
PHYSICAL REVIEW E 92, 052716 (2015)

Effect of intermodular connection on fast sparse synchronization in clustered
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We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and
investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms
by varying both the intermodular coupling strength Jinter and the average number of intermodular links per
interneuron M (inter)

syn . In contrast to the case of nonclustered networks, two kinds of sparsely synchronized states
such as modular and global synchronization are found. For the case of modular sparse synchronization, the
population behavior reveals the modular structure, because the intramodular dynamics of subnetworks make
some mismatching. On the other hand, in the case of global sparse synchronization, the population behavior
is globally identical, independently of the cluster structure, because the intramodular dynamics of subnetworks
make perfect matching. We introduce a realistic cross-correlation modularity measure, representing the matching
degree between the instantaneous subpopulation spike rates of the subnetworks, and examine whether the sparse
synchronization is global or modular. Depending on its magnitude, the intermodular coupling strength Jinter seems
to play “dual” roles for the pacing between spikes in each subnetwork. For large Jinter, due to strong inhibition
it plays a destructive role to “spoil” the pacing between spikes, while for small Jinter it plays a constructive role
to “favor” the pacing between spikes. Through competition between the constructive and the destructive roles of
Jinter, there exists an intermediate optimal Jinter at which the pacing degree between spikes becomes maximal. In
contrast, the average number of intermodular links per interneuron M (inter)

syn seems to play a role just to favor the
pacing between spikes. With increasing M (inter)

syn , the pacing degree between spikes increases monotonically thanks
to the increase in the degree of effectiveness of global communication between spikes. Furthermore, we employ
the realistic sub- and whole-population order parameters, based on the instantaneous sub- and whole-population
spike rates, to determine the threshold values for the synchronization-unsynchronization transition in the sub-
and whole populations, and the degrees of global and modular sparse synchronization are also measured in terms
of the realistic sub- and whole-population statistical-mechanical spiking measures defined by considering both
the occupation and the pacing degrees of spikes. It is expected that our results could have implications for the
role of the brain plasticity in some functional behaviors associated with population synchronization.
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I. INTRODUCTION

Recently, much attention has been paid to brain rhythms
in health and disease [1,2]. Particularly, we are interested
in fast sparsely synchronized cortical rhythms which are
associated with diverse cognitive functions such as sen-
sory perception, feature integration, selective attention, and
memory formation [3]. At the population level, local field
potential recordings have been observed to show synchronous
fast oscillations [e.g., γ rhythm (30–100 Hz) and ultrafast
sharp-wave ripple (100–200 Hz)], while individual neuronal
recordings have been found to exhibit stochastic and intermit-
tent spike discharges [4–10]. Thus, single-cell firing activity
differs markedly from the population oscillatory behavior.
These sparsely synchronized rhythms are in contrast to fully
synchronized rhythms. For the case of full synchronization,
individual neurons fire regularly at the population frequency
like the clock oscillators [11]. Hence, the fully synchronized
oscillations may be well described by using the conventional
coupled-oscillator model composed of suprathreshold spiking
neurons above a threshold in the absence of noise or for
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weak noise [12]. However, such coupled-oscillator models are
not adequate for describing sparse synchronization because
individual neurons fire stochastically at low rates like Geiger
counters. Brunel et al. in Refs. [13–18] developed a framework
appropriate for description of fast sparse synchronization by
taking an opposite view from that of coupled oscillators. Under
the condition of strong external noise, suprathreshold spiking
neurons discharge irregular firings as Geiger counters, and then
the population state becomes unsynchronized. However, when
inhibitory recurrent feedback becomes sufficiently strong,
this asynchronous state may be destabilized, and then a
synchronous population state with irregular and intermittent
individual discharges emerges. For this case, average total
(external excitatory plus recurrent inhibitory) input current
into individual neurons is subthreshold, but stochastic and
intermittent firings are triggered when fluctuations (due to
noise in external and recurrent inputs) cross a threshold. In
this way, under the balance between strong external noise and
strong recurrent inhibition, fast sparse synchronization was
found to occur in networks of suprathreshold neurons [13–18].
Similar sparsely synchronized rhythms were also found to
appear via cooperation of noise-induced spikings of sub-
threshold neurons (which cannot fire spontaneously without
noise) [19–21]. However, in contrast to the above works on
suprathreshold neurons, sparse synchronization for the case
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of subthreshold neurons has been found to appear under
relatively weak external noise and recurrent inhibition, and
the sparsely synchronized rhythms were also found to be slow
when compared with the suprathreshold case.

In this paper, we are concerned about the emergence of fast
sparsely synchronized rhythms in an ensemble of suprathresh-
old neurons, as in the previous works of Brunel et al.
[13–18], where both random and global synaptic couplings
were considered. However, connection architecture of the real
brain has been found to have complex topology which is
neither regular nor random [22–30]. Particularly, mammalian
(e.g., cat and macaque) brain anatomical networks and human
brain functional (fMRI) networks have been revealed to have
a modular structure composed of relatively sparsely linked
clusters with spatial localization, as in social, technological,
and biological complex networks [31–38]. Within each cluster,
nodes are highly interconnected and exhibit similar connec-
tional and functional features. This clustered organization
of the brain network reveals the anatomical substrate for
segregation which refers to the subdivision of the brain into
regions specialized in particular functional tasks [39–41]. This
segregation allows the brain to process information in parallel,
simultaneously by distinct populations of neurons. However,
for emergence of a coherent perception and comprehensive
understanding of the environment as a whole, specialized
information of different modalities and features should be
integrated. This integration refers to the capacity of a system
to collect information of different nature and combine it
to produce new useful information. For example, sensory
perception requires the binding of the features of a receptive
field (e.g., color, orientation, and position of a visual object). In
this way, brain connectivity should be organized into a balance
between segregation (specialization) and integration (binding)
[42–46]. Here in our brain network we take into consideration
the modular structure of the real brain. For modeling the
modular structure of a real brain, we consider a clustered
network composed of sparsely connected subnetworks. The
subnetworks stand for the modules (clusters) of the brain. As is
also known, the connection structure in each module of the real
brain reveals complex topology such as small-worldness and
scale-freeness [22–30]. Here each subnetwork (representing a
cluster) is modeled as the Watts-Strogatz small-world network
which interpolates between the regular lattice with high
clustering (i.e., high cliquishness of a typical neighborhood)
and the random graph with short path length (i.e., average
short separation between two neurons represented by average
number of synapses between two neurons along the minimal
path) by varying the rewiring probability prewiring from local to
long-range connections; prewiring = 0 and 1 correspond to the
regular lattice and the random graph, respectively [47–49].
The Watts-Strogatz model for the small-world subnetwork
may be regarded as a cluster-friendly extension of the random
network by reconciling the six degrees of separation (small-
worldness) [50,51] with the circle of friends (clustering).
Many recent works on various subjects of neurodynamics
have been done in small-world networks with predominantly
local connections and rare long-distance connections [52–63].
The effect of this small-world connectivity on fast sparse
synchronization has also been studied in our recent work [64].

We note that real brain networks, consisting of sparsely
interconnected modules, are far more complex than minimal
nonmodular models such as small-world and scale-free
networks. The main purpose of our study is to investigate the
emergence of sparsely synchronized rhythms in more realistic
modular networks. Clustered neural networks composed of
regular, small-world, and scale-free subnetworks have been
employed for study on several subjects of neurodynamics
[39–41,65–69]. For our aim, we consider a clustered network
with small-world subnetworks of inhibitory spiking neurons
and investigate the effect of intermodular connection on
emergence of fast sparsely synchronized rhythms. In the
absence of intermodular coupling, we consider three cases for
the intramodular dynamics in subnetworks: (1) synchronized
in all identical subnetworks, (2) unsynchronized in all identical
subnetworks, and (3) synchronized and/or unsynchronized
in nonidentical subnetworks. For each case, we study the
population states by changing both the intermodular coupling
strength Jinter and the average number of intermodular links
per interneuron M (inter)

syn . Consequently, two kinds of sparse
synchronization such as modular and global synchronization
are found, in contrast to the case of nonmodular networks
[13–18,64,70]. For the case of modular sparse synchronization,
the population behavior reveals the modular structure;
hence, the degree of sparse synchronization in the whole
population becomes less than that in the subnetworks,
because the intramodular dynamics of subnetworks make
some mismatching. In contrast, for the case of global
sparse synchronization, the population behavior is globally
identical, independently of the cluster structure, because
the intramodular dynamics of subnetworks make perfect
matching. These modular and global synchronizations may
be well visualized in the raster plots of spikes. For the case
of synchronization, synchronous “stripes” (composed of
spikes and indicating population synchronization) appear
successively in the raster plots, while spikes are completely
scattered (without forming any stripes) in the case of
unsynchronization. Synchronization pacing (representing the
smearing of spiking stripes: less smearing, better pacing)
varies depending on Jinter. For large Jinter it plays a destructive
role to spoil the pacing between sparse spikes, because of
strong inhibition. Hence, when passing a large threshold a
transition to unsynchronization occurs. However, for small
Jinter it plays a constructive role to favor the pacing between
spikes in each subnetwork. Hence, via competition between the
constructive and the destructive roles of Jinter, there appears an
intermediate optimal Jinter at which the pacing degree between
spikes becomes maximal. In this way, Jinter plays dual roles
for the pacing between spikes in each subnetwork, depending
on its magnitude. On the other hand, the average number of
intermodular links per interneuron M (inter)

syn plays a role just to
favor the pacing between spikes. As M (inter)

syn is increased, the
pacing degree between spikes increases monotonically due
to the increase in the degree of effectiveness of global com-
munication between spikes. To make characterization of the
synchronization-unsynchronization transitions in the sub- and
whole populations, we employ the realistic sub- and whole-
population order parameters, based on the instantaneous sub-
and whole-population spike rates [71]. Moreover, we introduce
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a realistic cross-correlation modularity measure, representing
the matching degree between the instantaneous subpopulation
spike rates of subnetworks, and examine whether the sparse
synchronization is global or modular. The degrees of modular
and global sparse synchronization are also measured in
terms of the realistic sub- and whole-population statistical-
mechanical spiking measures defined by considering both the
occupation and the pacing degrees of the spikes [71].

This paper is organized as follows. In Sec. II A, we
describe a clustered network with small-world subnetworks
of inhibitory fast spiking (FS) interneurons, and then the
governing equations for the population dynamics are given.
Detailed explanations on methods for the characterization of
individual and population states in clustered networks are
also given in Sec. III. Then, in Sec. IV we investigate the
effect of intermodular connection on the emergence of fast
sparsely synchronized rhythms by varying both Jinter and
M (inter)

syn . Finally, a summary is given in Sec. V.

II. CLUSTERED SMALL-WORLD NETWORK OF
INHIBITORY FS IZHIKEVICH INTERNEURONS

In this section, we first describe our cluster network
composed of M(=3) small-world subnetworks, each of which
contains L FS Izhikevich interneurons in Sec. II A. Then
the governing equations for the population dynamics in the
clustered small-world network are given in the Sec. II B.

A. Clustered small-world networks

We consider a clustered network with M (=3) small-
world subnetworks. Each small-world subnetwork consists
of L inhibitory interneurons equidistantly placed on a one-
dimensional ring of radius L/2π . For illustrative purposes,
an example of the clustered network topology is shown in
Fig. 1. Each of the three subnetworks, consisting of L = 20
interneurons, is modeled as the Watts-Strogatz small-world
network which interpolates between the regular lattice and the
random graph by varying the rewiring probability prewiring from
local to long-range connections [47–49]. We start from the case
of prewiring = 0, corresponding to a directed regular ring lattice
where each interneuron is coupled to its first M (intra)

syn (=4)
neighbors (M (intra)

syn /2 on either side) via outward synapses.
Then we rewire each outward connection at random with
probability prewiring such that self-connections and duplicate
connections are excluded, and the value of prewiring is 0.25
for the case of Fig. 1. Within each small-world subnetwork,
the average number of intramodular synaptic inputs per
interneuron is M (intra)

syn , while there exist eight sparse random
intermodular links between small-world subnetworks.

B. Governing equations for the population dynamics

As an element in our clustered small-world network, we
choose the FS Izhikevich interneuron model which is not
only biologically plausible, but also computationally efficient
[72–75]. We consider the clustered network composed of
M(=3) small-world subnetworks, each of which consisting
of L FS interneurons; L = 103, except for the case of
order parameters and spatial cross-correlation functions. The
following Eqs. (1)–(7) govern the population dynamics in the

FIG. 1. Schematic representation of the clustered small-world
network topology. The whole network consists of M(=3) Watts-
Strogatz small-world subnetworks, each of them containing
L(=20) interneurons. Within each subnetwork, the average number
of intramodular synaptic inputs per interneuron is M (intra)

syn (=4), while
there are eight sparse random intermodular connections (denoted by
heavy lines) between the subnetworks.

clustered small-world network,
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;
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TABLE I. Parameter values used in our computations for Figs. 2–10; units of the capacitance, the potential, the current, and the time are
pF, mV, pA, and ms, respectively.

(1) Single Izhikevich FS interneurons [74]
C = 20 vr = −55 vt = −40 vp = 25 vb = −55
k = 1 a = 0.2 b = 0.025 c = −45 d = 0

(2) External stimulus to Izhikevich FS interneurons
Idc = 1500 D = 500

(3) Inhibitory GABAergic synapse [15]
τl = 1 τr = 0.5 τd = 5 Vsyn = −80

(4) Intramodular coupling in small-world subnetworks
M (intra)

syn = 50 Jintra = 1400 prewiring : varying
(5) Intermodular connection

M (inter)
syn : varying Jinter : varying

Here v
(I )
i (t) and u

(I )
i (t) are the state variables of the ith

interneuron in the I th subnetwork at a time t , which represent
the membrane potential and the recovery current, respectively.
The membrane potential and the recovery variable, v

(I )
i (t)

and u
(I )
i (t), are reset according to Eq. (3) when v

(I )
i (t)

reaches its cutoff value vp. C, vr , and vt in Eq. (1) are
the membrane capacitance, the resting membrane potential,
and the instantaneous threshold potential, respectively. The
parameter values used in our computations are listed in Table I.
More details on the FS Izhikevich interneuron model, the
external stimulus to the FS interneuron, the intramodular and
the intermodular synaptic currents, and numerical integration
of the governing equations are given in the following sections.

1. FS Izhikevich interneuron model

The Izhikevich model matches neuronal dynamics by
tuning the parameters (k,a,b,c,d) instead of matching neu-
ronal electrophysiology, in contrast to Hodgkin-Huxley-type
conductance-based models. The parameters k and b are related
to the neuron’s rheobase and input resistance, and a, c, and d

are the recovery time constant, the afterspike reset value of v,
and the total amount of outward minus inward currents during
the spike and affecting the afterspike behavior (i.e., afterspike
jump value of u), respectively. Depending on the values of
these parameters, the Izhikevich neuron model may exhibit 20
of the most prominent neurocomputational features of cortical
neurons [72–75]. Here we use the parameter values for the FS
interneurons in the layer 5 rat visual cortex, which are listed
in the first item of Table I.

2. External stimulus to the FS Izhikevich interneuron

Each Izhikevich interneuron is stimulated by both a
common dc current Idc and an independent Gaussian white
noise ξ

(I )
i , as shown in the third and the fourth terms in

Eq. (1). The Gaussian white noise satisfies 〈ξ (I )
i (t)〉 = 0

and 〈ξ (I )
i (t)ξ (J )

j (t ′)〉 = δIJ δij δ(t − t ′), where 〈· · · 〉 denotes the
ensemble average. Here the Gaussian noise ξ is a parametric
one that randomly perturbs the strength of the applied current
Idc, and its intensity is controlled by the parameter D. For
D = 0, the Izhikevich interneuron exhibits a jump from a
resting state to a spiking state via subcritical Hopf bifurcation
for a higher threshold Idc,h(�73.7) by absorbing an unstable
limit cycle born via a fold limit cycle bifurcation at a lower

threshold Idc,l(�72.8). Therefore, the Izhikevich interneuron
shows type-II excitability since it begins to fire with a nonzero
frequency [76,77]. With increasing Idc from Idc,h, the mean
firing rate f increases monotonically. The values of Idc and D

used in this paper are given in the second item of Table I.

3. Intramodular and intermodular synaptic currents

The last two terms in Eq. (1) represent the intra- and the
intermodular synaptic couplings of inhibitory FS interneurons.
I

(intra,syn)
I,i and I

(inter,syn)
I,i of Eqs. (5) and (6) represent the intra-

and the intermodular synaptic currents injected into the ith
neuron in the I th subnetwork, respectively. The synaptic
connectivity is given by the connection weight matrix W

(={w(I,J )
ij }), where w

(I,J )
ij = 1 if the neuron j in the J th

subnetwork is presynaptic to the neuron i in the I th subnet-
work; otherwise, w

(I,J )
ij = 0. Here the intramodular synaptic

connection is modeled in terms of the Watts-Strogatz small-
world network. Then the in-degree of the ith neuron in the I th
subnetwork for the intramodular synaptic connection, d intra

I,i

(i.e., the number of intramodular synaptic inputs to the neuron
i in the I th subnetwork) is given by d intra

I,i = ∑L
j=1(�=i) w

(I,I )
ij .

For this intramodular case, the average number of intramodular
synaptic inputs per neuron is M (intra)

syn = 1
ML

∑M
I=1

∑L
i=1 d intra

I,i .
In contrast to the intramodular connection, the intermodular
synaptic connection is given randomly. Then the in-degree
of the ith neuron in the I th subnetwork for the intermodular
synaptic connection, d inter

I,i (i.e., the number of intermodular
synaptic inputs to the neuron i in the I th subnetwork) is given
by d inter

I,i = ∑M
J=1( �=I )

∑L
j=1 w

(I,J )
ij . In the intermodular case,

the average number of intermodular synaptic inputs per neuron
is M (inter)

syn = 1
ML

∑M
I=1

∑L
i=1 d inter

I,i , and these intermodular
links are randomly connected with the intermodular connec-

tion probability pinter = M
(inter)
syn

(M−1)L . Compared to the intramodular
connections, the intermodular connections are sparse (i.e.,
M (inter)

syn < M (intra)
syn ). The fraction of open synaptic ion channels

at time t is denoted by s(t). The time course of s
(I )
j (t) of the

j th neuron in the I th subnetwork is given by a sum of delayed
double-exponential functions E(t − t

(I,j )
f − τl) [see Eq. (7)],

where τl is the synaptic delay, and t
(I,j )
f and F

(I )
j are the f th

spiking time and the total number of spikes of the j th neuron
in the I th subnetwork at time t , respectively. Here E(t) [which
corresponds to contribution of a presynaptic spike occurring at
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time 0 to s(t) in the absence of synaptic delay] is controlled by
the two synaptic time constants, synaptic rise time τr and decay
time τd , and �(t) is the Heaviside step function, �(t) = 1 for
t � 0 and 0 for t < 0. The intra- and the intermodular synaptic
coupling strengths are controlled by the parameters Jintra and
Jinter, respectively, and Vsyn is the synaptic reversal potential.
For the inhibitory GABAergic synapse (involving the GABAA

receptors), the values of τl , τr , τd , and Vsyn are listed in the
third item of Table I.

4. Numerical method

Numerical integration of stochastic differential Eqs. (1)
and (2) is done by employing the Heun method [78] with the
time step �t = 0.01 ms. For each realization of the stochastic
process, we choose a random initial point [v(I )

i (0),u(I )
i (0)]

for the ith (i = 1, . . . ,N) neuron in the I th subnetwork with
uniform probability in the range of v

(I )
i (0) ∈ (−50,−45) and

u
(I )
i (0) ∈ (10,15).

III. METHODS FOR CHARACTERIZATION OF
INDIVIDUAL AND POPULATION STATES

IN CLUSTERED NETWORKS

In the following sections, we explain methods used to
characterize individual and population states in clustered
networks. Particularly, the emergence of population syn-
chronization and its degree are characterized by employing
realistic measures, based on instantaneous sub- and whole-
population spike rates [71]. Furthermore, we introduce a
realistic cross-correlation modularity measure, denoting the
matching degree between the instantaneous subpopulation
spike rates to examine whether the population synchronization
is global or modular.

A. Characterization of individual firing behaviors

Firing behaviors of individual interneurons are character-
ized in terms of the interspike interval (ISI) histogram and
the mean firing rate (MFR) distribution. The ISI histogram is
composed of 5 × 104 ISIs (obtained from all the interneurons),
and the bin size for the histogram is 0.5 ms. The MFR for each
interneuron is calculated by following the membrane potential
during the averaging time of 2 × 104 ms after discarding the
transient time of 103 ms, and the bin size for the histogram is
2 Hz.

B. Sub- and whole-population variables

In computational neuroscience, an ensemble-averaged sub-
population potential V (I )

s (t) for the I th subnetwork (I =
1,2,3), containing L FS Izhikevich interneurons,

V (I )
s (t) = 1

L

L∑
i=1

v
(I )
i (t), (8)

and an ensemble-averaged whole-population potential for the
whole network with M (=3) subnetworks,

Vw(t) = 1

M

M∑
I=1

V (I )
s (t), (9)

are often used for describing the emergence of population
neural synchronization in the sub- and the whole populations,
respectively (e.g., sparse synchronization in a population
of subthreshold neurons was described in terms of an
ensemble-averaged global potential [19–21]). However, to
directly obtain V (I )

s (t) and Vw(t) in real experiments is very
difficult. To overcome this difficulty, instead of V (I )

s (t) and
Vw(t), we use experimentally obtainable instantaneous sub-
and whole-population spike rates which are often used as
collective quantities showing sub- and whole-population be-
haviors [3,13–18,64,70,71]. The instantaneous subpopulation
spike rate (ISPSR) R(I )

s (t) is obtained from the raster plot of
neural spikes, which is a collection of spike trains of individual
neurons in the I th subpopulation. Such raster plots of spikes,
where subpopulation spike synchronization may be well
visualized, are fundamental data in experimental neuroscience.
For the synchronous case, “stripes” (composed of spikes and
indicating subpopulation synchronization) are found to be
formed in the raster plot. Hence, for a synchronous case, an
oscillating ISPSR appears, while for an unsynchronized case
the ISPSR is nearly stationary. To obtain a smooth ISPSR, we
employ the kernel density estimation (kernel smoother) [79].
Each spike in the raster plot is convoluted (or blurred) with a
kernel function Kh(t) to obtain a smooth estimate of ISPSR
for the I th subnetwork, R(I )

s (t),

R(I )
s (t) = 1

L

L∑
i=1

n
(I )
i∑

s=1

Kh

(
t − t (I,i)

s

)
, (10)

where t (I,i)
s is the sth spiking time of the ith neuron in the

I th subnetwork, n
(I )
i is the total number of spikes for the ith

neuron in the I th subnetwork, and we use a Gaussian kernel
function of band width h:

Kh(t) = 1√
2πh

e−t2/2h2
, −∞ < t < ∞. (11)

Throughout the paper, the bandwidth of the Gaussian kernel es-
timate is h = 1 ms. Then the instantaneous whole-population
spike rate (IWPSR) kernel estimate Rw(t) for the whole
population is given by an average of the ISPSR kernel estimates
of the M(=3) subpopulations:

Rw(t) = 1

M

M∑
I=1

R(I )
s (t). (12)

Moreover, for the synchronous case, the subpopulation fre-
quency f (I )

p of the regularly oscillating ISPSR R(I )
s (t) may

be obtained from the one-sided power spectrum of �R(I )
s (t)

[=R(I )
s (t) − R

(I )
s (t)] with the mean-squared amplitude normal-

ization. The number of data for the power spectrum is 213, and
the overline denotes the time average.

C. Sub- and whole-population order parameters

As is well known, a conventional order parameter, based
on the ensemble-averaged global potential, is often used for
describing transition from synchronization to unsynchroniza-
tion in computational neuroscience [19–21,80–82]. Recently,
instead of the global potential, we used an experimentally
obtainable instantaneous population spike rate kernel estimate
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and developed a realistic order parameter for the case of
the nonmodular networks, which may be applicable in both
the computational and the experimental neuroscience [71].
For the case of modular networks, the mean-square deviation
of the ISPSR kernel estimate R(I )

s (t) for the I th subnetwork
(I = 1, 2, 3),

O(I )
s ≡ [

R
(I )
s (t) − R

(I )
s (t)

]2
, (13)

and the mean-square deviation of the IWPSR kernel estimate
Rw(t) for the whole network,

Ow ≡ [Rw(t) − Rw(t)]2, (14)

play the role of realistic sub- and whole-population order
parameters O(I )

s and Ow to determine a threshold for the
synchronization-unsynchronization transition, where the over-
bar represents the time average. Here each order parameter
is obtained through average over 20 realizations, and the
averaging time for the calculation of the order parameter in
each realization is 4 × 103 ms. Then the order parameters
O(I )

s and Ow, representing the time-averaged fluctuations of
R(I )

s (t) and Rw(t), approach nonzero (zero) limit values for the
synchronized (unsynchronized) state in the thermodynamic
limit of L → ∞. These order parameters may be regarded
as thermodynamic measures because they concern just the
macroscopic ISPSR and IWPSR kernel estimates R(I )

s (t) and
Rw(t) without any consideration between the macroscopic
ISPSR and IWPSR kernel estimates and microscopic indi-
vidual spikes.

D. Spatial cross-correlation functions

To further understand the synchronization-
unsynchronization transition, we consider the “microscopic”
dynamical cross correlations between neuronal pairs. For
obtaining dynamical pair cross correlations, each spike train
of the ith neuron in the I th subnetwork is convoluted with
a Gaussian kernel function Kh(t) of band width h to get a
smooth estimate of instantaneous individual spike rate (IISR)
r

(I )
i (t),

r
(I )
i (t) =

n
(I )
i∑

s=1

Kh

(
t − t (I,i)

s

)
, (15)

where t (I,i)
s is the sth spiking time of the ith neuron in the

I th subnetwork, n
(I )
i is the total number of spikes for the ith

neuron, and Kh(t) is given in Eq. (11). Then the normalized
temporal cross-correlation function C

(I )
i,j (τ ) between the IISR

kernel estimates r
(I )
i (t) and r

(I )
j (t) of the (i,j ) neuronal pair in

the I th subnetwork is given by

C
(I )
i,j (τ ) = �r

(I )
i (t + τ )�r

(I )
j (t)√

�r
(I )
i

2
(t)

√
�r

(I )
j

2
(t)

, (16)

where �r
(I )
i (t) = r

(I )
i (t) − r

(I )
i (t) and the overline denotes the

time average. Here the number of data used for the calculation
of each temporal cross-correlation function C

(I )
i,j (τ ) is 4 × 103.

Similar to the case of nonmodular small-world network [64],

we introduce the spatial cross-correlation function C
(I )
l (l =

1, . . . ,L/2) between neuronal pairs separated by a spatial
distance l in the I th subnetwork through average of all
the temporal cross correlations between r

(I )
i (t) and r

(I )
i+l(t)

(i = 1, . . . ,L) at the zero-time lag:

C
(I )
l = 1

L

L∑
i=1

C
(I )
i,i+l(0) for l = 1, . . . ,L/2. (17)

Here if i + l > L in Eq. (17), then i + l − L is considered
instead of i + l because neurons lie on the ring. If the spatial
cross-correlation function C

(I )
l (l = 1, . . . ,L/2) is nonzero in

the whole range of l, then the spatial correlation length ηI

becomes L/2 (note that the maximal distance between neurons
is L/2 because of the ring architecture on which neurons exist)
covering the whole subnetwork. For this case, synchronization
appears in the subnetwork; otherwise, unsynchronization
occurs.

E. Cross-correlation modularity measure

To determine the type of synchronization (modular or
global) in modular networks, we measure the matching degree
between the intramodular dynamics of subnetworks in terms
of the cross-correlation modularity measure CM , based on
ISPSRs. The normalized temporal cross-correlation function
CI,J (τ ) between the ISPSR kernel estimates R(I )

s (t) and R(J )
s (t)

of the I th and the J th subnetworks is given by

CI,J (τ ) = �R
(I )
s (t + τ )�R

(J )
s (t)√

�R
(I )
s

2
(t)

√
�R

(J )
s

2
(t)

, (18)

where �R(I )
s (t) = R(I )

s (t) − R
(I )
s (t) and the overline denotes

the time average. Figures 6(c1)–6(c5) show the normalized
temporal cross-correlation functions CI,J (τ ) for Jinter = 10,
30, 70, 400, and 1200, respectively. Then, the cross-correlation
modularity measure CM is obtained through average of the
temporal cross correlations between all the subpopulation pairs
at the zero-time lag:

CM = 2

M(M − 1)

M−1∑
I=1

M∑
J=I+1

CI,J (0). (19)

Here the cross-correlation modularity measure 〈CM〉r is ob-
tained through average over 20 realizations, and the number of
data used for the calculation of each temporal cross-correlation
function CI,J (τ ) in each realization is 4 × 103.

F. State diagram

Population states vary depending on the intermodular
connection parameters Jinter and M (inter)

syn , which may be well
shown in the state diagram in the Jinter-M (inter)

syn plane. To obtain
the state diagram, we first divide the Jinter-M (inter)

syn plane into
the 20 × 10 grids. Then, at each grid point, we calculate the
subpopulation order parameters O(I )

s (I = 1,2,3) for L = 103

and 104 to determine whether the population state at the grid
point is synchronized or unsynchronized. If O(I )

s for L = 104

is smaller than fO(I )
s for L = 103 (f is some appropriate

factor less than unity; for convenience we set f = 0.3), O(I )
s
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is expected to decrease with increasing L. For the case of
decrease in O(I )

s with increasing L, unsynchronization occurs
at the grid point; otherwise, synchronization appears. Next, at
the grid points where synchronization occurs, we calculate
the cross-correlation modularity measure CM to determine
whether the population synchronization is modular or global.
If CM is larger than a threshold Cth

M (in our computation, we
set Cth

M = 0.995), global synchronization is expected to appear
at the grid point; otherwise, modular synchronization occurs.
After determining the population states (modular or global
synchronization and unsynchronization) at all grid points, we
try to obtain the synchronization-unsynchronization and the
modular-global synchronization transition curves accurately.
To this end, we calculate O(I )

s (CM ) in the small parameter
region between the synchronization and unsynchronization
(the modular and global synchronization) grid points by
varying Jinter or M (inter)

syn . Moreover, to get more accurate
transition curves, we divide a part of the parameter plane where
the transition curves change rapidly into more minute grids and
repeat the above computations.

G. Sub- and whole-population statistical-mechanical
spiking measures

We measure the degree of modular and global sparse
synchronization in terms of realistic statistical-mechanical
sub- and whole-population spiking measures, based on the
ISPSR and the IWPSR kernel estimates R(I )

s (t) and Rw(t) [71].
Spike synchronization may be well visualized in the raster
plots of spikes. For a synchronized case, the raster plot
is composed of partially occupied stripes (indicating sparse
synchronization), and the corresponding ISPSR and IWPSR
kernel estimates, R(I )

s (t) (I = 1,2,3) and Rw(t), exhibit regular
oscillations. Each ith (i = 1,2,3, . . .) global cycles of R(I )

s (t)
and Rw(t) begin from their left minimum, pass the central
maximum, and end at the right minimum [also, corresponding
to the beginning point of the next (i + 1)th global cycles];
the first global cycles of R(I )

s (t) and Rw(t) appear after
transient times of 103 ms, respectively. Spikes which appear
in the ith global cycles of R(I )

s (t) and Rw(t) form the
ith stripes in the raster plots for the sub- and the whole

populations, respectively. To measure the degree of the sub-
and the whole-population spike synchronization seen in the
raster plots, statistical-mechanical sub- and whole-population
measures M (I )

s and M (w)
s , based on R(I )

s (t) and Rw(t), are
introduced by considering the occupation pattern and the
pacing pattern of spikes in the stripes for the sub- and the
whole populations, which corresponds to a simple extension
of the case of nonmodular networks [71]. The sub- and the
whole-population spiking measures M

(I )
i (I = 1, 2, 3) and

M
(w)
i of the ith stripes [appearing in the ith global cycles of

R(I )
s (t) and Rw(t)] are defined by the products of the sub-

and the whole-population occupation degrees O
(I )
i and O

(w)
i

of spikes (representing the density of the ith stripes) and the
sub- and the whole-population pacing degrees P

(I )
i and P

(w)
i of

spikes (denoting the smearing of the ith stripes), respectively:

M
(I )
i = O

(I )
i P

(I )
i and M

(w)
i = O

(w)
i P

(w)
i . (20)

The sub- and the whole-population occupation degrees O
(I )
i

and O
(w)
i in the ith stripes are given by the fractions of spiking

neurons in the ith stripes,

O
(I )
i = N

(s)
I,i

L
and O

(w)
i = N

(s)
w,i

ML
, (21)

where N
(s)
I,i and N

(s)
w,i are the numbers of spiking neurons

in the ith stripes for the I th subnetwork and the whole
network, respectively. For sparse synchronization with par-
tially occupied stripes, O

(I )
i 
 1 and O

(w)
i 
 1. The pacing

degrees P
(I )
i and P

(w)
i of sparse spikes in the ith stripes

for the sub- and the whole-populations can be determined
in a statistical-mechanical way by taking into account their
contributions to the macroscopic ISPSR and IWPSR kernel
estimates R(I )

s (t) and Rw(t), respectively. Instantaneous global
phases 
(I )

s (t) of R(I )
s (t) and 
w(t) of Rw(t) are introduced via

linear interpolation in the two successive subregions forming
global cycles [71]. The global phases 
(I )

s (t) and 
w(t)
between the left minimum (corresponding to the beginning
point of the ith global cycle) and the central maximum are
given by


(I )
s (t) = 2π (i − 3/2) + π

(
t − t

(min)
I,i

t
(max)
I,i − t

(min)
I,i

)
for t

(min)
I,i � t < t

(max)
I,i , (22)


w(t) = 2π (i − 3/2) + π

(
t − t

(min)
w,i

t
(max)
w,i − t

(min)
w,i

)
for t

(min)
w,i � t < t

(max)
w,i , (23)

and 
(I )
s (t) and 
w(t) between the central maximum and the right minimum [corresponding to the beginning point of the (i + 1)th

global cycle] are given by


(I )
s (t) = 2π (i − 1) + π

(
t − t

(max)
I,i

t
(min)
I,i+1 − t

(max)
I,i

)
for t

(max)
I,i � t < t

(min)
I,i+1, (24)


w(t) = 2π (i − 1) + π

(
t − t

(max)
w,i

t
(min)
w,i+1 − t

(max)
w,i

)
for t

(max)
w,i � t < t

(min)
w,i+1, (25)
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where t
(min)
I,i and t

(min)
w,i are the beginning times of the ith

(i = 1,2,3, . . .) global cycles of R(I )
s (t) and Rw(t) [i.e., the

times at which the left minima of R(I )
s (t) and Rw(t) appear

in the ith global cycles], respectively, and t
(max)
I,i and t

(max)
w,i are

the times at which the maxima of R(I )
s (t) and Rw(t) appear in

the ith global cycles, respectively. Then, the contributions of
the kth microscopic spikes in the ith stripes occurring at the
times t

(s)
I,k and t

(s)
w,k to R(I )

s (t) and Rw(t) are given by cos 

(I )
k

and cos 

(w)
k , where 


(I )
k and 


(w)
k are the global phases at the

kth spiking times [i.e., 
(I )
k ≡ 
(I )

s (t (s)
I,k) and 


(w)
k ≡ 
w(t (s)

w,k)].
Microscopic spikes make the most constructive (in-phase)
contributions to R(I )

s (t) and Rw(t) when the corresponding
global phases 


(I )
k and 


(w)
k are 2πn (n = 0,1,2, . . . ), while

they make the most destructive (antiphase) contribution to
R(I )

s (t) and Rw(t) when 

(I )
k and 


(w)
k are 2π (n − 1/2). By

averaging the contributions of all microscopic spikes in the ith
stripes to R(I )

s (t) and Rw(t), we obtain the pacing degrees P
(I )
i

and P
(w)
i of spikes in the ith stripes,

P
(I )
i = 1

S
(I )
i

S
(I )
i∑

k=1

cos 

(I )
k and P

(w)
i = 1

S
(w)
i

S
(w)
i∑

k=1

cos 

(w)
k ,

(26)

where S
(I )
i and S

(w)
i are the total numbers of microscopic

spikes in the ith stripes for the sub- and the whole population,
respectively. By averaging M

(I )
i and M

(w)
i of Eq. (20) over

a sufficiently large number Ns of stripes, we obtain the sub-
and whole-population statistical-mechanical spiking measures
M (I )

s and M (w)
s :

M (I )
s = 1

Ns

Ns∑
i=1

M
(I )
i and M (w)

s = 1

Ns

Ns∑
i=1

M
(w)
i . (27)

Here we follow 3 × 103 global cycles in each realization, and
obtain average occupation degrees, average pacing degrees,
and average statistical-mechanical spiking measures via aver-
age over 20 realizations.

IV. EFFECT OF INTERMODULAR CONNECTION ON
FAST SPARSELY SYNCHRONIZED RHYTHMS

In this section, we investigate the effect of intermodular
connection on the emergence of fast sparsely synchronized
rhythms by varying both the intermodular coupling strength
Jinter and the average number of intermodular links per
interneuron M (inter)

syn in the clustered small-world network of
inhibitory FS Izhikevich interneurons. In contrast to the case
of nonmodular networks, two kinds of sparsely synchronized
states such as modular and global sparse synchronization are
thus found. These sparsely synchronized states are charac-
terized by employing diverse realistic measures, explained in
Sec. III.

In the absence of intermodular coupling, we consider three
cases of the intramodular dynamics in the Watts-Strogatz
small-world subnetworks: (1) synchronized in all identical
subnetworks, (2) unsynchronized in all identical subnetworks,
and (3) synchronized and/or unsynchronized in nonidentical
subnetworks. For each case, we study the emergence of

FIG. 2. Fast sparse synchronization in identical small-world
subnetworks with prewiring = 0.25 (case 1) in the absence of inter-
modular coupling. (a) Raster plot of neural spikes and (b) ISPSR
kernel estimate R(I )

s (t). (c) One-sided power spectrum of �R(I )
s (t)

[=R(I )
s (t) − R

(I )
s (t)] with the mean-squared amplitude normalization.

(d) Interspike interval (ISI) histogram for the individual interneurons;
the vertical dotted lines denote integer multiples of the global period
TI (�6.8 ms) of R(I )

s (t). (e) MFR (mean firing rate) distribution of
individual interneurons.

sparsely synchronized population states by changing both Jinter

and M (inter)
syn for a fixed set of Idc, D, M (intra)

syn , and J (intra)
syn (whose

values are listed in Table I). In Sec. IV A, we start from
the first case of intramodular dynamics. To further examine
dependence on the type of intramodular dynamics, we also
study the second and the third cases in the Sec. IV B.

A. First case of intramodular dynamics: Synchronized
in all identical subnetworks

In this section, we consider the first case of intramodular dy-
namics which are synchronized in three identical small-world
subnetworks with the same rewiring probability prewiring =
0.25. In the absence of intermodular coupling (i.e., Jinter = 0),
every subpopulation in the small-world subnetworks exhibits
identical sparse synchronization, as shown in Fig. 2. Clear
stripes are formed in the raster plot of Fig. 2(a). The density
of stripes is sparse because only a small fraction (about
0.22) of the total L (=103) neurons in the subpopulation fire
in each stripe. Due to presence of these sparse stripes, the
ISPSR kernel estimate R(I )

s (t) shows fast regular oscillation
with subpopulation frequency f (I )

p � 147 Hz, as shown in
Figs. 2(b)–2(c). For the case of individual neurons, the ISI
histogram has multiple peaks appearing at multiples of the
period TI (�6.8 ms) of R(I )

s (t) (i.e., skipping of spikes occurs
at random integer multiples of TI ) [see Fig. 2(d)]. Because
of this stochastic spike skipping (also called the stochastic
phase locking) [19–21,64,70,71,83–85], individual neurons
exhibit stochastic and intermittent spike discharges; hence,
partial occupation occurs in the stripes of the raster plot. In
contrast to subpopulation rhythms, the distribution of MFRs
of individual neurons shows a peak near f

(I )
i (�33 Hz)

which is much less than the subpopulation frequency f (I )
p [see
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FIG. 3. Modular and global sparse synchronization for the first case of intramodular dynamics with prewiring = 0.25. M (inter)
syn = 20 in (a)–(f4).

Raster plots of neural spikes in the subnetworks (I = 1,2,3) for Jinter = 10 (a), 500 (b), and 2500 (c). Instantaneous sub- and whole-population
spike rate kernel estimates, R(I )

s (t) (I = 1,2,3) and Rw(t): Jinter = 10 (d1)–(d4), 500 (e1)–(e4), and 2500 (f1)–(f4). Vertical gray lines for
Jinter = 10 and 500 pass minima of Rw(t), and the minima of R(I )

s (t) [Rw(t)] are denoted by solid (open) circles. (g) State diagram in the
Jinter-M (inter)

syn plane.

Fig. 2(e)]. In this way, firing activity of individual neurons
differs distinctly from the population oscillatory behavior for
the case of sparse synchronization [3,13–18,64,70,71]. For
more details on the sparse synchronization in the (nonmodular)
small-world network, refer to [64].

From now on, we employ the methods for characterizing
population dynamics in Sec. III and investigate the effect of
intermodular connection on sparse synchronization by chang-
ing the intermodular coupling strength Jinter for M (inter)

syn = 20.
Figures 3(a)–3(c) show the raster plots of spikes in the three
subpopulations for Jinter = 10, 500, and 2500, respectively.
The corresponding ISPSR and IWPSR kernel estimates,

R(I )
s (t) and Rw(t) of Eqs. (10) and (12), for Jinter = 10, 500,

and 2500 are also shown in Figs. 3(d1)–3(f4), respectively.
For small Jinter, the intermodular coupling strength plays a
constructive role to favor the pacing between spikes in each
subnetwork, as shown in the case of Jinter = 10. For each I th
subpopulation, sparse stripes are formed in the raster plot and
R(I )

s (t) shows a regular oscillation, as shown in Figs. 3(a)
and 3(d1)–3(d4). Hence, each subpopulation exhibits sparse
synchronization. However, the intramodular dynamics of
subnetworks make some mismatching because both the stripes
and the ISPSRs between the subnetworks are shifted. Vertical
gray lines which pass minima of Rw(t) are drawn as reference
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lines for matching between R(I )
s (t) (I = 1,2,3) [where the min-

ima of R(I )
s (t) [Rw(t)] are denoted by solid (open) circles]. As a

result of mismatching, the degree of sparse synchronization in
the whole population becomes less than that in the subnetworks
[i.e., the amplitude of Rw(t) is less than that of R(I )

s (t)], and
this kind of population behavior for Jinter = 10 is referred
to as the modular sparse synchronization because it reveals
the modular structure. With increasing Jinter, the mismatching
degree between the intramodular dynamics of subnetworks
decreases, although the stripes in the raster plots become more
sparse due to increased inhibition. Eventually, when passing a
threshold J ∗

inter (�268), intramodular dynamics of subnetworks
begin to make perfect matching. As a result, the population
behavior becomes globally identical, independently of the
cluster structure, as shown in Figs. 3(b) and 3(e1)–3(e4) for
Jinter = 500 [where all the minima of R(I )

s (t)(I = 1,2,3) lie
on the reference vertical line passing the minima of Rw(t)],
and it is referred to as the global sparse synchronization.
However, for sufficiently large Jinter, due to strong inhibition
the intermodular coupling strength plays a destructive role
to spoil the pacing between sparse spikes. Hence, as Jinter
passes a higher critical value J ∗

inter,h (�1657) the global
sparse synchronization breaks into unsynchronization. As an
example, refer to the case of Jinter = 2500. Sparse spikes in
the raster plot of each subnetwork are completely scattered
without forming any stripes [see Fig. 3(c)]; hence, each ISPSR
kernel estimate R(I )

s (t) becomes nearly stationary (i.e., every
subnetwork exhibits an unsynchronized state), as shown in
Figs. 3(f1)–3(f4). We now vary not only Jinter but also M (inter)

syn ,
and investigate emergence of modular and global sparse
synchronization in the whole Jinter-M (inter)

syn plane by using
the method explained in Sec. III F. Thus, we obtain the state
diagram in Fig. 3(g). Modular sparse synchronization emerges
for small Jinter or M (inter)

syn in the “L”-shaped gray region, while
in the dark gray region global sparse synchronization appears.
For large Jinter (>1572), unsynchronization occurs between
the modular and the global synchronization. Changes in the
population behaviors along routes I, II, and III in Fig. 3(g) are
given in the following sections.

1. Effect of the intermodular coupling strength on population
synchronization along route I

In order to study the effect of the intermodular coupling
Jinter on the population synchronization, we consider the case
of route I with M (inter)

syn = 20. Some results for this case are
given for Jinter = 10, 500, and 2500 in Figs. 3(a)–3(f4). As
Jinter is increased, a transition from modular sparse synchro-
nization to global sparse synchronization when passing a
threshold J ∗

inter(�268) and eventually to unsynchronization
when passing a higher threshold J ∗

inter,h(�1657) occurs. The
higher threshold J ∗

inter,h for the transition to unsynchronization
is determined through calculation of the sub- and the whole-
population order parameters 〈O(I )

s 〉r and 〈Ow〉r of Eqs. (13)
and (14), where 〈· · · 〉r denotes an average over realizations.
Figures 4(a1)–4(a4) show plots of 〈O(I )

s 〉r and 〈Ow〉r versus
Jinter. For Jinter < J ∗

inter,h (�1657), synchronized states exist
because the values of 〈O(I )

s 〉r and 〈Ow〉r become saturated to
nonzero limit values for large L. When passing the higher
threshold threshold J ∗

inter,h, a transition to unsynchronization
occurs because the order parameters 〈O(I )

s 〉r and 〈Ow〉r tend to

zero as L → ∞. These unsynchronized states seem to appear
due to a destructive effect of strong inhibition spoiling the
pacing between sparse spikes. Here we present two explicit
examples for the synchronized and the unsynchronized states.
First, we consider the synchronized case for Jinter = 1600. For
L = 103, sparse stripes are formed in the raster plot of spikes
for each subnetwork, and the ISPSR and the IWPSR kernel
estimates R(I )

s (t) and Rw(t) show regular oscillations, although
there are some variations in the amplitudes [see Figs. 4(b)
and 4(d)]. As L is increased to L = 104, stripes in the raster
plots become more clear, and R(I )

s (t) and Rw(t) display more
regular oscillations with nearly the same amplitudes, as shown
in Figs. 4(c) and 4(e). Consequently, the population state for
Jinter = 1600 seems to be synchronized because R(I )

s (t) and
Rw(t) tend to show more regular oscillations as L goes to the
infinity. As a second example, we consider the unsynchronized
case of Jinter = 1700. As shown in Fig. 4(f) for L = 103,
sparse spikes are scattered without forming any stripes in
the raster plot, and R(I )

s (t) and Rw(t) in Fig. 4(h) show little
noisy fluctuations. In contrast to the synchronized case, as L

is increased to L = 104, sparse spikes become more scattered,
and consequently R(I )

s (t) and Rw(t) become nearly stationary,
as shown in Figs. 4(g) and 4(i). Hence, the population state for
Jinter = 1700 seems to be unsynchronized because R(I )

s (t) and
Rw(t) tend to be nearly stationary as L increases to the infinity.

In order to further understand the above synchronization-
unsynchronization transition, we investigate the effect of
intermodular connection on the “microscopic” dynamical
cross-correlations between neuronal pairs. As examples, we
reconsider the same cases of Jinter = 1600 and 1700 as in
Fig. 4. Figure 5(a1) shows the plots of the spatial cross-
correlation functions C

(I )
l of Eq. (17) versus l for L = 103 in

the case of Jinter = 1600. These spatial correlation functions
C

(I )
l are nearly nonzero constant (�0.04) in the whole range

of l; hence, the correlation length ηI becomes L/2 (=500),
covering all of the subnetworks (note that the maximal distance
between neurons is L/2 because of the ring architecture
on which neurons exist). Consequently, each subnetwork is
composed of just one single synchronized block. For L = 104,
the flatness of C

(I )
l in Fig. 5(a2) also extends to the whole

range (l = L/2 = 5000) of the I th subnetwork; hence, the
correlation length becomes ηI = 5000, which also covers the
whole subnetwork. In this way, for Jinter = 1600, due to a
constructive role of Jinter favoring the pacing between sparse
spikes, the correlation length ηI seems to cover the whole
subnetwork, independently of L. For this case, the normalized
correlation length η̃I (= ηI

L
), representing the ratio of the

correlation length ηI to the subnetwork size L (i.e., denoting
the relative size of synchronized blocks when compared to the
whole subnetwork size), has a nonzero limit value, 1/2, and
consequently synchronization emerges in each subnetwork.
In contrast, for Jinter = 1700 the spatial cross-correlation
functions C

(I )
l are nearly zero, independently of L, as shown in

Figs. 5(b1) and 5(b2). For this case, due to a destructive role of
Jinter spoiling the pacing between sparse spikes, the correlation
length ηI becomes nearly zero; hence, no synchronization
occurs in each subnetwork.

We now investigate the type of synchronization
through measurement of the matching degree between the
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FIG. 4. Realistic thermodynamic order parameters for measurement of the threshold for the synchronization-unsynchronization transition
along route I with M (inter)

syn = 20 for the first case of intramodular dynamics with prewiring = 0.25. (a1)–(a4) Plots of the sub- and the whole-
population order parameters log10 O(I )

s (I = 1,2,3) and log10 Ow versus Jinter. Sparse synchronization for Jinter = 1600: raster plots of neural
spikes in the three subnetworks for (b) L = 103 and (c) L = 104 and instantaneous sub- and whole-population spike rate kernel estimates
R(I )

s (t) (I = 1,2,3) and Rw(t) for (d) L = 103 and (e) L = 104. Unsynchronization for Jinter = 1700: raster plots of neural spikes in the three
subnetworks for (f) L = 103 and (g) L = 104 and instantaneous sub- and whole-population spike rate kernel estimates R(I )

s (t) (I = 1,2,3) and
Rw(t) for (h) L = 103 and (i) L = 104.

intramodular dynamics in subnetworks in the synchronized
range of 0 < Jinter < J ∗

inter,h(�1657) along route I in Fig. 3(g).
Figures 6(a1)–6(a5) show the raster plots of spikes in the
three subnetworks for Jinter = 10, 30, 70, 400, and 1200,
respectively. The ISPSR and the IWPSR kernel estimates,
R(I )

s (t) and Rw(t), for Jinter = 10, 30, 70, 400, and 1200
are also shown in Figs. 6(b1)–6(b5), respectively. For each
I th subpopulation, sparse stripes are formed in the raster
plot of spikes and the ISPSR kernel estimate R(I )

s (t) shows

a regular oscillation with global frequency f (I )
p � 147 Hz.

Hence, each subpopulation shows sparse synchronization. For
the case of modular sparse synchronization for Jinter = 10,
30, and 70, the intramodular dynamics of subnetworks make
some mismatching because both the stripes and the ISPSR
kernel estimates between the subnetworks are shifted [see
Figs. 6(b1)–6(b3) where the minima of R(I )

s (t) (denoted by
solid circles) lie off the reference vertical lines which pass
the minima of Rw(t) (represented by open circles)]. Hence,
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FIG. 5. Spatial cross-correlation functions for the synchronized
and the unsynchronized states along route I with M (inter)

syn = 20 for
the first case of intramodular dynamics with prewiring = 0.25. Sparse
synchronization for Jinter = 1600 with the spatial correlation length
ηI covering the whole subnetwork: spatial cross-correlation functions
C

(I )
l in the three subnetworks (I = 1,2,3) for (a1) L = 103 and

(a2) L = 104. Unsynchronization for Jinter = 1700 with ηI � 0:
spatial cross-correlation functions C

(I )
l in the three subnetworks for

(b1) L = 103 and (b2) L = 104.

the amplitude of Rw(t) becomes less than that of R(I )
s (t). As

Jinter is increased, the mismatching degree decreases; hence,
the amplitude of Rw(t) increases. Eventually, when passing a
threshold J ∗

inter (�268) global sparse synchronization occurs.
Hence, for Jinter = 400 and 1200, intramodular dynamics of
subnetworks (shown in their raster plots and ISPSR kernel
estimates) make perfect matching [i.e., the minima of R(I )

s (t)
lie on the reference vertical lines, as shown in Figs. 6(b4) and
6(b5)]; hence, the amplitude of Rw(t) becomes the same as
that of R(I )

s (t). The matching degree between the intramod-
ular dynamics of subnetworks may be measured through
calculation of the cross-correlation modularity measure CM

of Eq. (19). Figure 6(d) shows the plot of 〈CM〉r versus
Jinter where 〈· · · 〉r denotes average over realizations. As Jinter

is increased, 〈CM〉r increases monotonically, and eventually,
when passing the threshold J ∗

inter (�268), its value becomes 1.
Hence, for Jinter < J ∗

inter modular sparse synchronization (with
〈CM〉r < 1) emerges, while global sparse synchronization
(with 〈CM〉r = 1) appears for J ∗

inter < Jinter < J ∗
inter,h.

We also measure the degree of modular and global sparse
synchronization in the synchronized range of 0 < Jinter <

J ∗
inter,h. As shown in Figs. 6(a1)–6(a5), spike synchronization

may be well visualized in the raster plots of spikes. For
a synchronous case, “stripes” (composed of spikes and
representing population synchronization) appear successively
in the raster plot. For measurement of the degree the
sub- and the whole-population spike synchronization seen
in the raster plots, realistic statistical-mechanical sub- and
whole-population measures M (I )

s and M (w)
s are introduced by

considering the occupation pattern (representing the density
of the stripes) and the pacing pattern (denoting the smearing
of the stripes) of spikes in the stripes for the sub- and the
whole-populations, as explained in Sec. III G. By varying Jinter,
we follow 3 × 103 stripes (i.e., 3 × 103 global cycles) in each
realization, and through an average over 20 realizations we
obtain the sub- and the whole-population occupation degrees
〈O(I )

s 〉r and 〈Ow〉r of Eq. (21), the sub- and the whole-
population pacing degrees 〈P (I )

s 〉r and 〈Pw〉r of Eq. (26), and
the statistical-mechanical sub- and whole-population spiking
measures M (I )

s and M (w)
s of Eq. (27), and the results are shown

in Figs. 7(a1)–7(c4). For the case of modular synchronization
[occurring on the left region of the vertical dotted threshold line
for Jinter = J ∗

inter (�268)], both the occupation degree 〈Ow〉r
and the pacing degree 〈Pw〉r for the whole-population are less
than those for the subpopulations because of mismatching
between the intramodular dynamics of subnetworks. As Jinter

is increased, their mismatching degrees become smaller, and
eventually 〈Ow〉r and 〈Pw〉r for the whole population become
the same as those for the subpopulations for the case of
global synchronization (occurring on the right region of the
vertical dotted threshold line) due to perfect matching between
the intramodular dynamics of subnetworks. We first consider
the occupation degree which characterizes the sparseness
degree of population synchronization. For the subpopulations,
the occupation degrees 〈O(I )

s 〉r decrease monotonically be-
cause of increase in inhibition with increasing Jinter. In
the case of modular synchronization, typical IWPSR kernel
estimates Rw(t) show faster and smaller-amplitude oscilla-
tions with the whole-population frequency f (w)

p larger than
the subpopulation frequency f (I )

p ; hence, the occupation
degree 〈Ow〉r for the whole-population becomes less than
〈O(I )

s 〉r . As Jinter is increased, 〈Ow〉r increases and ap-
proaches 〈O(I )

s 〉r due to decrease in the mismatching degree
between the intramodular dynamics of subnetworks, and
eventually when passing the threshold J ∗

inter (i.e., in the
case of global synchronization) they become the same and
then decrease with increasing Jinter. We note that modular
and global synchronization is sparse one because 〈O(I )

s 〉r is
much less than unity [i.e., only a small fraction of the total
L (=103) neurons in the subpopulation fire in each stripe].
Next we consider the pacing degree between spikes in the
stripes. For relatively small Jinter, with increasing Jinter the
subpopulation pacing degree 〈P (I )

s 〉r increases due to a con-
structive role of Jinter favoring the pacing between spikes, while
for large Jinter 〈P (I )

s 〉r decreases as Jinter is increased because
of a destructive role of Jinter spoiling the pacing between
spikes. Through competition between these constructive and
destructive roles of Jinter a “plateau” with high pacing degree is
formed in a relatively wide region of intermediate Jinter for the
case of global sparse synchronization. The whole-population
pacing degree 〈Pw〉r (which is less than or equal to 〈P (I )

s 〉r )
also exhibits similar behavior. Consequently, both the sub- and
the whole-population statistical-mechanical spiking measures
M (I )

s and M (w)
s (which are obtained by taking into consideration

both the occupation and the pacing degrees of spikes in the
stripes) show bell-shaped curves with their peaks at Jinter �
202 (corresponding to modular sparse synchronization) and
Jinter � 287 (corresponding to global sparse synchronization),
respectively. For further understanding of the pacing degree
between spikes, we also consider the spatial cross correlations
between neuronal pairs. Figures 7(d1)–7(d5) show the spatial
cross-correlation functions C

(I )
l of Eq. (17) for Jinter = 10,

30, 70, 400, and 1200, respectively. For the case of relatively
small Jinter, with increasing Jinter the value of C

(I )
l increases,

but it decreases for large Jinter. For quantitative analysis, we
introduce the subpopulation spatial cross-correlation degree
〈〈C(I )

l 〉l〉r given by double averaging of the spatial cross-
correlation function C

(I )
l over all lengths l and realizations.

This subpopulation spatial cross-correlation degree 〈〈C(I )
l 〉l〉r
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FIG. 6. Realistic cross-correlation modularity measure for determining the threshold for modular-global sparse synchronization transition
along route I with M (inter)

syn = 20 for the first case of intramodular dynamics with prewiring = 0.25. Raster plots of neural spikes in the subnetworks
(I = 1,2,3) for Jinter = (a1) 10, (a2) 30, (a3) 70, (a4) 400, and (a5) 1200. Instantaneous sub- and whole-population spike rate kernel estimates
R(I )

s (I = 1,2,3) and Rw(t) for Jinter = (b1) 10, (b2) 30, (b3) 70, (b4) 400, and (b5) 1200. Vertical gray lines pass minima of Rw(t), and the
minima of R(I )

s (t) [Rw(t)] are represented by solid (open) circles. Temporal cross-correlation functions CI,J (τ ) between the ISPSR kernel
estimates R(I )

s (t) and R(J )
s (t) of the subnetworks I and J for Jinter = (c1) 10, (c2) 30, (c3) 70, (c4) 400, and (c5) 1200. (d) Plot of the

cross-correlation modularity measure 〈CM〉r versus Jinter.

is a microscopic measure quantifying the cross-correlation
degree between the microscopic IISR kernel estimates r

(I )
i (t)

without any explicit relation to the macroscopic occupation
and pacing patterns of spikes. Figure 7(e) shows plots of
〈〈C(I )

l 〉l〉r (obtained through averaging over 20 realizations)
versus Jinter for I = 1, 2, and 3. Similar to the case of the

subpopulation pacing degree 〈P (I )
s 〉r , 〈〈C(I )

l 〉l〉r also display
similar bell-shaped curves with peaks in the region of global
synchronization. Hence, the statistical-mechanical pacing de-
gree between spikes seems to be somewhat associated with the
microscopic spatial cross-correlation degree between neuronal
pairs.
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FIG. 7. Realistic statistical-mechanical spiking measure for mea-
surement of the degree of modular and global sparse synchronization
along route I with M (inter)

syn = 20 for the first case of intramodular
dynamics with prewiring = 0.25. Vertical dotted lines in (a1)–(c4) and
(e) represent the threshold of J = J ∗

inter (�268). (a1)–(a4) Plots of the
sub- and the whole-population occupation degrees 〈O (I )

s 〉
r

and 〈Ow〉r

versus Jinter. (b1)–(b4) Plots of the sub- and the whole-population
pacing degrees 〈P (I )

s 〉
r

and 〈Pw〉r versus Jinter. (c1)–(c4) Plots of
the sub- and the whole-population statistical-mechanical spiking
measures 〈M (I )

s 〉
r

and 〈M (w)
s 〉

r
versus Jinter. Spatial cross-correlation

functions C
(I )
l in the three subnetworks for Jinter = (d1) 10, (d2)

30, (d3) 70, (d4) 400, and (d5) 1200. (e) Plot of the spatial
cross-correlation degree 〈〈C(I )

l 〉
l
〉
r

versus Jinter.

2. Effect of the average number of intermodular connections
along routes II and III

In addition to the above study on the effect of Jinter

along route I for M (inter)
syn = 20, we also investigate the

effect of average number of intermodular connections per
interneuron M (inter)

syn on emergence of modular and global
sparse synchronization along routes II and III for Jinter = 500
and 2500, respectively [see Fig. 3(g)]. For the case of route
II with Jinter = 500, the raster plots of spikes in the three
subpopulations for M (inter)

syn = 2, 5, 20, and 50 are shown in
Figs. 8(a1)–8(a4), respectively. The corresponding ISPSR and
IWPSR kernel estimates, R(I )

s (t) and Rw(t), for M (inter)
syn = 2, 5,

20, and 50 are also shown in Figs. 8(b1)–8(b4), respectively.
For each I th subpopulation, sparse stripes are formed in the
raster plot and the ISPSR kernel estimate R(I )

s (t) shows a
regular oscillation. As M (inter)

syn is increased, more clear stripes
appear in the raster plots of subnetworks; hence, the amplitudes
of R(I )

s (t) increase. Furthermore, with increasing M (inter)
syn ,

the mismatching degree between the intramodular dynamics
of subnetworks decreases, and eventually when passing a
threshold M (inter)

syn
∗

(�9) perfect matching occurs. Figure 8(c)
shows the plot of the cross-correlation modularity measure

〈CM〉r of Eq. (19) versus M (inter)
syn . Thus, for M (inter)

syn < M (inter)
syn

∗

modular sparse synchronization with 〈CM〉r < 1 emerges,
while global sparse synchronization with 〈CM〉r = 1 appears
for M (inter)

syn > M (inter)
syn

∗
. In this way, with increasing M (inter)

syn
the pacing degree between spikes increases monotonically,
thanks to the increase in the degree of effectiveness of global
communication between spikes. Hence, M (inter)

syn plays only
a constructive role to favor the pacing between spikes in
subnetworks as well as the matching between the intramodular
dynamics of the subnetworks, in contrast to dual roles of Jinter

for the case of route I. Hence, unsynchronization does not
appear. This constructive role of M (inter)

syn may be seen explicitly
in Figs. 8(d1) and 8(f2). We first consider the occupation
degree which characterizes the sparseness degree of spike
synchronization. For the case of modular synchronization, the
subpopulation occupation degree 〈O(I )

s 〉r in the subnetworks
decreases a little with increasing M (inter)

syn , while 〈O(I )
s 〉r remains

nearly constant for the case of global synchronization. On
the other hand, as M (inter)

syn is increased the whole-population
occupation degree 〈Ow〉r increases and approaches 〈O(I )

s 〉r
because of the decrease in the mismatching degree between
the intramodular dynamics of the subnetworks, and eventually
when passing the threshold M (inter)

syn
∗

they become the same and
then remain nearly constant with increasing M (inter)

syn . Hence,
the constant behavior of 〈O(I )

s 〉r and 〈Ow〉r for the case of
global synchronization (which may occur because the average
inhibition given to each neuron is the same for constant
intermodular coupling strength, independently of M (inter)

syn ) is in
contrast to the monotonically decreasing behavior of 〈O(I )

s 〉r
and 〈Ow〉r for the case of route I [refer to Figs. 7(a1)–
7(a4)]. Since 〈O(I )

s 〉r < 1 [i.e., only a small fraction of the
total L(=103) neurons in the subpopulation fire in each
stripe], modular and global synchronization is sparse. Next
we consider the pacing degree between spikes in the stripes.
For both cases of modular and global sparse synchronization,
with increasing M (inter)

syn both the sub- and the whole-population
pacing degrees 〈P (I )

s 〉r and 〈Pw〉r increase monotonically due
to a constructive role of M (inter)

syn favoring the pacing between
the spikes, in contrast to the bell-shaped behavior for the case
of route I [refer to Figs. 7(b1)–7(b4)]. Consequently, both the
sub- and the whole-population statistical-mechanical spiking
measures M (I )

s and M (w)
s (which are given by the products

of the sub- and the whole-population occupation and pacing
degrees) increase monotonically in both cases of modular and
global sparse synchronization, which is also in contrast to
the case of route I [refer to Figs. 7(c1)–7(c4)]. To further
understand the pacing degree between spikes in the stripes,
we consider the subpopulation spatial cross-correlation degree
〈〈C(I )

l 〉l〉r between neuronal pairs [given by double averaging
of the spatial cross-correlation function C

(I )
l of Eq. (17) over all

lengths l and realizations]. Figure 8(g) shows plots of 〈〈C(I )
l 〉l〉r

(obtained via average over 20 realizations) versus M (inter)
syn for

I = 1, 2, and 3. Similar to the case of the subpopulation pacing
degree 〈P (I )

s 〉r , 〈〈C(I )
l 〉l〉r also displays monotonic increasing

behavior. Hence, the statistical-mechanical pacing degree
between spikes seems to be associated with the microscopic
spatial cross-correlation degree between neuronal pairs, like
the case of route I.

052716-14



EFFECT OF INTERMODULAR CONNECTION ON FAST . . . PHYSICAL REVIEW E 92, 052716 (2015)

FIG. 8. Modular and global sparse synchronization along route II with Jinter = 500 for the first case of intramodular dynamics with
prewiring = 0.25. Raster plots of neural spikes in the subnetworks (I = 1,2,3) for M (inter)

syn = 2 (a1), 5 (a2), 20 (a3), and 50 (a4). Instantaneous
sub- and whole-population spike rate kernel estimates R(I )

s (t) (I = 1,2,3) and Rw(t) for M (inter)
syn = 2 (b1), 5 (b2), 20 (b3), and 50 (b4). Vertical

gray lines pass minima of Rw(t), and the minima of R(I )
s (t) [Rw(t)] are represented by solid (open) circles. (c) Plot of the cross-correlation

modularity measure 〈CM〉r versus M (inter)
syn . Vertical dotted lines in (d1)–(g) denote the threshold M (inter)

syn
∗(�9). (d1),(d2) Plots of the sub- and

whole-population occupation degrees 〈O (I )
s 〉

r
and 〈Ow〉r versus M (inter)

syn . (e1),(e2) Plots of the sub- and the whole-population pacing degrees
〈P (I )

s 〉
r

and 〈Pw〉r versus M (inter)
syn . (f1),(f2) Plots of the sub- and the whole-population statistical-mechanical spiking measures 〈M (I )

s 〉
r

and

〈M (w)
s 〉

r
versus M (inter)

syn . (g) Plot of the spatial cross-correlation degree 〈〈C(I )
l 〉

l
〉
r

versus M (inter)
syn .

We also investigate the emergence of modular and global
sparse synchronization by increasing M (inter)

syn along route III
for Jinter = 2500 (which is much larger than that for the case
of route II). Unlike the case of route II, for small M (inter)

syn
a destructive effect to decrease the pacing degree between
spikes occurs due to strong inhibition for Jinter = 2500; hence,
when passing a lower threshold M

(inter)
syn,l

∗
(�6) a transition

from modular sparse synchronization to unsynchronization
occurs. However, with further increase in M (inter)

syn a constructive
effect of M (inter)

syn to favor the pacing between spikes and
the matching between the intramodular dynamics of subnet-
works overcomes the destructive effect of strong inhibition.
Consequently, a transition to global sparse synchronization
occurs when passing a higher threshold M

(inter)
syn,h

∗
(�26). These

results are well shown in Figs. 9(a1)–9(h). The raster plots
of spikes in the three subpopulations for M (inter)

syn = 1, 5, 20,
30, and 50 are shown in Figs. 9(a1)–9(a5), respectively. The
corresponding ISPSR and IWPSR kernel estimates, R(I )

s (t)
and Rw(t), for M (inter)

syn = 1, 5, 20, 30, and 50 are also shown in
Figs. 9(b1)–9(b5), respectively. For each I th subpopulation,
sparse stripes are formed in the raster plot and R(I )

s (t) shows
a regular oscillation, except for the unsynchronized case of
M (inter)

syn = 20, where spikes are scattered without forming
stripes in the raster plot and R(I )

s (t) is nearly stationary.
Figures 9(c1)–9(c4) show the sub- and the whole-population

order parameters O(I )
s and Ow, which determine a threshold

for the synchronization-unsynchronization transition. In the
region of M

(inter)
syn,l

∗
< M (inter)

syn < M
(inter)
syn,h

∗
, both O(I )

s and Ow

tend to zero in the thermodynamic limit of L → ∞; hence,
unsynchronized states appear due to a destructive effect of
strong inhibition. On the other hand, for M (inter)

syn < M
(inter)
syn,l

∗

or M (inter)
syn > M

(inter)
syn,h

∗
, the values of 〈O(I )

s 〉r and 〈Ow〉r be-
come saturated to nonzero limit values for large L; hence,
synchronized states exist. Particularly, for M (inter)

syn > M
(inter)
syn,h

∗

sparsely synchronized states appear due to a constructive effect
of M (inter)

syn favoring the pacing between spikes. The type of
sparse synchronization may be determined in terms of the
cross-correlation modularity measure CM of Eq. (19), which is
shown in Fig. 9(d). For M (inter)

syn < M
(inter)
syn,l

∗
modular sparse syn-

chronization with 〈CM〉r < 1 (i.e., some mismatching between
the intramodular dynamics of subnetworks) emerges, while
global sparse synchronization with 〈CM〉r = 1 (i.e., perfect
matching between the intramodular dynamics of subnetworks)
appears for M (inter)

syn > M
(inter)
syn,h

∗
. The degree of synchronization

is also measured in terms of the occupation degrees, the pacing
degrees, and the statistical-mechanical spiking measures in
the sub- and the whole populations, which are shown in
Figs. 9(e1)–9(g2). We first consider the case of modular sparse
synchronization. As Msyn is increased, both the occupation
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FIG. 9. Modular and global sparse synchronization along route III with Jinter = 2500 for the first case of intramodular dynamics with
prewiring = 0.25. Raster plots of neural spikes in the subnetworks (I = 1,2,3) for M (inter)

syn = 1 (a1), 5 (a2), 20 (a3), 30 (a4), and 50 (a5).
Instantaneous sub- and whole-population spike rate kernel estimates R(I )

s (t) (I = 1,2,3) and Rw(t) for M (inter)
syn = 1 (b1), 5 (b2), 20 (b3), 30

(b4), and 50 (b5). Vertical gray lines pass minima of Rw(t), and the minima of R(I )
s (t) [Rw(t)] are represented by solid (open) circles. (c1)–(c4)

Plots of the sub- and the whole-population order parameters log10 〈O(I )
s 〉r (I = 1,2,3) and log10 〈Ow〉r versus M (inter)

syn . In (d)–(h), break
symbols are given in the unsynchronization regions; the left (right) parts of the break symbols correspond to the regions of modular (global)
synchronization. (d) Plot of the cross-correlation modularity measure 〈CM〉r versus M (inter)

syn . (e1),(e2) Plots of the sub- and the whole-population
occupation degrees 〈O (I )

s 〉
r

and 〈Ow〉r versus M (inter)
syn . (f1),(f2) Plots of the sub- and the whole-population pacing degrees 〈P (I )

s 〉
r

and 〈Pw〉r

versus M (inter)
syn . (g1),(g2) Plots of the sub- and the whole-population statistical-mechanical spiking measures 〈M (I )

s 〉
r

and 〈M (w)
s 〉

r
versus M (inter)

syn .

(h) Plot of the spatial cross-correlation degree 〈〈C(I )
l 〉

l
〉
r

versus M (inter)
syn .

degree 〈O(I )
s 〉r and the pacing degree 〈P (I )

s 〉r in the subnet-
works decrease due to a destructive effect of strong inhibition
for Jinter = 2500. In the whole population, with increasing
Msyn the occupation degree 〈Ow〉r increases and approaches
〈O(I )

s 〉r because of decrease in the mismatching degree
between the intramodular dynamics of subnetworks, and the
pacing degree 〈Pw〉r decreases like the case of 〈P (I )

s 〉r . Thus,
both the sub- and the whole-population statistical-mechanical
spiking measures M (I )

s and M (w)
s (which are given by the

products of the sub- and the whole-population occupation
and pacing degrees) decrease as M (inter)

syn increases. On the
other hand, for the case of global sparse synchronization,
which is similar to the case of route II, the constructive
effect of M (inter)

syn favoring the pacing between spikes dominates.
Consequently, with increasing M (inter)

syn both 〈P (I )
s 〉r and 〈Pw〉r

increase monotonically, while both 〈O(I )
s 〉r and 〈Ow〉r remain

nearly constant because the average inhibition given to each
neuron is the same for constant intermodular coupling strength
Jinter, independently of M (inter)

syn . Consequently, as M (inter)
syn

is increased, the sub- and the whole-population statistical-
mechanical spiking measures M (I )

s and M (w)
s show a monotonic

increase. As in the case of route II, the modular and global

synchronization is sparse because 〈O(I )
s 〉r is much less than

unity. Furthermore, the statistical-mechanical pacing degree
between spikes in the subpopulation seems to be associated
with the spatial cross-correlation degree 〈〈C(I )

l 〉l〉r between
neuronal pairs (obtained through averaging 20 realizations),
which is shown in Fig. 9(h). For the case of modular sparse
synchronization (i.e., M (inter)

syn < M
(inter)
syn,l

∗
), with increasing

M (inter)
syn 〈〈C(I )

l 〉l〉r decreases monotonically due to a destructive
role of strong inhibition, while for the case of global sparse
synchronization (i.e., M (inter)

syn > M
(inter)
syn,h

∗
), 〈〈C(I )

l 〉l〉r exhibits a
monotonic increase because of a constructive role of M (inter)

syn .

B. Second and third cases of intramodular dynamics

To further examine the dependence of the intermodular
connection effect on the type of intramodular dynamics,
we consider the second and the third cases of the in-
tramodular dynamics: (2) unsynchronized in the absence
of intermodular coupling in all identical sub-networks with
prewiring = 0.05 and (3) nonidentical subnetworks where, in
the absence of intermodular coupling, the first subnetwork with
prewiring = 0.25 is synchronized, the second subnetwork with
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FIG. 10. (a) State diagram in the Jinter-M (inter)
syn plane for the second

case of the intramodular dynamics (i.e., in the absence of intermodular
coupling, identically unsynchronized subnetworks with prewiring =
0.05). (b) State diagram in the Jinter-M (inter)

syn plane for the third case
of the intramodular dynamics (i.e., in the absence of intermodular
coupling, synchronized in the first subnetwork with prewiring = 0.25,
less synchronized in the second subnetwork with prewiring = 0.15, and
unsynchronized in the third subnetwork prewiring = 0.05).

prewiring = 0.15 is also synchronized, but the third subnetwork
with prewiring = 0.05 is unsynchronized. Figure 10(a) shows
the state diagram in the Jinter-M (inter)

syn plane for the second case
of intramodular dynamics. This state diagram is similar to
that for the first case in Fig. 3(g), except for the appearance
of an “L”-shaped region of unsynchronization for small
Jinter or M (inter)

syn . Beyond the unsynchronized region, modular
and global sparse synchronization appears in the gray and
the dark gray regions, respectively. For large Jinter (>1402)
unsynchronization also occurs for large Jinter (>1402) between
the modular and the global synchronizations. We also make an
intensive investigation of emergence of modular and global
sparse synchronization by changing Jinter along the route
of M (inter)

syn = 20 (corresponding to the first route I for the
first case). As in the first case, we obtain the raster plots
of spikes in the three subpopulations and the corresponding
ISPSR and IWPSR kernel estimates, R(I )

s (t) and Rw(t) for
representative values of Jinter = 50, 200, 600, 1000, and 2000;
for brevity, associated figures are not presented. Unlike the
first case 1 of the intramodular dynamics, for small Jinter

(=50) unsynchronization occurs because of small prewiring

(=0.05). For this case, the clustering coefficient is high; hence,
partial stripes (indicating local clustering of spikes) seem to
appear in the raster plots of spikes. Thus, the raster plots show
zigzag patterns intermingled with partial stripes with diverse
inclinations and widths; hence, spikes become difficult to keep
pace with each other. Consequently, R(I )

s (t) and Rw(t) become

nearly stationary. However, as Jinter is increased and passes
a lower threshold J ∗

inter,l (�187), the intermodular coupling
strength Jinter plays a constructive role to favor the pacing be-
tween spikes in each subnetwork, and synchronized states with
regularly oscillating R(I )

s (t) and Rw(t) appear for Jinter = 200,
600, and 1000. On the other hand, for large Jinter, due to strong
inhibition, Jinter plays a destructive role to spoil the pacing
between sparse spikes. Hence, when passing a higher threshold
J ∗

inter,h (�1402), a transition to unsynchronization occurs, as
shown for Jinter = 2000. For this case, sparse spikes in the
raster plots in each subnetwork are scattered without forming
stripes; hence, both R(I )

s (t) and Rw(t) become nearly stationary
(i.e., every subnetwork exhibits an unsynchronized state).
Similar to the first case, one can consider additional routes
with fixed values of Jinter (e.g., 750 and 2300). As shown in the
state diagram of Fig. 10(a), unsynchronization occurs for small
M (inter)

syn , in contrast to the first case. However, when passing a
threshold M (inter)∗

syn modular synchronization appears, and then
the population behaviors are similar to those for the first case.

Finally, we consider the third case of nonidentical subnet-
works where in the absence of intermodular coupling, the first
subnetwork with prewiring = 0.25 is synchronized, the second
subnetwork with prewiring = 0.15 is also synchronized, but
the third subnetwork with prewiring = 0.05 is unsynchronized.
Thanks to a constructive role of Jinter favoring the pacing
between spikes, a transition to synchronization occurs in
the third subnetwork when passing a lower threshold J ∗

inter,l .
With increasing M (inter)

syn , the value of J ∗
inter,l decreases due

to a constructive effect of M (inter)
syn to favor the pacing be-

tween spikes. For J < J ∗
inter,l , the third subnetwork is still

unsynchronized, while the first and the second subsystems
are synchronized. As Jinter passes J ∗

inter,l , the third subnetwork
becomes synchronized, and then modular synchronization oc-
curs due to mismatching between the intramodular dynamics
of subnetworks. Here we consider the case of Jinter > J ∗

inter,l .
Figure 10(b) shows the state diagram in the Jinter-M (inter)

syn plane
for the case of Jinter � 1 and M (inter)

syn � 1 (i.e., the region where
the first and the second subnetworks are synchronized but
the third subnetwork is unsynchronized is not shown). We note
that this state diagram is nearly the same as that for the case 1
in Fig. 3(g). Modular sparse synchronization occurs in the “L”-
shaped gray region, while global synchronization appears in
the dark gray region. Unsynchronization also occurs for large
Jinter (>1371) between modular and global synchronization.
When compared with the first case of the intramodular
dynamics, the regions of modular synchronization and unsyn-
chronization are a little enlarged, while the region of global
synchronization is somewhat contracted. We make an intensive
study on appearance of modular and global synchronization by
increasing Jinter from the threshold J ∗

inter,l(�0.2) for the third
subnetwork along the route of M (inter)

syn = 20 (corresponding to
the first route I for the first case). Similar to the first case, we
obtain the raster plots of spikes in the three subpopulations
and the corresponding ISPSR and IWPSR kernel estimates,
R(I )

s (t) and Rw(t) for representative values of Jinter = 10, 100,
500, 1000, and 2000; for brevity, associated figures are not
presented. For Jinter = 10, due to a constructive role of Jinter

favoring the pacing between spikes, sparse stripes are formed
in each I th subpopulation (I = 1,2,3). However, in contrast to
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case 1 of identical intramodular dynamics, the smearing degree
of stripes is different, depending on the subpopulation. The
stripes for the first subpopulation (with prewiring = 0.25) are
relatively clear, while the stripes in the other second and third
subpopulations (with prewiring = 0.15 and 0.05, respectively)
are more and more smeared. Hence, the amplitudes of the
regular oscillating R(I )

s (t) decrease as I is increased. As Jinter

is further increased (e.g., Jinter = 100 and 500), the pacing
degree of spikes in the stripes increases for each subpopulation,
although the stripes become more sparse. However, for large
Jinter (e.g., Jinter = 1000), due to a destructive role of Jinter

the pacing degree of spikes in the stripes begins to decrease.
Eventually, when passing a higher threshold J ∗

inter,h (�1372) a
transition to unsynchronization occurs. Thus, for Jinter = 2000,
spikes are scattered in the raster plot, and both R(I )

s (t) and
Rw(t) are nearly stationary. To study the effect of M (inter)

syn , one
may also consider other routes with fixed values of Jinter (e.g.,
750 and 2300). With increasing M (inter)

syn along these routes,
population behaviors are similar to those for the first case, as
shown in the state diagram of Fig. 10(b).

V. SUMMARY

Sparsely interconnected modular structures are found in
both mammalian brain anatomical networks and human brain
functional networks, as in other complex systems such as
social, technological, and biological networks. Modular orga-
nization of the brain network shows the anatomical substrate
for segregation of the brain into specialized subregions with
particular functional tasks. These specialized data of different
features are also integrated to produce new useful information
as a whole. In this way, the brain network is organized
via the interplay between segregation (specialization) and
integration (binding). We note that these real brains, com-
posed of sparsely linked clusters, are far more complex
than minimal nonclustered models such as small-world and
scale-free networks. To take into consideration the modular
structure of the real brain, we considered clustered small-world
networks of inhibitory FS interneurons and investigated the
effect of intermodular connection on emergence of sparsely
synchronized rhythms at the sub- and whole-population levels
by employing diverse realistic measures. By changing both
the intermodular coupling strength Jinter and the average
number of intermodular links per interneuron M (inter)

syn , we made
intensive study on the emergence of sparsely synchronized
population states along the three routes in the Jinter-M (inter)

syn
plane for the first case of the intramodular dynamics: (1)
synchronized in all identical subnetworks. Consequently, two
kinds of sparse synchronization such as modular and global

synchronization have been found to appear, in contrast to the
case of nonclustered networks. Our main findings are that
the type and degree of sparse synchronization depend on the
intermodular parameters, Jinter and M (inter)

syn . For lower values,
Jinter acts to favor the pacing between spikes, while for higher
values it tends to spoil the pacing between spikes due to
strong inhibition. On the other hand, with increasing M (inter)

syn
it acts to monotonically increase the pacing between spikes,
which results from an increase in the degree of effectiveness
of global communication between spikes. To examine the
dependence on the intradynamics in the subnetworks, we
have also considered two other cases for the intradynamics:
(2) unsynchronized in all identical subnetworks and (3) syn-
chronized and/or unsynchronized in nonidentical subnetworks.
Figures 3(g), 10(a), and 10(b) show the state diagrams,
representing main features on the population states, for the
first, second, and third cases, respectively. For the second
case, an “L”-shaped region of unsynchronization appears for
small Jinter or M (inter)

syn because the intramodular dynamics
in all subnetworks are unsynchronized in the absence of
intermodular coupling. Beyond this “L”-shaped region, the
structure of the state diagram is similar to that for the
first case. In the third case, its state diagram is nearly the
same as that for the first case. Due to nonidenticalness of
subnetworks, modular synchronization persists a little more;
hence, the region of modular synchronization is a little
enlarged when compared to the first case. Moreover, in the
case of modular synchronization the pacing degree of spikes
varies depending on the subnetworks, in contrast to the first
case of identical subnetworks. From the results in these three
cases, it follows that the effect of intermodular connections
seems to be essentially the same, independently of the type of
intramodular dynamics in subnetworks. Finally, since changes
in the coupling strengths and the synaptic connections are
closely interwoven with the brain plasticity [86], we expect that
our results on the intermodular connection effect in modular
networks might have implications for the role of the brain
plasticity in some functional behaviors related to population
synchronization. However, explicit study on the interrelation
among intermodular connection, population synchronization,
and brain plasticity is beyond our present subject and it is left
for future work.

ACKNOWLEDGMENTS

This research was supported by Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education (Grant No.
2013057789).
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[40] C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths,
Phys. Rev. Lett. 97, 238103 (2006).
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