÞ and B
ðoutÞ
i (i ¼ 1; . . .; 9Þ of the 2,000

GCs for the input patterns AðinÞ and B
ðinÞ
i (i ¼ 1; . . .; 9Þ;

respectively. The binary-representation plots of spiking

activity of the 2,000 GCs for the output patterns AðoutÞ and

B
ðoutÞ
i (i ¼ 1; . . .; 9Þ are shown in Fig. 2b1–b10,

respectively.

From now on, we characterize pattern separation

between the input and the output patterns by changing the

overlap percentage POL. For a pair of patterns, AðxÞ and

BðxÞ, the pattern distance D
ðxÞ
p between the two input

(x ¼ inÞ or output (x ¼ out) patterns is given by (Chavlis

et al. 2017):

DðxÞ
p ¼ OðxÞ

D
ðxÞ
a

: ð12Þ

Here, D
ðxÞ
a is the average activation degree of the two

patterns AðxÞ and BðxÞ:

DðxÞ
a ¼ ðDðAðxÞÞ

a þ D
ðBðxÞÞ
a Þ

2
; ð13Þ

and OðxÞ is the orthogonalization degree between the pat-

terns AðxÞ and BðxÞ, representing their ‘‘dissimilarity’’

degree. As the average activation degree D
ðxÞ
a is lower (i.e.,

more sparse firing) and the orthogonalization degree OðxÞ is

higher (i.e., more dissimilar), their pattern distance

increases.

Let faðxÞi g and fbðxÞi g (i ¼ 1; . . .;Nx) be the binary rep-

resentations [1 (0) for the active (silent) cell] of the two

input (x ¼ in) or output (x ¼ out) spiking patterns AðxÞ and

BðxÞ, respectively; Nin ¼ NEC ¼ 400 and

Nout ¼ NGC ¼ 2; 000. Then, the Pearson’s correlation

coefficient qðxÞ; denoting the ‘‘similarity’’ degree between

the two patterns, is given by
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qðxÞ ¼
PNx

i¼1 Da
ðxÞ
i � DbðxÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNx

i¼1 Da
ðxÞ
i

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNx

i¼1 Db
ðxÞ
i

2
q : ð14Þ

Here, DaðxÞi ¼ a
ðxÞ
i � haðxÞi i, DbðxÞi ¼ b

ðxÞ
i � hbðxÞi i, and h� � �i

denotes population average over all cells; the range of qðxÞ

is [-1, 1]. Then, the orthogonalization degree OðxÞ; repre-

senting the dissimilarity degree between the two patterns, is

given by:

OðxÞ ¼ ð1 � qðxÞÞ
2

; ð15Þ

where the range of OðxÞ is [0, 1]. With D
ðxÞ
a and OðxÞ, we

may get the pattern distances of Eq. (12), D
ðinÞ
p and D

ðoutÞ
p ,

for the input and the output pattern pairs, respectively.

Then, the pattern separation degree Sd is given by the ratio

of D
ðoutÞ
p to D

ðinÞ
p :

Sd ¼
D

ðoutÞ
p

D
ðinÞ
p

: ð16Þ

If Sd [ 1, the output pattern pair of the GCs is more dis-

similar than the input pattern pair of the EC cells, which

results in occurrence of pattern separation.

Figure 3a1 shows the raster plots of spikes of 400 EC

cells (i.e. a collection of spike trains of individual EC cells)

for the input patterns AðinÞ and B
ðinÞ
2 in the case of

POL ¼ 80 %. In this case, the activation degree D
ðinÞ
a is

chosen as 10 %, independently of the input patterns. Fig-

ure 3a2 shows the raster plots of spikes of 2000 GCs for the

output patterns AðoutÞ and B
ðoutÞ
2 . As shown well in the raster

plots of spikes, the GCs exhibit more sparse firings than the

EC cells. In this case, the average activation degree of

Eq. (13), D
ðoutÞ
a , is 5.2 % (which is obtained via 30 real-

izations). Figure 3b shows the plot of the average activa-

tion degree D
ðxÞ
a (obtained through 30 realizations) versus

the overlap percentage POL; open circles denote the case of

input patterns (x ¼ in) and crosses represent the case of

output patterns (x ¼ out). We note that D
ðoutÞ
a ¼ 0:052 (i.e.,

5.2 %), independently of POL. Then, the sparsity ratio, Rs

(¼ D
ðinÞ
a =D

ðoutÞ
a ), becomes 1.923; the output patterns are

1.923 times as sparse as the input patterns.

(a1)

(a6) (a7) (a8) (a9) (a10)

(a2) (a3) (a4) (a5)

(b1)

(b6) (b7) (b8) (b9) (b10)

(b2) (b3) (b4) (b5)

Fig. 2 Binary-representation

plots of spiking activity for

(a1)–(a10) the input and (b1)–

(b10) the output patterns for 9

values of overlap percentage

POL
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Figure 3c1 and c2 show plots of the diagonal elements

(0, 0) and (1, 1) and the anti-diagonal elements (1, 0) and

(0, 1) for the spiking activity (1: active; 0: silent) in the pair

of input (x ¼ in) and output (x ¼ out) patterns AðxÞ and B
ðxÞ
2

for POL ¼ 80%, respectively. In each plot, the sizes of solid

circles, located at (0,0), (1,1), (1,0), and (0,1), are given by

the integer obtained by rounding off the number of

5 log10ðnpÞ (np: number of data at each location), and a

dashed linear least-squares fitted line is also given. In this

case, the Pearson’s correlation coefficients of Eq. (14)

(obtained via 30 realizations) for the pairs of the input and

the output patterns are qðinÞ ¼ 0:7778 and qðoutÞ ¼ 0:4118,

which correspond to the slopes of the dashed fitted lines.

Then, from Eq. (15), we get the average orthogonalization

degrees for the pairs of the input and the output patterns:

OðinÞ ¼ 0:1111 and OðoutÞ ¼ 0:2941.

Table 3 shows the mean and the standard deviation (SD)

of the orthogonalization degrees fOðoutÞðjÞ; j ¼ 1; . . .; 30g
(obtained through 30 realizations). With decreasing POL

from 90 % to 10 %, the average mean value increases

slowly from 0.2536 to 0.3498, while their SDs are negli-

gibly small. Figure 3d shows plots of the average orthog-

onalization degree OðxÞ (corresponding to the mean) versus

POL in the case of the input (x ¼ in; red open circle) and

the output (x ¼ out, blue cross) patterns. In the case of the

pairs of the input patterns, with decreasing POL from 90 %

to 10 %, OðinÞ increases linearly from 0.0556 to 0.5. On the

other hand, in the case of the pairs of the output patterns,

OðoutÞ begins from a larger value (0.2536), but slowly

increases to 0.3498 for POL ¼ 10 % (which is lower than

OðinÞ). Thus, the two lines of OðinÞ and OðoutÞ cross for

POL ’ 40 %. Hence, for POL larger than 40 %, OðoutÞ is

larger than OðinÞ (i.e., the pair of output patterns is more

dissimilar than the pair of input patterns). In contrast, for

POL\40 %, the pair of output patterns becomes less dis-

similar than the pair of input patterns, because OðinÞ is

larger than OðoutÞ.

(a1) (a2) (b)

(c1) (c2) (d)

(e)
(f)

Fig. 3 Characterization of pattern separation between the input and

the output patterns. a1 Raster plots of spikes of ECs for the input

patterns AðinÞ and B
ðinÞ
2 in the case of overlap percentage POL ¼ 80%.

a2 Raster plots of spikes of GCs for the output patterns AðoutÞ and

B
ðoutÞ
2 . b Plots of average activation degree DðxÞ

a versus POL for the

input (x ¼ in; open circle) and the output (x ¼ out, cross) patterns.

Plots of the diagonal elements (0, 0) and (1, 1) and the anti-diagonal

elements (1, 0) and (0, 1) for the spiking activity (1: active; 0: silent)

in the pair of (c1) input (x ¼ in) and (c2) output (x ¼ out) patterns

AðxÞ and B
ðxÞ
2 for POL ¼ 80%; sizes of solid circles, located at (0,0),

(1,1), (1,0), and (0,1), are given by the integer obtained by rounding

off the number of 5 log10ðnpÞ (np: number of data at each location),

and a dashed linear least-squares fitted line is also given. d Plots of

average orthogonalization degree OðxÞ versus POL in the case of the

input (x ¼ in; open circle) and the output (x ¼ out, cross) patterns. e

Plots of the pattern distance DðxÞ
p versus POL for the input (x ¼ in;

open circle) and the output (x ¼ out, cross) patterns. g Plots of pattern

separation degrees Sd versus POL
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With the average activation degrees D
ðxÞ
a and the average

orthogonalization degrees OðxÞ, we can get the pattern

distances D
ðxÞ
p of Eq. (12) for the pairs of input and the

output patterns. Figure 3e shows plots of the pattern dis-

tance D
ðxÞ
p versus POL in the case of the input (x ¼ in; red

open circle) and the output (x ¼ out, blue cross) patterns.

We note that, for all values of POL, D
ðoutÞ
p [D

ðinÞ
p (i.e., the

pattern distance for the pair of output patterns is larger than

that for the pair of input patterns). However, as the overlap

percentage POL is decreased, the difference between D
ðoutÞ
p

and D
ðinÞ
p is found to decrease, because D

ðinÞ
p increases more

rapidly than D
ðoutÞ
p .

Finally, we get the pattern separation degree Sd of

Eq. (16) through the ratio of D
ðoutÞ
p to D

ðinÞ
p . Figure 3f shows

plots of the pattern separation degree Sd versus POL. As

POL is decreased from 90 % to 10 %, Sd is found to

decrease from 8.7623 to 1.3432. Hence, for all values of

POL, pattern separation occurs because Sd [ 1. However,

the smaller POL is, the lower Sd becomes.

Disynaptic effect of the MCs and the HIPP cells
on pattern separation

Here, we use the normalized synaptic strength eK ðBC;XÞ
R (=

K
ðBC;XÞ
R =K

ðBC;XÞ
R

�
) (X ¼ MC or HIPP; R ¼ AMPA, NMDA,

or GABA). K
ðBC;XÞ
R

�
is the original default value in Table 2;

K
ðBC;MCÞ
AMPA

�
¼ 5:3, K

ðBC;MCÞ
NMDA

�
¼ 0:29; and

K
ðBC;HIPPÞ
GABA

�
¼ 8:05. We change eK ðBC;MCÞ

AMPA and eK ðBC;MCÞ
NMDA in

the same way such that eK ðBC;MCÞ
AMPA ¼ eK ðBC;MCÞ

NMDA � eK ðBC;MCÞ
,

and investigate the disynaptic effect of the MCs on pattern

separation. Similarly, we vary eK ðBC;HIPPÞ
GABA (for brevity, we

write it as eK ðBC;HIPPÞ
), and investigate the disynaptic effect

of the HIPP cells on pattern separation.

In each realization for a given eK ðBC;XÞ
(X= MC or

HIPP), we consider 9 pairs of input patterns ðAðinÞ;B
ðinÞ
i Þ

ði ¼ 1; . . .; 9) with the overlap percentage POL ¼ 90 %; . . .;
and 10 %, respectively. All quantities for the input patterns

are independent of eK ðBC;XÞ
. The activation degree D

ðinÞ
a is

0.1 (10 %), independently of the pairs. For each pair

ðAðinÞ;B
ðinÞ
i Þ, we get the realization-averaged orthogonal-

ization degree hOðinÞðiÞir (denoting the dissimilarity degree

between the patterns) via 30 realizations. With decreasing

POL from 90 % to 10 %, hOðinÞðiÞir increases from 0.0556

to 0.5, respectively. As a representative value, we choose

the mean of fhOðinÞðiÞir; i ¼ 1; . . .; 9g over all 9 pairs of

the input patterns. Thus, we get the average orthogonal-

ization degree OðinÞ ð¼ 0:2778Þ (corresponding to the

mean) for the input patterns; in this case, the SD is 0.1522.

In this way, we get OðinÞ via double averaging processes

(i.e., averaging over 30 realizations and 9 pairs). Then, the

pattern distance D
ðinÞ
p of Eq. (12) between the two input

patterns (given by the ratio of the average orthogonaliza-

tion degree to the average activation degree) becomes

2.778. The normalized quantities eDðinÞ
a , eOðinÞ

, and eDðinÞ
p

[divided by D
ðoutÞ
a

�
, OðoutÞ�, and D

ðoutÞ
p

�
(average values for

the output-pattern pairs at the default values K
ðBC;XÞ
R

�
)] are

represented by the horizontal dotted lines in Fig. 4a–b and

d, respectively.

As in the case of the input-pattern pairs, we get D
ðoutÞ
a

and OðoutÞ of the output-pattern pairs for each eK ðBC;XÞ
(X=

MC or HIPP) through double averaging processes (i.e.,

realization and pair averaging). We first study the disy-

naptic effect of the MCs on the activation degree D
ðoutÞ
a of

the output patterns by varying eK ðBC;MCÞ
. With decreasing

eK ðBC;MCÞ
from 1 (i.e., default value), the average activation

degree D
ðoutÞ
a is found to increase from 5.2 % to 22.1 %, due

to decreased excitation of the BCs. On the other hand, as

eK ðBC;MCÞ
is increased from 1, D

ðoutÞ
a is found to decrease

from 5.2 % and becomes saturated to 3.1 % at

eK ðBC;MCÞ � 10, because of increased excitation of the BCs.

Here, we introduce normalized average activation degree

eDðoutÞ
a [= D

ðoutÞ
a =D

ðoutÞ
a

�
]; D

ðoutÞ
a

�
(= 5.2 %) is the average

activation degree at the default value, K
ðBC;MCÞ
R

�
. Figure 4a

shows plots of eDðoutÞ
a (blue solid circles) versus eK ðBC;MCÞ

.

As K
ðBC;MCÞ
R

�
is increased from 0, the disynaptic effect of

the MCs (reducing the firing activity of the GCs via

Table 3 Mean and standard deviation (SD) of the orthogonalization degrees fOðoutÞðjÞg (obtained through 30 realizations; j ¼ 1; . . .; 30) for the

output patterns in each case of POL ¼ 90 %; . . .; 10 %

POLð%Þ 90 80 70 60 50 40 30 20 10

Mean 0.2536 0.2941 0.3119 0.3216 0.3294 0.3347 0.3389 0.3437 0.3498

SD 0.0072 0.0084 0.0090 0.0093 0.0095 0.0097 0.0099 0.0101 0.0102
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increased excitation of the BCs) increases, and hence eDðoutÞ
a

is found to decrease from 4.058 and become saturated to

0.596 for K
ðBC;MCÞ
R

�
� 10.

Next, we study the disynaptic effect of the HIPP cells

(disinhibiting the BCs) on D
ðoutÞ
a by changing eK ðBC;HIPPÞ

. As

shown in Fig. 4a (red open circles), with increasing

eK ðBC;HIPPÞ
from 0, the disynaptic effect of the HIPP cells

(enhancing the firing activity of the GCs via increased

disinhibition of the BCs) increases, and hence eDðoutÞ
a is

found to increase from 0.385 and become saturated to

3.288 for K
ðBC;MCÞ
R

�
� 20.

We note that the disynaptic effects of the MCs and the

HIPP cells on the firing activity of the GCs are opposite

ones. Then, we consider a combined case where we

simultaneously change both eK ðBC;MCÞ
and eK ðBC;HIPPÞ

such

that eK ðBC;MCÞ ¼ eK ðBC;HIPPÞ � eK ðBC;XÞ
. As a result of bal-

ance between the two competing disynaptic effects of the

MCs and the HIPP cells, eDðoutÞ
a is found to form a well-

shaped curve (green crosses) with an optimal minimum at

eK ðBC;XÞ ¼ 1 (i.e., at the default value), as shown in Fig. 4a.

Consequently, at the default value, the firing activity of the

GCs becomes the sparsest.

In addition to the average activation degree D
ðoutÞ
a , we

consider the disynaptic effects of the MCs and the HIPP

cells on the average orthogonalization degree OðoutÞ for the

output patterns (representing the dissimilarity degree

between the output patterns). At the original default value

K
ðBC;XÞ
R

�
, the average orthogonalization degree OðoutÞ� is

0.320. By changing the normalized synaptic strength

eK ðBC;XÞ
(X= MC or HIPP), we study the disynaptic effects

of the MCs and the HIPP cells on OðoutÞ. For a given

eK ðBC;XÞ
, we first obtain the realization-averaged orthogo-

nalization degrees fhOðoutÞðiÞirg (i ¼ 1; . . .; 9 corresponds

to POL ¼ 90 %; . . .; 10 %, respectively). Table 4 shows the

mean and the SD of the realization-averaged orthogonal-

ization degrees fhOðoutÞðiÞir; i ¼ 1; . . .; 9g for each value

of eK ðBC;XÞ
in the separate case of X ¼ MC or HIPP and in

the combined case. As a representative value, we get the

average orthogonalization degree OðoutÞ; corresponding to

the mean of fhOðoutÞðiÞirg over all the 9 pairs. Then, as in

the case of D
ðoutÞ
a , we obtain the normalized average

orthogonalization degree eOðoutÞ
(¼ OðoutÞ=OðoutÞ�), which is

well shown in Fig. 4b; blue solid circles (variation in

eK ðBC;MCÞ
), red open circles (change in eK ðBC;HIPPÞ

), and

green crosses (combined case with change in both eK ðBC;MCÞ

and eK ðBC;HIPPÞ
).

With increasing eK ðBC;MCÞ
from 0, eOðoutÞ

(blue solid

circles) is found to increase from 0.438 and get saturated to

(a) (b) (c)

(d) (e)

Fig. 4 Disynaptic effect of the MCs and the HIPP cells on pattern

separation. Plots of (a) the normalized average activation degree

eDðoutÞ
a and (b) the normalized average orthogonalization degree eOðoutÞ

versus the normalized synaptic strength eK ðBC;XÞ
(X= MC or HIPP) for

the output patterns. (c) Plot of eOðoutÞ
versus eDðoutÞ

a in the combined

case (green crosses); a dashed fitted line is given. Plots of (d) the

normalized pattern distance eDðoutÞ
p and (e) the normalized pattern

separation degree eSd versus eK ðBC;XÞ
. In (a)–(e), blue solid circles, red

open circles, and green crosses represent the individual cases of the

MCs and the HIPP cells and the combined case, respectively. For

clear presentation in (a), (b), (d), and (e), we choose four different

scales around (1, 1); (left, right) and (up, down). The horizontal dotted

lines in (a), (b), and (d) represent eDðinÞ
a (normalized average

activation degree), eOðinÞ
(normalized orthogonalization degree), and

eDðinÞ
p (normalized pattern distance) for the input patterns, respectively.

The horizontal dotted line in (e) denotes a threshold value of eS
�
d ’

0:451 (corresponding to Sd ¼ 1)
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1.053 at eK ðBC;MCÞ � 10. This is in contrast to the case of

eDðoutÞ
a which decreases with increasing eK ðBC;MCÞ

. As shown

in Fig. 4c, the normalized orthogonalization degree eOðoutÞ

is negatively correlated with the normalized average acti-

vation degree eDðoutÞ
a with the Pearson’s correlation coeffi-

cient r ¼ �0:9971. Hence, as the firing activity is sparser,

the orthogonalization degree becomes higher. In contrast to

the case of X=MC, as eK ðBC;HIPPÞ
is increased from 0, eOðoutÞ

(red open circles) is found to decrease from 1.084 and get

saturated to 0.578 at eK ðBC;HIPPÞ � 20. In this way, the

disynaptic effects of the MCs and the HIPP cells on eOðoutÞ

are opposite ones. We also consider the combined case

where both eK ðBC;MCÞ
and eK ðBC;HIPPÞ

are simultaneously

changed. As a result of balance between the two competing

disynaptic effects of the MCs and the HIPP cells, eOðoutÞ

(green crosses) is found to form a bell-shaped curve at an

optimal maximum at eK ðBC;XÞ ¼ 1 (i.e., at the default val-

ues), which is in contrast to the case of eDðoutÞ
a with a well-

shaped curve which has an optimal minimum at the default

value. Consequently, in the combined case, the normalized

average orthogonalization degree eOðoutÞ
becomes the

highest at the default value where the normalized average

activation degree eDðoutÞ
a is the lowest.

With the average activation degree D
ðoutÞ
a and the aver-

age orthogonalization degree OðoutÞ, we get the pattern

distance D
ðoutÞ
p for the output patterns (given by the ratio of

the average orthogonalization degree to the average acti-

vation degree). Figure 4d shows the normalized pattern

distance fDp
ðoutÞ

(¼ Dp
ðoutÞ=Dp

ðoutÞ�); the pattern distance

D
ðoutÞ
p

�
at the original default value is 6.154. We note that

the normalized pattern distance eDðoutÞ
p is found to exhibit

the same kind of changing tendency as eOðoutÞ
. The disy-

naptic effects of the MCs (blue solid circles) and the HIPP

cells (red open circles) on fDp
ðoutÞ

are opposite ones; with

increasing eK ðBC;MCÞ
( eK ðBC;HIPPÞÞ, eDðoutÞ

p is found to increase

(decrease). As a result of balance between the competing

disynaptic effects of the MCs and the HIPP cells, in the

combined case of simultaneous change in both eK ðBC;MCÞ

and eK ðBC;HIPPÞ
, eDðoutÞ

p is found to form a bell-shaped curve

with an optimal maximum at eK ðBC;XÞ ¼ 1, as in the case of

eOðoutÞ
.

Finally, we investigate the disynaptic effect of the MCs

and the HIPP cells on the pattern separation degree Sd of

Eq. (16) (given by the ratio of D
ðoutÞ
p to D

ðinÞ
p ). At the

original default values K
ðBC;XÞ
R

�
, S�

d is 2.215. Figure 4e

shows the plot of the normalized pattern separation degree

eSd (¼ Sd=S
�
d) versus eK ðBC;XÞ

. As eK ðBC;MCÞ
( eK ðBC;HIPPÞ

) is

increased from 0, eSd [blue solid circlles (red open circles)]

is found to increase (decrease) from 0.108 (2.819) and to

become saturated to 1.767 (0.176) at eK ðBC;MCÞ � 10

( eK ðBC;HIPPÞ � 20). Hence, the disynaptic effects of the MCs

and the HIPP cells on the pattern separation are opposite

ones. In the combined case where both eK ðBC;MCÞ
and

eK ðBC;HIPPÞ
are simultaneously changed, as a result of bal-

ance between the competing disynaptic effects of the MCs

and the HIPP cells, eSd (green crosses) is found to form a

bell-shaped curve with an optimal maximum at the original

default value (i.e, eK ðBC;XÞ ¼ 1). Consequently, in the

combined case, the normalized pattern separation degree

becomes the highest at the default value where the firing

activity of the GCs is the sparsest.

The horizontal dotted line in Fig. 4e represents a

threshold value of eS
�
d ’ 0:451 (corresponding to Sd ¼ 1).

Table 4 Mean and standard deviation (SD) of the realization-

averaged orthogonalization degrees fhOðoutÞðiÞirg (i ¼ 1; . . .; 9 corre-

sponds to POL ¼ 90 %; . . .; 10 %, respectively) for the output patterns

in the (separate) case of changing eK ðBC;XÞ
(X ¼ MC or HIPP) and in

the the combined case of changing both eK ðBC;MCÞ
and eK ðBC;HIPPÞ

simultaneously

eK ðBC;XÞ 0 0.05 0.2 0.5 1 5 10 15 20 25

X ¼MC Mean 0.140 0.188 0.246 0.287 0.320 0.333 0.337 0.337 0.337 0.337

SD 0.011 0.017 0.022 0.026 0.030 0.032 0.033 0.033 0.033 0.033

X ¼ HIPP Mean 0.347 0.341 0.337 0.329 0.320 0.209 0.195 0.189 0.185 0.185

SD 0.033 0.033 0.032 0.031 0.030 0.019 0.018 0.017 0.017 0.017

Combined case Mean 0.171 0.211 0.255 0.295 0.320 0.267 0.259 0.256 0.246 0.246

SD 0.016 0.019 0.023 0.027 0.030 0.025 0.024 0.023 0.023 0.023
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We note that pattern separation may occur only when

Sd [ 1 (i.e., eSd [ eS
�
d); otherwise, no pattern separation

occurs because D
ðinÞ
p [D

ðoutÞ
p . Hence, in the combined case,

pattern separation occurs for 0:25\ eK ðBC;XÞ
\5:4. For

eK ðBC;XÞ
\0:25, pattern separation cannot occur because the

disynaptic effect of the MCs is so much decreased. On the

other hand, for eK ðBC;XÞ
[ 5:4, no pattern separation occurs

due to so much increased disynaptic effect of the HIPP

cells.

Quantitative association between sparsely
synchronized rhythm of the GCs and pattern
separation

While the GCs perform pattern separation, sparsely syn-

chronized rhythm is found to appear in the population of

the GCs (Kim and Lim 2021d). Hence, it is worthwhile to

examine the relationship between population and individ-

ual firing behaviors in the sparsely synchronized rhythm

and pattern separation. For characterization of the popu-

lation and individual firing behaviors, we employ the fol-

lowing two measures introduced in our prior works (Kim

and Lim 2021c, d). At the population level, the synchro-

nization degree of the sparsely synchronized rhythm is

characterized in terms of the amplitude measure Ma, given

by the time-averaged amplitude of the sparsely synchro-

nized rhythm; as Ma is increased, the synchronization

degree becomes higher (Kim and Lim 2021c). In addition

to the population firing behavior, individual active GCs

exhibit intermittent random spikings, leading to random

spike skipping (Kim and Lim 2021d). Thus, multiple-peaks

appear in the inter-spike-interval (ISI) histogram. We

employ the random phase-locking degree Ld, examining

the regularity of individual spikings (denoted well in the

sharpness of the multiple peaks); as multiple peaks become

sharper, Ld is increased (Kim and Lim 2021d). Then, we

investigate the quantitative association between Ma and

Ld of the sparsely synchronized rhythm and the pattern

separation degree Sd. It is thus found that they are strongly

correlated; the larger Ma and Ld of the sparsely syn-

chronized rhythm are, the better pattern separation efficacy

becomes.

We consider the combined case of simultaneous change

in both eK ðBC;MCÞ
and eK ðBC;HIPPÞ

, and investigate how the

population and the individual behaviors in the sparsely

synchronized rhythm are changed. Here, we consider a

long-term stimulus stage (300-30,300 msec) (i.e., the

stimulus period Ts ¼ 30; 000 msec) without realization, in

contrast to the case of pattern separation with short-term

stimulus period (1,000 msec) and 30 realizations, because

long-term stimulus is necessary for analysis of dynamical

behaviors.

Population firing activity of the active GCs may be well

visualized in the raster plot of spikes which is a collection

of spike trains of individual active GCs. Figure 5a1–a5

show the raster plots of spikes for the active GCs for

eK ðBC;XÞ
(X= MC or HIPP) = 0, 0.5, 1.0, 5.0 and 25,

respectively. For convenience, only a part from t ¼ 300 to

1,300 msec is shown in each raster plot of spikes. We note

that sparsely synchronized stripes (composed of sparse

spikes and indicating population sparse synchronization)

appear successively.

As a population quantity showing collective behaviors,

we employ an IPSR (instantaneous population spike rate)

which may be obtained from the raster plot of spikes

(Wang 2010; Brunel and Wang 2003; Geisler et al. 2005;

Brunel and Hakim 2008; Kim and Lim 2018, 2014). To get

a smooth IPSR, we employ the kernel density estimation

(kernel smoother) (Shimazaki and Shinomoto 2010). Each

spike in the raster plot is convoluted (or blurred) with a

kernel function KhðtÞ to get a smooth estimate of IPSR

RGCðtÞ:

RGCðtÞ ¼
1

Na

XNa

i¼1

Xni

s¼1

Khðt � tðiÞs Þ; ð17Þ

where Na is the number of the active GCs, t
ðiÞ
s is the sth

spiking time of the ith active GC, ni is the total number of

spikes for the ith active GC, and we use a Gaussian kernel

function of band width h:

KhðtÞ ¼
1ffiffiffiffiffiffi
2p

p
h
e�t2=2h2

; �1\t\1; ð18Þ

where the band width h of KhðtÞ is 20 msec. The IPSRs

RGCðtÞ of the active GCs are also shown in Fig. 5a1–a5 for

eK ðBC;XÞ
(X= MC or HIPP) = 0, 0.5, 1.0, 5.0 and 25,

respectively.

We note that the IPSRs RGCðtÞ exhibit synchronous

oscillations. For each RGCðtÞ, we get its global period T
ðGCÞ
G

by averaging all the intermax intervals of RGCðtÞ obtained

during the long-term stimulus period of Ts ¼ 30; 000 msec;

T
ðGCÞ
G ¼ 48.1, 68.5, 76.4, 59.2, and 55.2 msec for eK ðBC;XÞ

(X= MC or HIPP) = 0, 0.5, 1.0, 5.0 and 25, respectively.

However, as eK ðBC;XÞ
is changed (i.e., increased or

decreased) from 1 (i.e., original default value), the ampli-

tude of RGCðtÞ, representing the synchronization degree of

the sparsely synchronized rhythm, makes a distinct

decrease, mainly because the pacing degree between spikes

in each spiking stripe in the rater plot of spikes becomes

worse. In this way, the synchronization degree of the

sparsely synchronized rhythm becomes maximal at the
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default value eK ðBC;XÞ ¼ 1 (i.e., as eK ðBC;XÞ
is changed from

1, the synchronization degree of the sparsely synchronized

rhythm is decreased).

In addition to the population firing behavior, we also

consider the individual spiking behavior of the active GCs.

We obtain the ISI (inter-spike-interval) histogram for each

active GC by collecting the ISIs during the stimulus period

Ts (¼ 3 � 104 msec), and then get the population-averaged

ISI histogram by averaging the individual ISI histograms

for all the active GCs. Figures 5b1–b5 show the popula-

tion-averaged ISI histograms for eK ðBC;XÞ
(X= MC or HIPP)

= 0, 0.5, 1.0, 5.0 and 15, respectively.

Each active GC exhibits intermittent spikings, phase-

locked to RGCðtÞ at random multiples of its global period

T
ðGCÞ
G . Due to the random spike skipping, distinct multiple

peaks appear at the integer multiples of T
ðGCÞ
G (denoted by

the vertical dotted lines) in the ISI histogram. This is in

contrast to the case of full synchronization where only one

dominant peak appears at the global period T
ðGCÞ
G ; all cells

fire regularly at each global cycle without skipping.

Hereafter, these peaks will be called as the random-spike-

skipping peaks.

In the default case of eK ðBC;XÞ ¼ 1; there appear 13

distinct clear random-spike-skipping peaks in the ISI his-

togram of Fig. 5b3. The middle 6th- and 7th-order peaks

are the highest ones, and hence spiking may occur most

probably after 5- or 6-times spike skipping. This kind of

structure in the ISI histogram is a little different from that

in the case of fast sparse synchronization where the highest

peak appears at the 1st-order peak, and then the heights of

the higher-order peaks decrease successively (Wang 2010;

Brunel and Wang 2003; Geisler et al. 2005; Brunel and

Hakim 2008; Kim and Lim 2018).

As eK ðBC;XÞ
is changed (i.e., increased or decreased) from

1, the random-spike-skipping peaks become smeared more

and more, along with decrease in the height of the highest

peak and appearance of higher-order peaks. Thus, with

increasing or decreasing eK ðBC;XÞ
, the random phase-lock-

ing degree, representing how well intermittent spikes make

phase-locking to RGCðtÞ at random multiples of its global

period T
ðGCÞ
G , is decreased.

From now on, in Fig. 6a–d, we make quantitative

characterization of population and individual firing

behaviors in the sparsely synchronized rhythm of the GCs.

Figure 6a and c show the plots of the population frequency

f
ðGCÞ
p [i.e., the oscillating frequency of RGCðtÞ] of the

sparsely synchronized rhythm and the population-averaged

mean firing rate (MFR) hf ðGCÞ
i i of individual active GCs,

respectively. At the default value of eK ðBC;XÞ ¼ 1, the

population-averaged MFR hf ðGCÞ
i i (= 2.01 Hz) is much less

than the population frequency f
ðGCÞ
p ð¼ 13:1 Hz) for the

sparsely synchronized rhythm, due to random spike skip-

ping, which is in contrast to the case of full synchronization

where the population-averaged MFR is the same as the

population frequency.

As eK ðBC;XÞ
is decreased from 1, the disynaptic inhibition

effect of the MCs becomes dominant and decreased (i.e.,

less exciting the BCs). Hence, the firing activity of the GCs

is found to increase, which results in increase in both f
ðGCÞ
p

and hf ðGCÞ
i i. On the other hand, with increasing eK ðBC;XÞ

from 1, the disynaptic effect of the HIPP cells becomes

(a1) (a2) (a4)(a3) (a5)

(b1) (b2) (b3) (b4) (b5)

Fig. 5 Sparsely synchronized rhythms of the active GCs and Multi-

peaked ISI histograms. a1–a5 Raster plots of spikes and IPSRs RGCðtÞ
for the active GCs for eK ðBC;XÞ

(X= MC or HIPP) = 0, 0.5, 1.0, 5.0 and

25, respectively. (b1)-(b5) Population-averaged ISI histograms for

eK ðBC;XÞ
(X= MC or HIPP) = 0, 0.5, 1.0, 5.0 and 25, respectively; bin

size = 2 msec. Vertical dotted lines in (b1)–(b5) represent the integer

multiples of the global period T
ðGCÞ
G of RGCðtÞ; T ðGCÞ

G ¼ 48.1, 68.5,

76.4, 59.2, and 55.2 msec for eK ðBC;XÞ
(X= MC or HIPP) = 0, 0.5, 1.0,

5.0 and 25, respectively

Cognitive Neurodynamics

123



dominant and increased (i.e, more disinhibiting the BCs).

Therefore, the firing activity of the GCs is also found to

increase, which leads to increase in both f
ðGCÞ
p and hf ðGCÞ

i i.
We characterize the (population) synchronization degree

of the sparsely synchronized rhythm of the GCs in terms of

the amplitude measure Ma, given by the time-averaged

amplitude of the IPSR RGCðtÞ (Kim and Lim 2021c):

Ma ¼ Ai; Ai ¼
½RðiÞ

GC;maxðtÞ � R
ðiÞ
GC;minðtÞ�

2
; ð19Þ

where the overline represents time average, and R
ðiÞ
GC;maxðtÞ

and R
ðiÞ
GC;minðtÞ are the maximum and the minimum of

RGCðtÞ in its ith global cycle (corresponding to the ith

spiking stripe), respectively. As Ma increases (i.e., the

time-averaged amplitude of RGCðtÞ is increased), the syn-

chronization degree of the sparsely synchronized becomes

higher.

Figure 6b shows the plot of the normalized amplitude

measure fMa (= Ma=M
�
a) versus eK ðBC;XÞ

; M�
a (= 3.566) is

the default value for eK ðBC;XÞ ¼ 1. We note that the

normalized amplitude measure fMa is found to form a bell-

shaped curve with an optimal maximum at the default

value eK ðBC;XÞ ¼ 1. As eK ðBC;XÞ
is decreased from 1, fMa is

decreased from 1 to 0.510, because the disynaptic inhibi-

tion effect of the MCs becomes dominant and decreased.

Also, with increasing eK ðBC;XÞ
from 1, fMa is also decreased

from 1 and becomes saturated to 0.592 for eK ðBC;XÞ � 20,

because the disynaptic effect of the HIPP cells becomes

dominant and increased.

Next, we characterize the individual spiking behavior of

the active GCs in the ISI histogram with multiple peaks

resulting from random spike skipping. We introduced a

new random phase-locking degree Ld, denoting how well

intermittent spikes make phase-locking to RGCðtÞ at ran-

dom multiples of its global period T
ðGCÞ
G (Kim and Lim

2021d), and characterize the degree of random spike

skipping seen in the ISI histogram in terms of Ld. By

following the approach developed in the case of pacing

degree between spikes in the stripes in the raster plot of

spikes (Kim and Lim 2014), the random phase-locking

degree was introduced to examine the regularity of indi-

vidual firings (represented well in the sharpness of the

random-spike-skipping peaks).

We first locate the random-spike-skipping peaks in the

ISI histogram. For each nth-order peak, we get the nor-

malized weight wn, given by:

wn ¼
N

ðnÞ
ISI

N
ðtotÞ
ISI

; ð20Þ

where N
ðtotÞ
ISI is the total number of ISIs obtained during the

stimulus period (Ts ¼ 3 � 104 msec) and N
ðnÞ
ISI is the number

of the ISIs in the nth-order peak.

We now consider the sequence of the ISIs,

fISI
ðnÞ
i ; i ¼ 1; . . .;N

ðnÞ
ISIg, within the nth-order peak, and get

the random phase-locking degree L
ðnÞ
d of the nth-order

peak. Similar to the case of the pacing degree between

spikes (Kim and Lim 2014), we provide a phase w to each

ISI
ðnÞ
i via linear interpolation; for details, refer to (Kim and

Lim 2021d). Then, the contribution of the ISI
ðnÞ
i to the

locking degree L
ðnÞ
d is given by cosðwðnÞ

i Þ; wðnÞ
i denotes the

phase for ISI
ðnÞ
i . An ISI

ðnÞ
i makes the most constructive

contribution to L
ðnÞ
d for wðnÞ

i ¼ 0, while it makes no con-

tribution to L
ðnÞ
d for w ¼ p

2
or �p

2
. By averaging the

matching contributions of all the ISIs in the nth-order peak,

we get:

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Quantitative relationship between sparsely synchronized

rhythm of the GCs and pattern separation in the combined case of

simultaneously changing the normalized synaptic strengths eK ðBC;MCÞ

and eK ðBC;HIPPÞ
. a Plot of the population frequency f ðGCÞp of sparsely

synchronized rhythm of the GCs versus eK ðBC;XÞ
(X= MC or HIPP). b

Plot of the normalized amplitude measure, fMa versus eK ðBC;XÞ
. c Plot

of the population-averaged mean firing rate hfii versus eK ðBC;XÞ
. d Plot

of the normalized random-spike-skipping degree eLd versus eK ðBC;XÞ
.

(e) Plot of the normalized pattern separation degree eS d versus fMa. f

Plot of the normalized pattern separation degree eSd versus eLd .

Dashed fitted lines are given in (e–f)
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L
ðnÞ
d ¼ 1

N
ðnÞ
ISI

XN
ðnÞ
ISI

i

cosðwðnÞ
i Þ: ð21Þ

Then, we obtain the (overall) random phase-locking degree

Ld via weighted average of the random phase-locking

degrees L
ðnÞ
d of all the peaks:

Ld ¼
XNp

n¼1

wn � LðnÞ
d ¼ 1

N
ðtotÞ
ISI

XNp

n¼1

XN
ðtotÞ
ISI

i¼1

cosðwðnÞ
i Þ; ð22Þ

where Np is the number of peaks in the ISI histogram.

Thus, Ld corresponds to the average of contributions of all

the ISIs in the ISI histogram.

Figure 6d shows the plot of the normalized random

phase-locking degree eLd (=Ld=L
�
d) versus eK ðBC;XÞ

; L�
d (=

0.911) is the default value for eK ðBC;XÞ ¼ 1. We note that

the normalized random phase-locking degree eLd is found

to form a bell-shaped curve with an optimal maximum at

the default value of eK ðBC;XÞ ¼ 1. In the default case, the

random phase-locking degree L�
d ð¼ 0:911Þ, characterizing

the sharpness of all the peaks, is the highest. Hence, the

GCs make intermittent spikes which are well phase-locked

to RGCðtÞ at random multiples of its global period T
ðGCÞ
G .

However, with decreasing eK ðBC;XÞ
from 1, eLd is decreased

from 1 to 0.726, because the decreased disynaptic inhibi-

tion effect of the MCs becomes dominant. Also, as eK ðBC;XÞ

is increased from 1, eLd is decreased from 1 and becomes

saturated to 0.775 for eK ðBC;XÞ � 20, because the increased

disynaptic effect of the HIPP cells becomes dominant.

Finally, we investigate quantitative association between

sparsely synchronized rhythm and pattern separation. Fig-

ure 6e and f show plots of fMa and eLd versus the nor-

malized pattern separation degree eSd, respectively.

Population (fMa) and individual (eLd) firing behaviors in

the sparsely synchronized rhythm of the GCs (performing

pattern separation) are found to be positively correlated

with the pattern separation (eSd) with the Pearson’s corre-

lation coefficients r ¼ 0:9959 and 0.9975, respectively.

Consequently, as fMa and eLd of the sparsely synchronized

rhythm are larger, the pattern separation degree becomes

higher; the better population and individual firing activities

in the sparsely synchronized rhythm are, the more pattern

separation efficacy becomes enhanced.

Summary and discussion

We considered the disynaptic paths from the hilar cells

(i.e., excitatory MCs and inhibitory HIPP cells) to the

principal excitatory GCs (performing pattern separation),

mediated by the inhibitory BCs; MC ! BC ! GC and

HIPP ! BC ! GC. We note that, disynaptic inhibition

(mediated by the intermediate BCs) from the MCs

decreases the activity of the GCs due to increased excita-

tion of the BCs, while due to their disinhibition of the

intermediate BCs, the disynaptic effect of the HIPP cells

leads to increase in the activity of the GCs. In this way,

their disynaptic effects on the GCs are opposite.

By changing the synaptic strength KðBC;XÞ [from the pre-

synaptic X (= MC or HIPP) to the post-synaptic BC] from

the original default value KðBC;XÞ� in Table 2, we investi-

gated the disynaptic effects of the MCs and the HIPP cells

on the pattern separation (transforming the input patterns

from the EC into sparser and orthogonalized output pat-

terns) performed by the principal GCs. Here, we discuss

their disynaptic effects by considering sparsity for the fir-

ing activity of the GCs which has been considered to

improve the pattern separation. (Treves and Rolls 1994;

O’Reilly and McClelland 1994; Schmidt et al. 2012; Rolls

2016; Knierim and Neunuebel 2016; Myers and Scharfman

2009, 2011; Myers et al. 2013; Scharfman and Myers

2016; Chavlis et al. 2017; Kassab and Alexandre 2018).

Then, the pattern-separated output patterns are projected to

the pyramidal cells in the CA3 subregion, which facilitates

pattern storage and retrieval in the CA3. In this way, the

DG plays a role of preprocessor for the CA3.

We first studied the disynaptic effect of the MCs by

varying the normalized synaptic strength eK ðBC;MCÞ [=

KðBC;MCÞ = KðBC;MCÞ�]; KðBC;MCÞ� is the original default

value in Table 2. When eK ðBC;MCÞ is decreased from 1 (i.e.,

default value) to 0, excitation of the BCs decreases, which

results in increase in the activation degree D
ðoutÞ
a of the GCs

and decrease in the orthogonalization degree OðoutÞ

between the two output patterns (generated by the GCs).

We note that D
ðoutÞ
a and OðoutÞ are negatively correlated; as

the firing activity of the GCs is sparser (i.e., D
ðoutÞ
a is

decreased), the orthogonalization efficacy, OðoutÞ, becomes

increased. Consequently, with decreasing eK ðBC;MCÞ from 1,

due to decrease in the pattern distance D
ðoutÞ
p (given by the

ratio of OðoutÞ to D
ðoutÞ
a ), the normalized pattern separation

degree eS d [= Sd = S�
d] (S�

d: pattern separation degree at the

default value) was decreased from 1 to 0.108. We note that,

in this case, decrease in eSd results from decreased disy-

naptic inhibition to the GCs (leading to increase in D
ðoutÞ
a ).
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This kind of decrease in the efficacy of pattern separation

was also found through ablation of MCs (Danielson et al.

2017).

In contrast, as eK ðBC;MCÞ is increased from 1, more

disynaptic inhibition, mediated by the BCs, is provided to

the GCs, which leads to decrease in D
ðoutÞ
a and increase in

OðoutÞ (i.e., negative correlation between D
ðoutÞ
a and OðoutÞ ).

Thus, with increasing eK ðBC;MCÞ from 1, because of increase

in D
ðoutÞ
p (resulting from decreased D

ðoutÞ
a and increased

OðoutÞ), the normalized pattern separation degree eSd began

to increase from 1 and become saturated to eSd ’ 1:767 for

eK ðBC;MCÞ � 10.

Overall, in the whole range of eK ðBC;MCÞ, as it is

increased from 0, disynaptic inhibition provided to the GCs

increases, which results in decrease in D
ðoutÞ
a and increase in

OðoutÞ. Thus, due to increase in D
ðoutÞ
p (resulting from

decreased D
ðoutÞ
a and increased OðoutÞ), the normalized

pattern separation degree eSd was found to increase from

0.108 and get saturated to 1.767 for eK ðBC;MCÞ � 10 (see

blue solid circles in Fig. 4e). We note that, in this case of

the MCs, increased disynaptic inhibition to the GCs (re-

sulting in decrease in D
ðoutÞ
a ) leads to increase in eSd. Thus,

sparsity for the firing activity of the GCs was found to

improve the efficacy of pattern separation.

Next, we studied the disynaptic effect of the HIPP cells

by varying the normalized synaptic strength eK ðBC;HIPPÞ.
The HIPP cells disinhibit the BCs, in contrast to the case of

the MCs enhancing the activity of the BCs. Hence, the

disynaptic effect of the HIPP cells on the pattern separation

was found to be opposite to that of the MCs. Overall, as

eK ðBC;HIPPÞ is increased from 0, BCs are more disinhibited,

which leads to increase in D
ðoutÞ
a and decrease in OðoutÞ.

Hence, due to decrease in D
ðoutÞ
p (resulting from increased

D
ðoutÞ
a and decreased OðoutÞ), the normalized pattern sepa-

ration degree eSd was found to decrease from 2.819 and get

saturated to 0.176 for eK ðBC;HIPPÞ � 20 (see red open circles

Fig. 4e). In this case of the HIPP cells, we note that,

increased disinhibition of the BCs (leading to increase in

D
ðoutÞ
a ) results in decrease in eS d, in contrast to the case of

the MCs. Thus, increased firing activity of the GCs was

found to worsen the pattern separation efficacy.

As a 3rd step, we considered the combined case when

the two normalized synaptic strengths eK ðBC;MCÞ and

eK ðBC;HIPPÞ were changed simultaneously. As a result of

balance between the competing disynaptic effects of the

MCs and the HIPP cells, the normalized pattern separation

degree eSd was found to form a bell-shaped curve with an

optimal maximum at the default value (i.e.,

eK ðBC;MCÞ ¼ eK ðBC;HIPPÞ ¼ 1) (see green crosses Fig. 4e); at

the default value where the firing activity of the GCs is the

sparest, the efficacy of pattern separation becomes the

highest.

We note that, while the GCs perform pattern separation,

sparsely synchronized rhythm was found to appear in the

population of the GCs (see Fig. 5). We investigated

quantitative association between population and individual

firing behaviors in the sparsely synchronized rhythm and

pattern separation. Population synchronization behavior

and individual firing activities were characterized by

employing the amplitude measure Ma (representing pop-

ulation synchronization degree) and the random-phase-

locking degree Ld (denoting regularity degree of individual

intermittent spikings), respectively. Both of them, Ma and

Ld, were found to be strongly correlated with the pattern

separation degree Sd (see Fig. 6e and f). Hence, the larger

Ma and Ld of the sparsely synchronized rhythm are, the

more the pattern separation efficacy becomes enhanced.

For comparison, we also studied the monosynaptic

effect of the MCs and the HIPP cells; MC ! GC and HIPP

! GC. Unlike the disynaptic case, the MCs and the HIPP

cells provide direct excitation and inhibition to the GCs,

respectively. Figure 7a, b, and c show the plots of the

normalized average activation degree eDðoutÞ
a of the GCs, the

normalized average orthogonalization degree eOðoutÞ
; and

the normalized pattern separation degree eSd versus the

normalized synaptic strength eK ðGC;XÞ [X= MC (blue solid

circles) or HIPP (red open circles)], respectively. Here, the

normalized synaptic strength eK ðGC;XÞ
R is given by

K
ðGC;XÞ
R =K

ðGC;XÞ
R

�
(X ¼ MC or HIPP and R ¼ AMPA,

NMDA, or GABA), and K
ðGC;XÞ
R

�
is the original default

value in Table 1; K
ðGC;MCÞ
AMPA

�
¼ 0:05, K

ðGC;MCÞ
NMDA

�
¼ 0:01; and

K
ðGC;HIPPÞ
GABA

�
¼ 0:13. In the case of the MCs, we change

eK ðGC;MCÞ
AMPA and eK ðGC;MCÞ

NMDA in the same way such that

eK ðGC;MCÞ
AMPA ¼ eK ðGC;MCÞ

NMDA � eK ðGC;MCÞ
, and in the case of the

HIPP cells, for brevity, we write eK ðGC;HIPPÞ
GABA as eK ðGC;HIPPÞ

.

In the whole range of eK ðGC;XÞ
, eDðoutÞ

a , eOðoutÞ
; and eSd in

the monosynaptic case show oppositely-changing tenden-

cies, in comparison to those in the disynaptic case in Fig. 4,

because the innervation effect on the GCs in the monosy-

naptic case is in opposition to that in the disynaptic case. In

this monosynaptic case, eDðoutÞ
a and eOðoutÞ

were also found

to be negatively correlated (compare Fig. 7a with Fig. 7b).

Particularly, in the combined case (see green crosses in

Fig. 7) for simultaneous change in both eK ðGC;MCÞ and
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eK ðGC;HIPPÞ, the normalized pattern separation degree eSd

was found to form a well-shaped curve with an optimal

minimum at the original default value (where the activation

degree of the GCs is the highest), in contrast to disynaptic

case with a bell-shaped curve for eSd with an optimal

maximum at the default value (where the activation degree

of the GCs are the lowest). Consequently, the pattern

separation degree in the monosynaptic case becomes the

lowest at the original default value, in opposition to the

disynaptic case (with the highest pattern separation degree

at the default value). However, in our DG network, disy-

naptic strengths are stronger than monosynaptic strengths

(see Tables 1 and 2). Hence, when considering both the

disynaptic and the monosynaptic effects simultaneously,

the disynaptic effect becomes dominant (i.e., at the original

default values, the normalized pattern separation degree

becomes the highest).

Finally, we discuss limitations of our present work and

future works. In the present work, although positive cor-

relation between the pattern separation degree and the

population synchronization and the random-phase-locking

degrees in the sparsely synchronized rhythm of the GCs

was found, this kind of correlation does not imply causal

relationship. Hence, in future work, it would be interesting

to make intensive investigation on their dynamical

causation.

Also, in the present work, we studied disynaptic effect

only in the case of changing the synaptic strength KðBC;XÞ

(X= MC or HIPP). However, in future, it would also be

interesting to study disynaptic effect by varying the con-

nection probability pðBC;XÞ from the presynaptic X to the

postsynaptic BC. The effect of decrease in pðBC;XÞ would be

similar to that of decreasing KðBC;XÞ, because the synaptic

inputs into the BCs are decreased in both cases.

Furthermore, we note that the pyramidal cells in the

CA3 provide backprojections to the GCs via polysynaptic

connections (Myers and Scharfman 2011; Myers et al.

2013; Scharfman and Myers 2016). For example, the

pyramidal cells send disynaptic inhibition to the GCs,

mediated by the BCs and the HIPP cells in the DG, and

they provide trisynaptic inputs to the GCs, mediated by the

MCs (pyramidal cells ! MC ! BC or HIPP ! GC).

These inhibitory backprojections may decrease the acti-

vation degree of the GCs, leading to improvement of pat-

tern separation. Hence, in future work, it would be

meaningful to take into consideration the backprojection

for the study of pattern separation in the combined DG-

CA3 network.

Also, in the present study, for simplicity, we did not

consider the lamellar organization for the hilar MCs and

the HIPP cells, as in (Myers and Scharfman 2009; Chavlis

et al. 2017); here, we considered only the GC lamellar

clusters. For more refined DG network, it would be nec-

essary in future work to take into consideration the lamellar

organization for the MCs and the HIPP cells; particularly,

in the combined DG-CA3 network for pattern storage and

retrieval, as in (Myers and Scharfman 2011; Myers et al.

2013; Scharfman and Myers 2016).
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