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a b s t r a c t

We consider a cerebellar ring network for the optokinetic response (OKR), and investigate the effect of
diverse recoding of granule (GR) cells on OKR by varying the connection probability pc from Golgi to GR
cells. For an optimal value of p∗

c (= 0.06), individual GR cells exhibit diverse spiking patterns which are
in-phase, anti-phase, or complex out-of-phase with respect to their population-averaged firing activity.
Then, these diversely-recoded signals via parallel fibers (PFs) from GR cells are effectively depressed
by the error-teaching signals via climbing fibers from the inferior olive which are also in-phase ones.
Synaptic weights at in-phase PF-Purkinje cell (PC) synapses of active GR cells are strongly depressed
via strong long-term depression (LTD), while those at anti-phase and complex out-of-phase PF-PC
synapses are weakly depressed through weak LTD. This kind of ‘‘effective’’ depression (i.e., strong/weak
LTD) at the PF-PC synapses causes a big modulation in firings of PCs, which then exert effective
inhibitory coordination on the vestibular nucleus (VN) neuron (which evokes OKR). For the firing of
the VN neuron, the learning gain degree Lg , corresponding to the modulation gain ratio, increases
with increasing the learning cycle, and it saturates at about the 300th cycle. By varying pc from p∗

c , we
find that a plot of saturated learning gain degree L∗

g versus pc forms a bell-shaped curve with a peak
at p∗

c (where the diversity degree in spiking patterns of GR cells is also maximum). Consequently, the
more diverse in recoding of GR cells, the more effective in motor learning for the OKR adaptation.

© 2020 Published by Elsevier Ltd.
1. Introduction

The cerebellum receives information from the sensory sys-
ems, the spinal cord and other parts of the brain and then
egulates motor movements. For a smoothly integrated body
ovement, the cerebellum activates a large set of spatially sepa-

ated muscles in a precise order and timing. Thus, the cerebellum
lays an essential role in fine motor control (i.e., precise spatial
nd temporal motor control) for coordinating voluntary move-
ents such as posture, balance, and locomotion, resulting in
mooth and balanced muscular activity (Ito, 1984, 2002a, 2012).
oreover, it is also involved in higher cognitive functions such
s time perception and language processing (Ito, 2002a, 2012).
nimals and humans with damaged cerebella are still able to
nitiate movements, but these movements become slow, inexact,
nd uncoordinated (Gilman, Bloedel, & Lechtenberg, 1981; Manto,
010).
The spatial information of movements (e.g., amplitude or

elocity) is called ‘‘gain’’, while the temporal information of
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E-mail addresses: sykim@icn.re.kr (S.-Y. Kim), wclim@icn.re.kr (W. Lim).
ttps://doi.org/10.1016/j.neunet.2020.11.014
893-6080/© 2020 Published by Elsevier Ltd.
movements (e.g., initiation or termination) is called ‘‘timing’’ (Ya-
mazaki & Nagao, 2012). The goal of cerebellar motor learning
is to perform precise gain and temporal control for movements.
The cerebellar mechanisms for gain and timing control for eye
movements have been studied in the two types of experimental
paradigms; (1) gain control for the optokinetic response (OKR)
and the vestibulo-ocular reflex (Ito, 1984, 1998) and (2) timing
control for the eyeblink conditioning (Christian & Thompson,
2003; Mauk & Donegan, 1997). Here, we are concerned about
gain adaptation of OKR. When the eye tracks a moving object
with the stationary head, OKR may be seen. When the moving
object is out of the field of vision, the eye moves back rapidly to
the original position where it first saw. In this way, OKR consists
of two consecutive slow and fast phases. Experimental works on
OKR in vertebrates such as rabbits, mice, and zebrafishes have
been done in diverse aspects (Harvey, De’Sperati, & Strata, 1997;
Huang & Neuhauss, 2008; Iwashita, Kanai, Funabiki, Matsuda, &
Hirano, 2001; Matsuno et al., 2016; Nagao, 1983, 1988; Scheetz
et al., 2017; Tabata, Shimizu, Wada, Miura, & Kawano, 2010).

In the Marr–Albus–Ito theory for cerebellar computation (Al-
bus, 1971; Ito, 1984; Marr, 1969), the cerebellum is considered
to act as a simple perceptron (i.e., pattern associator) which

associates input [mossy fiber (MF)] patterns with output [Purkinje
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ell (PC)] patterns. The input patterns become more sparse and
ess similar to each other via recoding process in the granular
ayer, consisting of the granule (GR) and the Golgi (GO) cells.
hen, the recoded inputs are fed into the PCs via the parallel fibers
PFs) (i.e., the axons of GR cells). In addition to the PF recoded
ignals, the PCs also receive the error-teaching signals through
he climbing-fiber (CF) from the inferior olive (IO). The PF-PC
ynapses are assumed to be the only synapses at which motor
earning occurs. Thus, synaptic plasticity may occur at the PF-
C synapses (i.e., their synaptic strengths may be potentiated or
epressed). Marr in Marr (1969) assumes that a Hebbian type of
ong-term potentiation (LTP) (i.e., increase in synaptic strengths)
ccurs at the PF-PC synapses when both the PF and the CF
ignals are conjunctively excited (Brindley, 1964; Hebb, 1949).
his Marr’s theory (which directly relates the cerebellar function
o its structure) represents a milestone in the history of cerebel-
um (Strata, 2009). In contrast to Marr’s learning via LTP, Albus in
lbus (1971) assumes that synaptic strengths at PF-PC synapses
re depressed [i.e., an anti-Hebbian type of long-term depression
LTD) occurs] in the case of conjunctive excitations of both the
F and the CF signals. In the case of Albus’ learning via LTD, PCs
earn when to stop their inhibition (i.e. when to disinhibit) rather
han when to fire. In several later experimental works done by
to et al., clear evidences for LTD were obtained (Ito, 2000; Ito,
akurai, & Tongroach, 1982; Sakurai, 1987). Thus, LTD became
stablished as a unique type of synaptic plasticity for cerebellar
otor learning (Ito, 1989, 2001, 2002b; Ito & Kano, 1982).
In addition to experimental works on the OKR (Harvey et al.,

997; Huang & Neuhauss, 2008; Iwashita et al., 2001; Matsuno
t al., 2016; Nagao, 1983, 1988; Scheetz et al., 2017; Tabata et al.,
010), computational works have also been performed (Gomi &
awato, 1992; Yamazaki & Nagao, 2012). The Marr-Albus model
f the cerebellum was also reformulated to incorporate dynamical
esponses in terms of the adaptive filter model (used in the
ield of engineering control) (Dean, Porrill, Ekerot, & Jörntell,
010; Fujita, 1982). The cerebellar structure may be mapped
nto an adaptive filter structure. Through analysis-synthesis pro-
ess of the adaptive filter model. the (time-varying) filter inputs
i.e., MF ‘‘context’’ signals for the post-eye-movement) are an-
lyzed into diverse component signals (i.e., diversely recoded
F signals). Then, they are weighted (i.e., synaptic plasticity at
F-PC synapses) and recombined to generate the filter output
i.e., firing activity of PCs). The filter is adaptive because its
eights are adjusted by an error-teaching signal (i.e., CF signal),
mploying the covariance learning rule (Sejnowski, 1977). Using
his adaptive filter model, gain adaptation of OKR was success-
ully simulated (Gomi & Kawato, 1992). Recently, Yamazaki and
agao in Yamazaki and Nagao (2012) employed a spiking net-
ork model, which was originally introduced for Pavlovian delay
yeblink conditioning (Yamazaki & Tanaka, 2007a). As elements
n the spiking network, leaky integrate-and-fire neuron models
ere used, and parameter values for single cells and synaptic
urrents were adopted from physiological data. Through a large-
cale computer simulation, some features of OKR adaptation were
uccessfully reproduced.
However, the effects of diverse recoding of GR cells on the

KR adaption in previous computational works are still needed
o be more clarified in several dynamical aspects. First of all,
ynamical classification of diverse PF signals (corresponding to
he recoded outputs of GR cells) must be completely done for
lear understanding their association with the error-teaching CF
ignals. Then, based on such dynamical classification of diverse
piking patterns of GR cells, synaptic plasticity at PF-PC synapses
nd subsequent learning progress could be more clearly under-
tood. As a result, understanding on the learning gain and the
earning progress for the OKR adaptation is expected to be so
uch improved.
174
To this end, we consider a cerebellar spiking ring network
for the OKR adaptation, and first make a dynamical classification
of diverse spiking patterns of GR cells (i.e., diverse PF signals)
by changing the connection probability pc from GO to GR cells
in the granular layer. An instantaneous whole-population spike
rate RGR(t) (which is obtained from the raster plot of spikes of
individual neurons) may well describe collective firing activity
in the whole population of GR cells (Brunel, 2000; Brunel &
Hakim, 1999, 2008; Brunel & Hansel, 2006; Brunel & Wang, 2003;
Geisler, Brunel, & Wang, 2005; Kim & Lim, 2014; Wang, 2010).
RGR(t) is in-phase with respect to the sinusoidally-modulating MF
input signal for the post-eye-movement, although it has a central
flattened plateau due to inhibitory inputs from GO cells.

The whole population of GR cells is divided into GR clus-
ters. These GR clusters show diverse spiking patterns which are
in-phase, anti-phase, and complex out-of-phase relative to the
instantaneous whole-population spike rate RGR(t). Each spiking
pattern is characterized in terms of the ‘‘conjunction’’ index,
denoting the resemblance (or similarity) degree between the
spiking pattern and the instantaneous whole-population spike
rate RGR(t) (corresponding to the population-averaged firing ac-
tivity). To quantify the degree of diverse recoding of GR cells, we
introduce the diversity degree D, given by the relative standard
deviation in the distribution of conjunction indices of all spiking
patterns. We mainly consider an optimal case of p∗

c (= 0.06)
where the spiking patterns of GR clusters are the most diverse. In
this case, D∗

≃ 1.613 which is a quantitative measure for diverse
recoding of GR cells in the granular layer. We also investigate
dynamical origin of these diverse spiking patterns of GR cells. It
is thus found that, diverse total synaptic inputs (including both
the excitatory MF inputs and the inhibitory inputs from the pre-
synaptic GO cells) into the GR clusters result in production of
diverse spiking patterns (i.e. outputs) in the GR clusters.

Next, based on dynamical classification of diverse spiking pat-
terns of GR clusters, we employ a refined rule for synaptic plas-
ticity (constructed from the experimental result in Safo & Regehr,
2008) and make an intensive investigation on the effect of diverse
recoding of GR cells on synaptic plasticity at PF-PC synapses and
the subsequent learning process. PCs (corresponding to the out-
put of the cerebellar cortex) receive both the diversely-recoded
PF signals from GR cells and the error-teaching CF signals from
the IO neuron. We also note that the CF signals are in-phase with
respect to the instantaneous whole-population spike rate RGR(t).
In this case, CF signals may be regarded as ‘‘instructors’’, while PF
signals can be considered as ‘‘students’’. Then, in-phase PF student
signals are strongly depressed (i.e., their synaptic weights at PF-
PC synapses are greatly decreased through strong LTD) by the
in-phase CF instructor signals. On the other hand, out-of-phase PF
student signals are weakly depressed (i.e., their synaptic weights
at PF-PC synapses are a little decreased via weak LTD) due to
the phase difference between the student PF and the instructor
CF signals. In this way, the student PF signals are effectively
(i.e., strongly/weakly) depressed by the error-teaching instructor
CF signals.

During learning cycles, the ‘‘effective’’ depression (i.e.,
strong/weak LTD) at PF-PC synapses may cause a big modulation
in firing activities of PCs, which then exerts effective inhibitory
coordination on vestibular nucleus (VN) neuron (which evokes
OKR eye-movement). For the firing activity of VN neuron, the
learning gain degree Lg , corresponding to the modulation gain
ratio (i.e., normalized modulation divided by that at the 1st
cycle), increases with learning cycle, and it eventually becomes
saturated.

Saturation in the learning progress is clearly shown in the IO
system. During the learning cycle, the IO neuron receives both

the excitatory sensory signal for a desired eye-movement and
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Fig. 1. (a) Optokinetic response when the eye tracks stripe slip. External sensory
signals: (b1) firing rate fMF(t) of the mossy-fiber (MF) context signal for the
ost-eye-movement and (b2) firing rate fDS(t) of the inferior-olive (IO) desired
ignal (DS) for a desired eye-movement.

he inhibitory signal from the VN neuron (representing a realized
ye-movement). We introduce the learning progress degree Lp,
iven by the ratio of the cycle-averaged inhibitory input from
he VN neuron to the cycle-averaged excitatory input of the
esired sensory signal. With increasing cycle, the cycle-averaged
nhibition (from the VN neuron) increases (i.e., Lp increases),
nd converges to the constant cycle-averaged excitation (through
he desired signal). Thus, at about the 300th cycle, the learning
rogress degree becomes saturated at Lp = 1. At this saturated
tage, the cycle-averaged excitatory and inhibitory inputs to the
O neuron become balanced, and we get the saturated learning
ain degree L∗

g (≃ 1.608) in the VN.
By changing pc from p∗

c (= 0.06), we also investigate the effect
f diverse recoding of GR cells on the OKR adaptation. Thus, the
lot of saturated learning gain degree L∗

g versus pc is found to
orm a bell-shaped curve with a peak (L∗

g ≃ 1.608) at p∗
c . With

ncreasing or decreasing pc from p∗
c , the diversity degree D in

iring activities of GR cells also forms a bell-shaped curve with
maximum value (D∗

≃ 1.613) at p∗
c . We note that both the

aturated learning gain degree L∗
g and the diversity degree D have

strong correlation with the Pearson’s correlation coefficient
≃ 0.9998 (Pearson, 1895). Consequently, the more diverse the
ecoding of GR cells, the more effective the motor learning for the
KR adaptation.
This paper is organized as follows: In Section 2, we describe

he cerebellar ring network for the OKR, composed of the granular
ayer, the Purkinje-molecular layer, and the VN-IO part. The gov-
rning equations for the population dynamics in the ring network
re also presented, along with a refined rule for the synaptic
lasticity at the PF-PC synapses. Then, in main Section 3, we
nvestigate the effect of diverse recoding of GR cells on motor
earning for the OKR adaptation by changing pc . Finally, we give
ummary and discussion in Section 4. In Appendix B, glossary for
arious terms characterizing the cerebellar model is given to help
eaders keep track of them.
175
. Cerebellar ring network with synaptic plasticity

In this section, we describe our cerebellar ring network with
ynaptic plasticity for the OKR adaptation. Fig. 1(a) shows OKR
hich may be seen when the eye tracks successive stripe slip
ith the stationary head. When each moving stripe is out of the

ield of vision, the eye moves back quickly to the original position
here it first saw. Thus, OKR is composed of two consecutive slow
nd fast phases (i.e., slow tracking eye-movement and fast reset
accade). It takes 2 s (corresponding to 0.5 Hz) for one complete
lip of each stripe. Slip of the visual image across large portions of
he retina is the stimulus that stimulates optokinetic eye move-
ents, and also the stimulus that produces the adaptation of the
ptokinetic system.

.1. MF context signal and IO desired signal

There are two types of sensory signals which transfer the
etinal slip information from the retina to their targets by passing
ntermediate pre-cerebellar nuclei (PCN). In the 1st case, the
etinal slip information first passes the pretectum in the mid-
rain, then passes the nucleus reticularis tegmentis pontis (NRTP)
n the pons, and finally it is transferred to the granular layer
consisting of GR and GO cells) in the cerebellar cortex via MF
ensory signal containing ‘‘context’’ for the post-eye-movement.
he MF context signals are modeled in terms of Poisson spike
rains which modulate sinusoidally at the stripe-slip frequency
s = 0.5 Hz (i.e., one-cycle period: 2 s) with the peak firing rate
f 30 Hz (i.e., 30 spikes/s) (Yamazaki & Nagao, 2012). The firing
requency fMF of Poisson spike trains for the MF context signal is
iven by

MF(t) = −f MF cos(2π fst) + f MF; f MF = 15 Hz, (1)

which is shown in Fig. 1(b1).
In the 2nd case, the retinal slip information passes only the

pretectum, and then (without passing NRTP) it is directly fed into
to the IO via a sensory signal for a ‘‘desired’’ eye-movement. As
in the MF context signals, the IO desired signals are also modeled
in terms of the same kind of sinusoidally modulating Poisson
spike trains at the stripe-slip frequency fs = 0.5 Hz. The firing
requency fDS of Poisson spike trains for the IO desired signal (DS)
s given by:

DS(t) = −f DS cos(2π fst) + f DS; f DS = 1.5 Hz, (2)

which is shown in Fig. 1(b2). In this case, the peak firing rate for
the IO desired signal is reduced to 3 Hz to satisfy low mean firing
rates (∼ 1.5 Hz) of individual IO neurons (i.e., corresponding to
/10 of the peak firing rate of the MF signal) (Llinás, 2014; Mathy

et al., 2009).

2.2. Architecture for cerebellar ring network

As in the famous small-world ring network (Strogatz, 2001;
Watts & Strogatz, 1998), we develop a one-dimensional ring net-
work with a simple architecture, which is in contrast to the two-
dimensional square-lattice network (Yamazaki & Nagao, 2012;
Yamazaki & Tanaka, 2007a). This kind of ring network has ad-
vantage for computational and analytical efficiency, and its visual
representation may also be easily made.

Here, we employ such a cerebellar ring network for the OKR.
Fig. 2(a) shows the box diagram for the cerebellar network. The
granular layer, corresponding to the input layer of the cerebellar
cortex, consists of the excitatory GR cells and the inhibitory GO
cells. On the other hand, the Purkinje-molecular layer, corre-
sponding to the output layer of the cerebellar cortex, is composed
of the inhibitory PCs and the inhibitory BCs (basket cells). The MF
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Fig. 2. Cerebellar ring network. (a) Box diagram for the cerebellar network. Lines with triangles and circles denote excitatory and inhibitory synapses, respectively. GR
granule cell), GO (Golgi cell), and PF (parallel fiber) in the granular layer, PC (Purkinje cell) and BC (basket cell) in the Purkinje-molecular layer, and other parts for
N (vestibular nuclei), IO(inferior olive), PCN(pre-cerebellar nuclei), MF (mossy fiber), and CF (climbing fiber). (b) Schematic diagram for granular-layer ring network
ith concentric inner GR and outer GO rings. Numbers represent granular layer zones (bounded by dotted lines) for NC = 32. In each Ith zone (I = 1, . . . ,NC ), there

exists the Ith GR cluster on the inner GR ring. Each GR cluster consists of GR cells (solid circles), and it is bounded by 2 glomeruli (stars). On the outer GO ring in
the Ith zone, there exists the Ith GO cell (diamonds). (c) Schematic diagram for Purkinje-molecular-layer ring network with concentric inner PC and outer BC rings.
Numbers represent the Purkinje-molecular-layer zones (bounded by dotted lines) for NPC = 16. In each Jth zone, there exist the Jth PC (solid circle) on the inner PC
ring and the Jth BC (solid triangle) on the outer BC ring.
context signal for the post-eye-movement is fed from the PCN
(pre-cerebellar nuclei) to the GR cells. They are diversely recoded
via inhibitory coordination of GO cells on GR cells in the granular
layer. Then, these diversely-recoded outputs are fed via PFs to the
PCs and the BCs in the Purkinje-molecular layer.

The PCs receive another excitatory error-teaching CF signals
from the IO, along with the inhibitory inputs from BCs. Then,
depending on the type of PF signals (i.e., in-phase or out-of-phase
PF signals), diverse PF (student) signals are effectively depressed
by the (in-phase) error-teaching (instructor) CF signals. Such ef-
fective depression at PF-PC synapses causes a large modulation
in firing activities of PCs (principal output cells in the cerebellar
cortex). Then, the VN neuron generates the final output of the
cerebellum (i.e., it evokes OKR eye-movement) through receiving
both the inhibitory inputs from the PCs and the excitatory inputs
via MFs. This VN neuron also provides inhibitory inputs for the
realized eye-movement to the IO neuron which also receives the
excitatory desired signals for a desired eye-movement from the
176
PCN. Then, the IO neuron supplies excitatory error-teaching CF
signals to the PCs.

Fig. 2(b) shows a schematic diagram for the granular-layer ring
network with concentric inner GR and outer GO rings. Numbers
represent granular-layer zones (bounded by dotted lines). That
is, the numbers 1, 2, . . . , and NC denote the 1st, the 2nd, . . . ,

and the NC th granular-layer zones, respectively. Hence, the total
number of granular-layer zones is NC ; Fig. 2(b) shows an example
for NC = 32. In each Ith zone (I = 1, . . . ,NC ), there exists the Ith
GR cluster on the inner GR ring. Each GR cluster consists of NGR
excitatory GR cells (solid circles). Then, location of each GR cell
may be represented by the two indices (I, i) which represent the
ith GR cell in the Ith GR cluster, where i = 1, . . . ,NGR. Here, we
consider the case of NC = 210 and NGR = 50, and hence the total
number of GR cells is 51,200. In this case, the Ith zone covers the
angular range of (I − 1) θ∗

GR < θ < I θ∗

GR (θ∗

GR = 0.35◦). On the
outer GO ring in each Ith zone, there exists the Ith inhibitory GO
cell (diamond), and hence the total number of GO cells is N .
C
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We note that each GR cluster is bounded by 2 glomeruli (corre-
sponding to the axon terminals of the MFs) (stars). GR cells within
each GR cluster share the same inhibitory and excitatory synaptic
inputs through their dendrites which contact the two glomeruli at
both ends of the GR cluster. Each glomerulus receives inhibitory
inputs from nearby 81 (clockwise side: 41 and counter-clockwise
side: 40) GO cells with a random connection probability pc (=
.06). Hence, on average, about 5 GO cell axons innervate each
lomerulus. Thus, each GR cell receives about 10 inhibitory inputs
hrough 2 dendrites which synaptically contact the glomeruli at
oth boundaries. In this way, each GR cell in the GR cluster shares
he same inhibitory synaptic inputs from nearby GO cells through
he intermediate glomeruli at both ends.

Also, each GR cell shares the same two excitatory inputs via
he two glomeruli at both boundaries, because a glomerulus
eceives an excitatory MF input. Here, we take into consideration
tochastic variability of synaptic transmission from a glomerulus
o GR cells, and supply independent Poisson spike trains with the
ame firing rate to each GR cell for the excitatory MF signals.
n this GR-GO feedback system, each GO cell receives excitatory
ynaptic inputs via PFs from GR cells in the nearby 49 (central
ide: 1, clockwise side: 24 and counter-clockwise side: 24) GR
lusters with a random connection probability 0.1. Thus, 245 PFs
i.e. GR cell axons) innervate a GO cell.

Fig. 2(c) shows a schematic diagram for the Purkinje-
olecular-layer ring network with concentric inner PC and outer
C rings. Numbers denote the Purkinje-molecular-layer zones
bounded by dotted lines). In each Jth zone (J = 1, . . . ,NPC),
here exist the Jth PC (solid circles) on the inner PC ring and the
th BC (solid triangles) on the outer BC ring. Here, we consider
he case of NPC = 16, and hence the total numbers of PC and BC
re 16, respectively. In this case, each Jth (J = 1, . . . ,NPC) zone

covers the angular range of (J − 1) θ∗

PC < θ < J θ∗

PC, where θ∗

PC ≃

2.5◦ (corresponding to about 64 zones in the granular-layer
ing network). We note that diversely-recoded PFs innervate PCs
nd BCs. Each PC (BC) in the Jth Purkinje-molecular-layer zone

receives excitatory synaptic inputs via PFs from all the GR cells in
the 288 GR clusters (clockwise side: 144 and counter-clockwise
side: 144 when starting from the angle θ = (J − 1) θ∗

PC in the
granular-layer ring network). Thus, each PC (BC) is synaptically
connected via PFs to the 14,400 GR cells (which corresponds to
about 28% of the total GR cells). In addition to the PF signals, each
PC also receives inhibitory inputs from nearby 3 BCs (central side:
1, clockwise side: 1 and counter-clockwise side: 1) and excitatory
error-teaching CF signal from the IO.

Outside the cerebellar cortex, for simplicity, we consider just
one VN neuron and one IO neuron. Both excitatory inputs via 100
MFs and inhibitory inputs from all the 16 PCs are fed into the
VN neuron. Then, the VN neuron evokes the OKR eye-movement
and supplies inhibitory input for the realized eye-movement to
the IO neuron. One additional excitatory desired signal from the
PCN is also fed into the IO neuron. Then, through integration
of both excitatory and inhibitory inputs, the IO neuron provides
excitatory error-teaching CF signals to the PCs.

2.3. Leaky integrate-and-fire neuron model with afterhyperpolariza-
tion current

As elements of the cerebellar ring network, we choose leaky
integrate-and-fire (LIF) neuron models which incorporate addi-
tional afterhyperpolarization (AHP) currents that determine re-
fractory periods (Gerstner & Kistler, 2002). This LIF neuron model
is one of the simplest spiking neuron models. Due to its simplic-
ity, it can be easily analyzed and simulated. Thus, it has been very

popularly used as a neuron model.

177
The following equations govern dynamics of states of individ-
ual neurons in the X population:

CX
dv(X)

i

dt
= −I (X)L,i − I (X)AHP,i + I (X)ext − I (X)syn,i, i = 1, . . . ,NX , (3)

where NX is the total number of neurons in the X population,
X = GR and GO in the granular layer, X = PC and BC in the
Purkinje-molecular layer, and in the other parts X = VN and IO.
In Eq. (1), CX (pF) represents the membrane capacitance of the
cells in the X population, and the state of the ith neuron in the
X population at a time t (ms) is characterized by its membrane
potential v(X)

i (mV). The time-evolution of v
(X)
i (t) is governed by 4

types of currents (pA) into the ith neuron in the X population; the
leakage current I (X)L,i , the AHP current I (X)AHP,i, the external constant
current I (X)ext (independent of i), and the synaptic current I (X)syn,i.

We note that the equation for a single LIF neuron model
without the AHP current and the synaptic current in Eq. (3)]
escribes a simple parallel resistor-capacitor (RC) circuit. Here,
he leakage term is due to the resistor and the integration of the
xternal current is due to the capacitor which is in parallel to the
esistor. Thus, in Eq. (3), the 1st type of leakage current I (X)L,i for
he ith neuron in the X population is given by:
(X)
L,i = g (X)

L (v(X)
i − V (X)

L ), (4)

where g (X)
L and V (X)

L are conductance (nS) and reversal potential
for the leakage current, respectively.

When the membrane potential v
(X)
i reaches a threshold v

(X)
th at

a time t (X)f ,i , the ith neuron fires a spike. After firing (i.e., t ≥ t (X)f ,i ),
the 2nd type of AHP current I (X)AHP,i follows:

I (X)AHP,i = g (X)
AHP (t) (v

(X)
i − V (X)

AHP ) for t ≥ t (X)f ,i . (5)

Here, V (X)
AHP is the reversal potential for the AHP current, and the

conductance g (X)
AHP (t) is given by an exponential-decay function:

g (X)
AHP (t) = ḡ (X)

AHP e−(t−t(X)f ,i )/τ
(X)
AHP , (6)

where ḡ (X)
AHP and τ

(X)
AHP are the maximum conductance and the

decay time constant for the AHP current. As τ
(X)
AHP increases, the

refractory period becomes longer.
The 3rd type of external constant current I (X)ext for the cellular

spontaneous discharge is supplied to only the PCs and the VN
neuron because of their high spontaneous firing rates (Häusser
& Clark, 1997; Thach, 1968). In Appendix A, Table A.1 shows the
parameter values for the capacitance CX , the leakage current I (X)L ,
the AHP current I (X)AHP , and the external constant current I (X)ext . These
values are adopted from physiological data (Yamazaki & Nagao,
2012; Yamazaki & Tanaka, 2007a).

2.4. Synaptic currents

The 4th type of synaptic current I (X)syn,i into the ith neuron in
the X population consists of the following 3 kinds of synaptic
currents:

I (X)syn,i = I (X,Y )
AMPA,i + I (X,Y )

NMDA,i + I (X,Z)
GABA,i. (7)

Here, I (X,Y )
AMPA,i and I (X,Y )

NMDA,i are the excitatory AMPA (α-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid) receptor-mediated
and NMDA (N-methyl-D-aspartate) receptor-mediated currents
from the pre-synaptic source Y population to the post-synaptic
ith neuron in the target X population. On the other hand, I (X,Z)

GABA,i
is the inhibitory GABAA (γ -aminobutyric acid type A) receptor-
mediated current from the pre-synaptic source Z population to
the post-synaptic ith neuron in the target X population.
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Similar to the case of the AHP current, the R (= AMPA, NMDA,
or GABA) receptor-mediated synaptic current I (T ,S)

R,i from the pre-
synaptic source S population to the ith post-synaptic neuron in
the target T population is given by:

I (T ,S)
R,i = g (T ,S)

R,i (t) (v(T )
i − V (S)

R ), (8)

where g (T ,S)
(R,i) (t) and V (S)

R are synaptic conductance and synaptic
reversal potential (determined by the type of the pre-synaptic
source S population), respectively. We get the synaptic conduc-
tance g (T ,S)

R,i (t) from:

(T ,S)
R,i (t) = ḡ (T )

R

NS∑
j=1

J (T ,S)
ij w

(T ,S)
ij s(T ,S)

j (t), (9)

here ḡ (T )
R and J (T ,S)

ij are the maximum conductance and the
ynaptic weight of the synapse from the jth pre-synaptic neuron
n the source S population to the ith post-synaptic neuron in the
arget T population, respectively. The inter-population synaptic
onnection from the source S population (with Ns neurons) to
he target T population is given by the connection weight matrix

(T ,S) (= {w
(T ,S)
ij }) where w

(T ,S)
ij = 1 if the jth neuron in the

ource S population is pre-synaptic to the ith neuron in the target
population; otherwise w

(T ,S)
ij = 0.

The post-synaptic ion channels are opened due to the binding
f neurotransmitters (emitted from the source S population) to
eceptors in the target T population. The fraction of open ion
hannels at time t is represented by s(T ,S). The time course of
(T ,S)
j (t) of the jth neuron in the source S population is given by a
um of exponential-decay functions E(T ,S)

R (t − t (j)f ):

(T ,S)
j (t) =

F (s)j∑
f=1

E(T ,S)
R (t − t (j)f ), (10)

here t (j)f and F (s)
j are the f th spike time and the total number of

pikes of the jth neuron in the source S population, respectively.
he exponential-decay function E(T ,S)

R (t) (which corresponds to
ontribution of a pre-synaptic spike occurring at t = 0 in the
bsence of synaptic delay) is given by:
(T ,S)
R (t) = e−t/τ (T )R Θ(t) or (11a)

= (A1e
−t/τ (T )R,1 + A2e

−t/τ (T )R,2 )Θ(t), (11b)

where Θ(t) is the Heaviside step function: Θ(t) = 1 for t ≥ 0 and
for t < 0. Depending on the source and the target populations,
(T ,S)
R (t) may be a type-1 single exponential-decay function of
q. (11a) or a type-2 dual exponential-decay function of Eq. (11b).
n the type-1 case, there exists one synaptic decay time constant
(T )
R (determined by the receptor on the post-synaptic target T
opulation), while in the type-2 case, two synaptic decay time
onstants, τ

(T )
R,1 and τ

(T )
R,2 exist. In most cases, the type-1 single

xponential-decay function of Eq. (11a) appears, except for the
wo synaptic currents I (GR,GO)

GABA and I (GO,GR)
NMDA .

In Appendix A, Tables A.2, A.3, and A.4 show the param-
ter values for the maximum conductance ḡ (T )

R , the synaptic
eight J (T ,S)

ij , the synaptic reversal potential V (S)
R , the synaptic

ecay time constant τ
(T )
R , and the amplitudes A1 and A2 for

the type-2 exponential-decay function in the granular layer, the
Purkinje-molecular layer, and the other parts for the VN and
IO, respectively. These values are adopted from physiological
data (Yamazaki & Nagao, 2012; Yamazaki & Tanaka, 2007a).

2.5. Synaptic plasticity

We use a rule for synaptic plasticity, based on the experimen-
tal result in Safo and Regehr (2008). This rule is a refined one for
178
the LTD in comparison to the rule used in Yamazaki and Nagao
(2012) and Yamazaki and Tanaka (2007a), the details of which
will be explained below.

The coupling strength of the synapse from the pre-synaptic
neuron j in the source S population to the post-synaptic neuron
i in the target T population is J (T ,S)

ij . Initial synaptic strengths are
given in Tables A.2, A.3, and A.4. Here, we assume that learning
occurs only at the PF-PC synapses. Hence, only the synaptic
strengths J (PC,PF)

ij of PF-PC synapses may be modifiable, while
synaptic strengths of all the other synapses are static. [Here, the
index j for the PFs corresponds to the two indices (M,m) for GR
cells representing themth (1 ≤ m ≤ 50) cell in theMth (1 ≤ M ≤

210) GR cluster.] Synaptic plasticity at PF-PC synapses have been
so much studied in diverse experimental (Chen & Thompson,
1995; Coesmans, Weber, De Zeeuw, & Hansel, 2004; De Schutter,
1995; Gallimore, Kim, Tanaka-Yamamoto, & De Schutter, 2018;
Ito, 1989; Ito & Kano, 1982; Ito et al., 1982; Lev-Ram, Mehta, Kle-
infeld, & Tsien, 2003; Molnár, 2014; Safo & Regehr, 2008; Sakurai,
1987; Steuber et al., 2007; Wang, Denk, & Häusser, 2000; Yang &
Lisberger, 2014) and computational (Achard & De Schutter, 2008;
Albus, 1971; Bouvier et al., 2018; Buonomano & Mauk, 1994;
Gerstner & van Hemmen, 1992; Kenyon, Medina, & Mauk, 1998;
Medina, Garcia, Nores, Taylor, & Mauk, 2000; Roberts, 2007;
Yamazaki & Nagao, 2012; Yamazaki & Tanaka, 2007a) works.

With increasing time t , synaptic strength for each PF-PC
synapse is updated with the following multiplicative rule (de-
pending on states) (Safo & Regehr, 2008):

J (PC,PF)
ij (t) → J (PC,PF)

ij (t) + ∆J (PC,PF)
ij (t), (12)

where

∆J (PC,PF)
ij (t) = ∆LTD(1)

ij + ∆LTD(2)
ij + ∆LTPij, (13)

∆LTD(1)
ij = −δLTD · J (PC,PF)

ij (t) · CFi(t) ·

∆t∗r∑
∆t=0

∆JLTD(∆t), (14)

∆LTD(2)
ij = −δLTD · J (PC,PF)

ij (t) · [1 − CFi(t)] · PFij(t) · Di(t)

×

∆t∗l∑
∆t=0

∆JLTD(∆t), (15)

∆LTPij = δLTP · [J (PC,PF)
0 − J (PC,PF)

ij (t)] · [1 − CFi(t)] · PFij(t)

× [1 − Di(t)]. (16)

Here, J (PC,PF)
0 is the initial value (= 0.006) for the synaptic strength

of PF-PC synapses. Synaptic modification (LTD or LTP) occurs,
depending on the relative time difference ∆t [= tCF (CF activation
time) - tPF (PF activation time)] between the spiking times of the
error-teaching instructor CF and the diversely-recoded student
PFs. In Eqs. (14)–(16), CFi(t) represents a spike train of the CF
signal coming into the ith PC. When CFi(t) activates at a time
t , CFi(t) = 1; otherwise, CFi(t) = 0. This instructor CF firing
causes LTD at PF-PC synapses in conjunction with earlier (∆t > 0)
student PF firings in the range of tCF − ∆t∗r < tPF < tCF (∆t∗r ≃

277.5 ms), which corresponds to the major LTD in Eq. (14).
We next consider the case of CFi(t) = 0, corresponding to

Eqs. (15) and (16). Here, PFij(t) denotes a spike train of the PF
signal from the jth pre-synaptic GR cell to the ith post-synaptic
PC. When PFij(t) activates at time t , PFij(t) = 1; otherwise,
PFij(t) = 0. In the case of PFij(t) = 1, PF firing may give rise to
LTD or LTP, depending on the presence of earlier CF firings in an
effective range. If CF firings exist in the range of tPF+∆t∗l < tCF <

tPF (∆t∗l ≃ −117.5 ms), Di(t) = 1; otherwise Di(t) = 0. When
both PFij(t) = 1 and Di(t) = 1, the PF firing causes another LTD
at PF-PC synapses in association with earlier (∆t < 0) CF firings
[see Eq. (15)]. The likelihood for occurrence of earlier CF firings
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Fig. 3. Time window for the LTD at the PF-PC synapse. Plot of synaptic
modification ∆JLTD(∆t) for LTD versus ∆t [see Eq. (17)].

ithin the effective range is very low because mean firing rates
f the CF signals (corresponding to output firings of individual IO
eurons) are ∼ 1.5 Hz (Llinás, 2014; Mathy et al., 2009). Hence,
his 2nd type of LTD is a minor one. On the other hand, in the
ase of Di(t) = 0 (i.e., absence of earlier associated CF firings),
TP occurs due to the PF firing alone [see Eq. (16)]. The update
ate δLTD for LTD in Eqs. (14) and (15) is 0.005, while the update
ate δLTP for LTP in Eqs. (16) is 0.0005 (= δLTD/10).

In the case of LTD in Eqs. (14) and (15), the synaptic modifi-
ation ∆JLTD(∆t) varies depending on the relative time difference
t (= tCF − tPF ). We employ the following time window for the
ynaptic modification ∆JLTD(∆t) (Safo & Regehr, 2008):

JLTD(∆t) = A + B · e−(∆t−t0)2/σ2
, (17)

here A = −0.12, B = 0.4, t0 = 80, and σ = 180. Fig. 3
hows the time window for ∆JLTD(∆t). As shown well in Fig. 3,
TD occurs in an effective range of ∆t∗l < ∆t < ∆t∗r . We note
hat a peak exists at t0 = 80 ms, and hence peak LTD occurs when
F firing precedes CF firing by 80 ms. A CF firing causes LTD in
onjunction with earlier PF firings in the black region (0 < ∆t <

t∗r ), and it also gives rise to another LTD in association with later
F firings in the gray region (∆t∗l < ∆t < 0). The effect of CF
iring on earlier PF firings is much larger than that on later PF
irings. However, outside the effective range (i.e., ∆t > ∆t∗r or

∆t∗l ), PF firings alone lead to LTP, due to absence of effectively
ssociated CF firings.
Finally, we discuss the advantages of our refined rule for

ynaptic plasticity in comparison to the synaptic rule in Yamazaki
nd Nagao (2012) and Yamazaki and Tanaka (2007a). Our rule
s constructed from the experimental result in Safo and Regehr
2008). In the presence of a CF firing, a major LTD (∆LTD(1))
akes place in association with earlier PF firings in the range of
CF − ∆t∗r < tPF < tCF (∆t∗r ≃ 277.5 ms), while a minor LTD
∆LTD(2)) occurs in association with later PF firings in the range
f tCF < tPF < tCF − ∆t∗l (∆t∗l ≃ −117.5 ms). The magnitude of
TD changes depending on ∆t (= tCF − tPF); a peak LTD occurs
or ∆t = 80 ms. On the other hand, the rule in Yamazaki and
agao (2012) and Yamazaki and Tanaka (2007a) considers only
he major LTD in conjunction with earlier PF firings in the range
f tCF − 50 < tPF < tCF, the magnitude of major LTD is equal,
ndependently of ∆t , and minor LTD in association with later PF
irings is not considered. Outside the effective range of LTD, PF
irings alone result in LTP in both rules. However, we also note
hat some features of OKR were successfully reproduced by using
he simple synaptic rule with only the major LTD in Yamazaki and
agao (2012) and Yamazaki and Tanaka (2007a).
179
.6. Numerical method for integration

Numerical integration of the governing equation (3) for the
ime-evolution of states of individual neurons, along with the up-
ate rule for synaptic plasticity of Eq. (12), is done by employing
he 2nd-order Runge–Kutta method with the time step 1 ms. For
ach realization, we choose random initial points v

(X)
i (0) for the

th neuron in the X population with uniform probability in the
ange of v

(X)
i (0) ∈ (V (X)

L − 5.0, V (X)
L + 5.0); the values of V (X)

L are
iven in Table A.1.

. Effect of diverse spiking patterns of GR clusters on motor
earning for the OKR adaption

In this section, we study the effect of diverse recoding of GR
ells on motor learning for the OKR adaptation by varying the
onnection probability pc from the GO to the GR cells. We mainly
onsider an optimal case of p∗

c = 0.06 where the spiking patterns
of GR clusters are the most diverse. In this case, we first make
dynamical classification of diverse spiking patterns of the GR
clusters. Then, we make an intensive investigation on the effect
of diverse recoding of GR cells on synaptic plasticity at PF-PC
synapses and the subsequent learning process in the PC-VN-IO
system. Finally, we vary pc from the optimal value p∗

c , and study
dependence of the diversity degree D of spiking patterns and the
saturated learning gain degree L∗

g on pc . Both D and L∗
g are found

to form bell-shaped curves with peaks at p∗
c , and they have strong

correlation with the Pearson’s coefficient r ≃ 0.9998. As a result,
the more diverse the recoding of GR cells, the more effective the
motor learning for the OKR adaptation.

3.1. Firing activity in the whole population of GR cells

As shown in Fig. 2, recoding process is performed in the
granular layer (corresponding to the input layer of the cerebellar
cortex), consisting of GR and GO cells. In the GR-GO feedback
system, GR cells (principal output cells in the granular layer)
receive excitatory context signals for the post-eye-movement
via the sinusoidally-modulating MFs [see Fig. 1(b1)] and make
recoding of context signals. In this recoding process, GO cells
make effective inhibitory coordination for diverse recoding of
GR cells. Thus, diversely recoded signals are fed into the PCs
(principal output cells in the cerebellar cortex) via PFs. Due to
this type of diverse recoding of GR cells, the cerebellum was
recently reinterpreted as a liquid state machine with powerful
discriminating/separating capability (i.e., different input signals
are transformed into more different ones via recoding process)
rather than the simple perceptron in the Marr–Albus–Ito the-
ory (Maass, Natschläger, & Markram, 2002; Yamazaki & Tanaka,
2007b).

We first consider the firing activity in the whole population
of GR cells for p∗

c = 0.06. Collective firing activity may be well
visualized in the raster plot of spikes which is a collection of
spike trains of individual neurons. Such raster plots of spikes
are fundamental data in experimental neuroscience. As a pop-
ulation quantity showing collective firing behaviors, we use an
instantaneous whole-population spike rate RGR(t) which may be
obtained from the raster plots of spikes (Brunel, 2000; Brunel &
Hakim, 1999, 2008; Brunel & Hansel, 2006; Brunel & Wang, 2003;
Geisler et al., 2005; Kim & Lim, 2014; Wang, 2010). To obtain a
smooth instantaneous whole-population spike rate, we employ
the kernel density estimation (kernel smoother) (Shimazaki &
Shinomoto, 2010). Each spike in the raster plot is convoluted (or
blurred) with a kernel function Kh(t) [such as a smooth Gaussian
function in Eq. (19)], and then a smooth estimate of instantaneous
whole-population spike rate R (t) is obtained by averaging the
GR
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Fig. 4. Firing activity of GR cells in an optimal case of pc (connection probability from GO to GR cells) = 0.06. (a) Raster plots of spikes of 103 randomly chosen GR
ells. (b) Instantaneous whole-population spike rate RGR(t) in the whole population of GR cells. Band width for RGR(t): h = 10 ms. Plots of the activation degrees (c1)
A(t) in the whole population of GR cells and (c2) A(G)(t) in the G spiking group [G : in-phase (solid curve) and out-of-phase (dotted curve)]. Plots of (d1) instantaneous
individual firing rate f (i)GR(t) for the active GR cells and (d2) instantaneous population spike rate f (p)GR (t) in the whole population of GR cells. Bin size for (c1)–(d2):
∆t = 10 ms.
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convoluted kernel function over all spikes of GR cells in the whole
population:

RGR(t) =
1
N

N∑
i=1

ni∑
s=1

Kh(t − t (i)s ), (18)

where t (i)s is the sth spiking time of the ith GR cell, ni is the total
number of spikes for the ith GR cell, and N is the total number
of GR cells (i.e., N = Nc · NGR = 51,200). Here, we use a Gaussian
kernel function of band width h:

Kh(t) =
1

√
2πh

e−t2/2h2 , − ∞ < t < ∞. (19)

hroughout the paper, the band width h of Kh(t) is 10 ms.
Fig. 4(a) shows a raster plot of spikes of 103 randomly chosen

R cells. At the initial and the final stage of the cycle, GR cells
ire sparse spikes, because the firing rates of Poisson spikes for
he MF are low. On the other hand, at the middle stage, the
iring rates for the MF are relatively high, and hence spikes of GR
ells become relatively dense. Fig. 4(b) shows the instantaneous
hole-population spike rate RGR(t) in the whole population of
R cells. RGR(t) is basically in proportion to the sinusoidally-
odulating inputs via MFs. However, it has a different waveform
ith a central plateau. At the initial stage, it rises rapidly, then a
road plateau appears at the middle stage, and at the final stage,
t decreases slowly. In comparison to the MF signal, the top part
f RGR(t) becomes lowered and flattened, due to the effect of
nhibitory GO cells. Thus, a central plateau emerges.

We next consider the activation degree of GR cells. To examine
t, we divide the whole learning cycle (2000 ms) into 200 bins (bin
ize: 10 ms). Then, we get the activation degree Ai for the active
R cells in the ith bin:

i =
Na,i

N
, (20)

where Na,i and N are the number of active GR cells in the ith bin
and the total number of GR cells, respectively. Fig. 4(c1) shows a
plot of the activation degree A(t) in the whole population of GR
cells. It is nearly symmetric, and has double peaks with a central
valley at the middle stage; its values at both peaks are about 0.94
and the central minimum value is about 0.65.

Presence of the central valley in A(t) is in contrast to the
central plateau in R (t). Appearance of such a central valley may
GR

180
be understood as follows: The whole population of GR cells can be
decomposed into two types of in-phase and out-of-phase spiking
groups. Spiking patterns of in-phase (out-of-phase) GR cells are
in-phase (out-of-phase) with respect to RGR(t) (representing the
population-averaged firing activity in the whole population of GR
cells); details will be given in Figs. 5 and 6. Then, the activation
degree A(G)

i of active GR cells in the G spiking group in the ith bin
is given by:

A(G)
i =

N (G)
a,i

N
, (21)

here N (G)
a,i is the number of active GR cells in the G spiking group

(G = i and o for the in-phase and the out-of-phase spiking groups,
respectively) in the ith bin. The sum of A(G)

i (t) over the in-phase
and the out-of-phase spiking groups is just the activation degree
Ai(t) in the whole population. Fig. 4(c2) shows plots of activation
degree A(G)(t) in the in-phase (solid line) and the out-of-phase
(dotted curve) spiking groups. In the case of in-phase (G = i)
spiking group, A(i)(t) has a central plateau, while A(o)(t) has double
peaks with a central valley in the case of out-of-phase (G = o)
spiking group. Hence, small contribution of out-of-phase spiking
group at the middle stage leads to emergence of the central valley
in A(t) in the whole population.

We note again that, in the whole population the activation
degree A(t) with a central valley is in contrast to RGR(t) with a
central plateau. To understand this discrepancy, we consider the
bin-averaged instantaneous individual firing rates f (i)GR of active GR
cells:

f (i)GR =
Ns,i

Na,i ∆t
, (22)

where Ns,i is the number of spikes of GR cells in the ith bin,
a,i is the number of active GR cells in the ith bin, and the bin

size ∆t is 10 ms. Fig. 4(d1) shows a plot of f (i)GR(t) for the active
GR cells. We note that active GR cells fire spikes at higher firing
rates at the middle stage because f (i)GR(t) has a central peak. Then,
the bin-averaged instantaneous population spike rate f (p)GR is given
y the product of the activation degree Ai of Eq. (20) and the
nstantaneous individual firing rate f (i)GR of Eq. (22):

f (p) = Ai f
(i)

=
Ns,i

. (23)
GR GR N ∆t
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Fig. 5. Diverse spiking patterns in the GR clusters in the optimal case of p∗
c = 0.06. Raster plots of spikes and instantaneous cluster spike rates R(I)

GR(t) for diverse
piking patterns. Five in-phase spiking patterns in the Ith GR clusters; I = (a1) 594, (a2) 543, (a3) 663, (a4) 332, and (a5) 399. Two anti-phase spiking patterns in
he Ith GR cluster; I = (b1) 49 and (b2) 101. Six complex out-of-phase spiking patterns in the Ith GR clusters; I = (c1) 192, (c2) 91, (c3) 773, (c4) 382, (c5) 705,
nd (c6) 349. C(I) represents the conjunction index of the spiking pattern in the Ith GR cluster.
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Fig. 6. Characterization of diverse spiking patterns in the GR clusters in the
optimal case of p∗

c = 0.06. (a) Distribution of conjunction indices {C(I)
} for the GR

lusters in the whole population. (b) Fraction of spiking groups. Distribution of
onjunction indices {C(I)

} for the (c1) in-phase, (c2) anti-phase, and (c3) complex
ut-of-phase spiking groups. Bin size for the histograms in (a) and in (c1)–(c3) is
.1. (d) Bar diagram for the ranges of conjunction indices {C(I)

} for the in-phase,
nti-phase, and complex out-of-phase spiking groups.

The instantaneous population spike rate f (p)GR (t) in Fig. 4(d2)
as a central plateau, as in the case of RGR(t). We note that both
(p)
GR (t) and RGR(t) correspond to bin-based estimate and kernel-
ased smooth estimate for the instantaneous whole-population
pike rate for the GR cells, respectively (Kim & Lim, 2014). In this
ay, although the activation degree A(t) of GR cells are lower
181
at the middle stage, their population spike rate becomes nearly
the same as that in the neighboring parts (i.e., central plateau is
formed), due to the higher individual firing rates.

3.2. Dynamical classification of spiking patterns of GR clusters

There are NC (= 210) GR clusters. NGR (= 50) GR cells
in each GR cluster share the same inhibitory and excitatory
inputs via their dendrites which synaptically contact the two
glomeruli (i.e., terminals of MFs) at both ends of the GR cluster
[see Fig. 2(b)]; nearby inhibitory GO cell axons innervate the
two glomeruli. Hence, GR cells in each GR cluster show similar
firing behaviors. Similar to the case of RGR(t) in Eq. (18), the
iring activity of the Ith GR cluster is characterized in terms of
ts instantaneous cluster spike rate R(I)

GR(t) (I = 1, . . . ,NC ):

(I)
GR(t) =

1
NGR

NGR∑
i=1

n(I)i∑
s=1

Kh(t − t (I,i)s ), (24)

where t (I,i)s is the sth spiking time of the ith GR cell in the Ith GR
cluster and n(I)

i is the total number of spikes for the ith GR cell in
the Ith GR cluster.

We introduce the conjunction index C(I) of each GR cluster,
representing the degree for the conjunction (association) of the
spiking behavior [R(I)

GR(t)] of each Ith GR cluster with that of the
whole population [RGR(t) in Fig. 4(b)] [i.e., denoting the degree
or the resemblance (similarity) between R(I)

GR(t) and RGR(t)]. The
onjunction index C(I) is given by the cross-correlation at the
ero-time lag [i.e., Corr (I)GR(0)] between R(I)

GR(t) and RGR(t):

orr (I)GR(τ ) =
∆RGR(t + τ )∆R(I)

GR(t)√
∆R2

GR(t)
√

∆R(I)
GR

2
(t)

, (25)

here ∆RGR(t) = RGR(t) − RGR(t), ∆R(I)
GR(t) = R(I)

GR(t) − R(I)
GR(t),

and the overline denotes the time average over a cycle. We note
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t
s

hat C(I) represents well the phase difference (shift) between the
piking patterns [R(I)

GR(t)] of GR clusters and the firing behavior
[RGR(t)] in the whole population.

In all the 210 GR clusters, we obtain their conjunction indices
C(I), make intensive examination of the phase difference of R(I)

GR(t)
with respect to RGR(t), and thus classify the whole GR clusters
into the in-phase, the anti-phase, and the complex out-of-phase
spiking groups. Fig. 5 shows examples for diverse spiking patterns
of GR clusters. This type of diversity arises from inhibitory coor-
dination of GO cells on the firing activity of GR cells in the GR-GO
feedback system in the granular layer.

Five examples for ‘‘in-phase’’ spiking patterns in the Ith (I =

594, 543, 663, 332, and 399) GR clusters are given in Figs. 5(a1)–
5(a5), respectively. Raster plot of spikes of NGR(= 50) GR cells
and the corresponding instantaneous cluster spike rate R(I)

GR(t)
are shown, along with the value of C(I) in each case of the Ith
GR cluster. In all these cases, the instantaneous cluster spike
rates R(I)

GR(t) are in-phase relative to the instantaneous whole-
population spike rate RGR(t). Among them, in the case of I = 594
with the maximum conjunction index Cmax (= 0.85), R(594)

GR (t)
with a central plateau is the most similar (in-phase) to RGR(t).
In the next case of I = 543 with C(I)

= 0.48, R(543)
GR (t) has a

central sharp peak, and hence its similarity degree relative to
RGR(t) decreases. The remaining two cases of I = 663 and 332
(with more than one central peaks) may be regarded as ones
developed from the case of I = 594. With increasing the number
of peaks in the central part, the value of C(I) decreases, and hence
the resemblance degree relative to RGR(t) is reduced. The final
case of I = 399 with double peaks can be considered as one
evolved form the case of I = 543. In this case, the value of C(I) is
reduced to 0.40.

Based on the examples in Figs. 5(a1)–5(a5), spiking patterns
which have central plateau, central sharp peak, and two or more
central peaks in the middle part of cycle are considered as
in-phase spiking patterns relative to the instantaneous whole-
population spike rate RGR(t). We make an intensive examination
of the instantaneous cluster spike rates R(I)

GR of the GR clusters
with C (I) < 0.40, and determine the higher threshold C∗

h (≃
0.39) between the in-phase and the complex out-of-phase spiking
patterns. For C(I) > C∗

h in-phase spiking patterns such as ones in
Figs. 5(a1)–5(a5) appear. On the other hand, when passing the
higher threshold C∗

h from the above, complex out-of-phase spik-
ing patterns (with C(I) < C∗

h ) emerge. These complex out-of-phase
spiking patterns have left-skewed (right-skewed) peaks near the
1st (3rd) quartile of cycle [i.e., near t = 500 (1500) ms], explicit
examples of which will be given below in Figs. 5(c1)–5(c4).
Thus, all the GR clusters, exhibiting in-phase spiking patterns,
constitute the in-phase spiking group where the range of C(I) is
(C∗

h , Cmax); Cmax = 0.85 and C∗

h ≃ 0.39.
Next, we consider the ‘‘anti-phase’’ spiking patterns. Two ex-

amples for the anti-phase spiking patterns in the Ith (I = 49 and
101) GR clusters are given in Figs. 5(b1) and 5(b2), respectively.
We note that, in both cases, the instantaneous cluster spike
rates R(I)

GR(t) are anti-phase with respect to RGR(t) in the whole
population. In the case of I = 49 with the minimum conjunction
index Cmin (= −0.57), R(49)

GR (t) is the most anti-phase relative to
RGR(t), and it has double peaks near the 1st and the 3rd quartiles
and a central deep valley at the middle of the cycle. The case of
I = 101 with C(I) (= −0.23) may be regarded as evolved from
the case of I = 49. It has an increased (but still negative) value of
C(I) (= −0.23) due to the risen central shallow valley.

Based on the examples in Figs. 5(b1)–5(b2), spiking patterns
[R(I)

GR(t)] which have double peaks near the 1st and the 3rd quartile
and a central valley at the middle of cycle are regarded as anti-
phase spiking patterns with respect to RGR(t). Like the case of the
above in-phase spiking patterns, through intensive examination
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of R(I)
GR of the GR clusters with C (I) > −0.23, we determine

the lower threshold C∗

l (≃ −0.20) between the anti-phase and
the complex out-of-phase spiking patterns. For C(I) < C∗

l anti-
phase spiking patterns such as ones in Figs. 5(b1)–5(b2) exist. In
contrast, when passing the lower threshold C∗

l from the below,
complex out-of-phase spiking patterns (with C(I) > C∗

l ) appear.
These complex out-of-phase spiking patterns have a central peak
which is transformed from the central valley at the middle of
cycle, along with double peaks near the 1st and the 3rd quartile.
An explicit example will be given below in Fig. 5(c5). Thus, all
the GR clusters, showing anti-phase spiking patterns, form the
anti-phase spiking group where the range of C(I) is (Cmin, C∗

l );
Cmin = −0.57 and C∗

l ≃ −0.20.
As discussed above, in the range of C∗

l (≃ −0.20) < C(I) <
C∗

h (≃ 0.39), a 3rd type of complex ‘‘out-of-phase’’ spiking pat-
terns appear between the in-phase and the anti-phase spiking
patterns. Figs. 5(c1)–5(c6) show six examples for the complex
out-of-phase spiking patterns in the Ith (I = 192, 91, 773, 382,
705, and 349) GR clusters. The cases of I = 192 and 91 seem to be
developed from the in-phase spiking pattern in the Ith (I = 594
or 543) GR cluster. In the case of I = 192, R(192)

GR has a left-skewed
peak near the 1st quartile of the cycle, while in the case of I = 91,
R(91)
GR has a right-skewed peak near the 3rd quartile. Hence, the

values of C(I) for I = 192 and 91 are reduced to 0.12 and 0.10,
respectively. In the next two cases of I = 773 and 382, they seem
to be developed from the cases of I = 192 and 91, respectively.
The left-skewed (right-skewed) peak in the case of I = 192 (91)
is bifurcated into double peaks, which leads to more reduction
of conjunction indices; C(773)

= 0.08 and C(382)
= 0.05. In the

remaining case of I = 705, it seems to be evolved from the anti-
phase spiking pattern in the I = 101 case. The central valley for
I = 101 is transformed into a central peak. Thus, R(705)

GR has three
peaks, and its value of C(705) is a little increased to −0.18. As C(I)

is more increased toward the zero, R(I)
GR becomes more complex,

as shown in Fig. 5(c6) in the case of I = 349 with C(349)
= −0.07.

Results on characterization of the diverse in-phase, anti-phase,
and complex out-of-phase spiking patterns are shown in Fig. 6.
Fig. 6(a) shows the plot of the fraction of conjunction indices C(I)

in the whole GR clusters. C(I) increases slowly from the negative
to the peak at 0.55, and then it decreases rapidly. For this distri-
bution {C(I)

}, the range is (−0.57, 0.85), the mean is 0.32, and the
standard deviation is 0.516. Then, the diversity degree D for the
spiking patterns [R(I)

GR(t)] of all the GR clusters is given by:

D = Relative Standard Deviation for the Distribution {C(I)
}, (26)

where the relative standard deviation is just the standard devi-
ation divided by the mean. In the optimal case of p∗

c = 0.06,
D∗

≃ 1.613, which is just a quantitative measure for the diverse
recoding performed via feedback cooperation between the GR
and the GO cells in the granular layer. As will be seen later in
Fig. 18(b) for the plot of D versus pc , D∗ is just the maximum, and
hence spiking patterns of GR clusters at p∗

c is the most diverse.
We decompose the whole GR clusters into the in-phase, anti-

phase, and complex out-of-phase spiking groups. Fig. 6(b) shows
the fraction of spiking groups. The in-phase spiking group with
C∗

h (≃ 0.39) < C(I) < Cmax (= 0.85) is a major one with
fraction 50.2%, while the anti-phase spiking group with Cmin (=
−0.57) < C(I) < C∗

l (≃ −0.20) is a minor one with fraction 5.8%.
Between them (C∗

l < C(I) < C∗

h ), the complex out-of-phase spiking
group with fraction 44% exists. In this case, the spiking-group
ratio, given by the ratio of the fraction of the in-phase spiking
group to that of the out-of-phase spiking group (consisting of
both the anti-phase and complex out-of-phase spiking groups), is
R∗

≃ 1.008. Thus, in the optimal case of p∗
c = 0.06, the fractions

between the in-phase and the out-of-phase spiking groups are
well balanced. Under such good balance between the in-phase
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Fig. 7. Dynamical origin for the diverse spiking patterns in the GR clusters in the optimal case of p∗
c = 0.06. In-phase spiking patterns for I = (a1) 594 and (a2) 543,

anti-phase spiking pattern for (a3) I = 49, and complex out-of-phase spiking patterns for I = (a4) 192 and (a5) 91. In (a1)–(a5), top panel: raster plots of spikes
in the sub-population of pre-synaptic GO cells innervating the Ith GR cluster, 2nd panel: plots of f (I)X (t): bin-averaged instantaneous spike rates of the MF signals
(X = MF) into the Ith GR cluster (gray line) and bin-averaged instantaneous sub-population of pre-synaptic GO cells (X = GO) innervating the Ith GR cluster (black
line); ⟨· · ·⟩r represents the realization average (number of realizations is 100), 3rd panel: time course of ⟨g (I)

tot (t)⟩r : conductance of total synaptic inputs (including
both the excitatory and inhibitory inputs) into the Ith GR cluster, and bottom panel: plots of R(I)

GR(t): instantaneous cluster spike rate in the Ith GR cluster. (b) Plot
of cluster-averaged conductance ⟨g (w)

tot (t)⟩r of total synaptic inputs into the GR clusters versus t . (c) Distribution of conjunction indices {C(I)
in } for the conductances of

total synaptic inputs into the GR clusters.
and the out-of-phase spiking groups, spiking patterns of the GR
clusters are the most diverse.

Figs. 6(c1)–6(c3) also show the plots of the fractions of con-
junction indices C(I) of the GR clusters in the in-phase, anti-
phase, and complex out-of-phase spiking groups, respectively.
The ranges for the distributions {C(I)

} in the three spiking groups
are also given in the bar diagram in Fig. 6(d). In the case of in-
phase spiking group, the distribution {C(I)

} with a peak at 0.55
has only positive values in the range of (C∗

h , Cmax) (Cmax = 0.85
and C∗

h ≃ 0.39), and its mean and standard deviations are 0.538
and 0.181, respectively. On the other hand, in the case of the anti-
phase spiking group, the distribution {C(I)

} with a peak at −0.25
has only negative values in the range of (Cmin, C∗

l ) (Cmin = −0.57
and C∗

l ≃ −0.20), and its mean and standard deviations are
−0.331 and 0.135, respectively. Between the in-phase and the
anti-phase spiking groups, there exists an intermediate complex
out-of-phase spiking group. In this case, the range for the distri-
bution {C(I)

} with a peak at 0.35 is (C∗, C∗), and the mean and
l h

183
the standard deviation are 0.174 and 0.242, respectively. As will
be seen in the next subsection, these in-phase, anti-phase, and
complex out-of-phase spiking groups play their own roles in the
synaptic plasticity at PF-PC synapses, respectively.

Finally, we study the dynamical origin of diverse spiking pat-
terns in the Ith GR clusters. As examples, we consider two in-
phase spiking patterns for I = 594 and 543 [see the spiking
patterns in Figs. 5(a1) and 5(a2)], one anti-phase spiking pattern
for I = 49 [see the spiking pattern Fig. 5(b1)], and two complex
out-of-phase spiking patterns for I = 192 and 91 [see the spiking
patterns in Figs. 5(c1) and 5(c2)]. In Fig. 7, (a1)–(a5) correspond
to the cases of I = 594, 543, 49, 192, and 91, respectively.

Diverse recodings for the MF signals are made in the GR layer,
composed of excitatory GR and inhibitory GO cells (i.e., in the GR-
GO cell feedback loop). In this case, spiking activities of GR cells
are controlled by two types of synaptic input currents (i.e., excita-
tory synaptic inputs through MF signals and inhibitory synaptic
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nputs from randomly connected GO cells). Then, we make in-
estigations on the dynamical origin of diverse spiking patterns
f the GR clusters (shown in Fig. 5) through analysis of total
ynaptic inputs into the GR clusters. Synaptic current is given by
he product of synaptic conductance g and potential difference
see Eq. (8)]. Here, synaptic conductance determines the time-
ourse of synaptic current. Hence, it is enough to consider the
ime-course of synaptic conductance. The synaptic conductance g
is given by the product of synaptic strength per synapse, the num-
ber of synapses Msyn, and the fraction s of open (post-synaptic)
ion channels [see Eq. (9)]. Here, the synaptic strength per synapse
is given by the product of maximum synaptic conductance ḡ
and synaptic weight J , and the time-course of s(t) is given by
a summation for exponential-decay functions over pre-synaptic
spikes, as shown in Eqs. (9) and (10).

We make an approximation of the fraction s(t) of open ion
channels (i.e., contributions of summed effects of pre-synaptic
spikes) by the bin-averaged spike rate f (I)X (t) of pre-synaptic neu-
rons (X = MF and GO); f (I)MF(t) is the bin-averaged spike rate of the
MF signals into the Ith GR cluster and f (I)GO(t) is the bin-averaged
spike rate of the pre-synaptic GO cells innervating the Ith GR
cluster. Then, the conductance g (I)

X (t) of synaptic input from X (=
MF or GO) into the Ith GR cluster (I = 1, . . . ,NC ) is given by:

g (I)
X (t) ≃ M(R)

f · f (I)X (t). (27)

ere, the multiplication factor M(R)
f [= maximum synaptic con-

uctance ḡR × synaptic weight J (GR,X)
× number of synapses

(GR,X)
syn ] varies depending on X and the receptor R on the post-
ynaptic GR cells. In the case of excitatory synaptic currents
nto the Ith GR cluster with AMPA receptors via the MF signal,
(AMPA)
f = 2.88; ḡAMPA = 0.18, J (GR,MF)

= 8.0, and M (GR)
syn = 2. In

ontrast, in the case of the Ith GR cluster with NMDA receptors,
¯NMDA = 0.025, and hence M(NMDA)

f = 0.4, which is much
ess than M(AMPA)

f . For the inhibitory synaptic current from pre-
ynaptic GO cells to the Ith GR cluster with GABA receptors,
(GABA)
f = 2.72; ḡGABA = 0.028, J (GR,GO)

= 10, and M (GR,GO)
syn = 9.7.

Then, the conductance g (I)
tot of total synaptic inputs (including both

the excitatory and the inhibitory input) into the Ith GR cluster is
given by:

g (I)
tot (t) = g (I)

MF − g (I)
GO = g (I)

AMPA + g (I)
NMDA − g (I)

GO

= 3.28 f (I)MF(t) − 2.72 f (I)GO(t). (28)

Total synaptic input with conductance g (I)
tot (t) is fed into GR cells

in the Ith GR cluster, and then the corresponding output, given
by the instantaneous cluster spike rate R(I)

GR(t), emerges. Through
averaging g (I)

tot (t) over all the GR clusters, we obtain the cluster-
averaged conductance g (w)

tot (t) of total synaptic inputs into the GR
clusters:

g (w)
tot (t) =

1
NC

NC∑
I=1

g (I)
tot (t). (29)

The cluster-averaged total synaptic input with g (w)
tot (t) gives rise to

the cluster-averaged output, given by the instantaneous whole-
population spike rate Rw(t) [= 1

NC

∑NC
I=1 R

(I)
GR(t)].

In Figs. 7(a1)–7(a5), the top panels show the raster plots of
spikes in the sub-populations of pre-synaptic GO cells innervating
the Ith GR clusters. We obtain bin-averaged (sub-population)
spike rates f (I)GO(t) from the raster plots. The bin-averaged spike

rate of pre-synaptic GO cells in the ith bin is given by n(s)i
Npre ∆t ,

where n(s)
i is the number of spikes in the ith bin, ∆t (= 10 ms)

is the bin size, and N (= 10) is the number of pre-synaptic
pre
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GO cells. Via an average over 100 realizations, we obtain the
realization-averaged (bin-averaged) spike rate of pre-synaptic GO
cells ⟨f (I)GO(t)⟩r because Npre (= 10) is small; ⟨· · ·⟩r represent a
ealization-average. The 2nd panels show ⟨f (I)GO(t)⟩r (black line)
and ⟨f (I)MF(t)⟩r (gray line). We note that ⟨f (I)GO(t)⟩ changes depending
on I , while ⟨f (I)MF(t)⟩ is independent of I . In contrast to the spiking
activity of GR cells [which exhibit random repetition of transi-
tions between active (bursting) and inactive (silent) states (see
Fig. 4(a))], GO cells exhibit relatively regular spikings, which may
be well seen in slightly-modified sinusoidal-like bin-averaged
spike rate ⟨f (I)GO(t)⟩r (Heine, Highstein, & Blazquez, 2010; Yamazaki
& Tanaka, 2007a). Then, we may get the realization-averaged
conductance ⟨g (I)

tot (t)⟩r of total synaptic inputs in Eq. (28), which
is shown in the 3rd panels. These conductances ⟨g (I)

tot (t)⟩r of total
synaptic inputs show diverse patterns depending on I , although
⟨f (I)GO(t)⟩, related to inhibitory synaptic input, exhibits relatively
regular patterns.

We note that the shapes of ⟨g (I)
tot (t)⟩r (corresponding to the

total input into the Ith GR cluster) in the 3rd panels are nearly
the same as those of R(I)

GR(t) (corresponding to the output of the
Ith GR cluster) in the bottom panels. Hence, we expect that in-
phase (out-of-phase) inputs into the GR clusters may result in
generation of in-phase (out-of-phase) outputs (i.e., responses) in
the GR clusters. To confirm this point clearly, similar to case of
the spiking patterns [R(I)

GR(t)] (i.e., the outputs) in the GR clusters,
we introduce the conjunction index for the total synaptic input
into the Ith GR cluster between ⟨g (I)

tot (t)⟩r (conductance of total
synaptic input into the Ith GR cluster) and the cluster-averaged
conductance of total synaptic inputs ⟨g (w)

tot (t)⟩r . Fig. 7(b) shows the
plot of ⟨g (w)

tot (t)⟩r versus t . We also note that the shape of ⟨g (w)
tot (t)⟩r

is similar to the instantaneous whole-population spike rate RGR(t)
in Fig. 4(b).

As in the case of the conjunction index C(I) for the spiking
patterns (i.e. outputs) in the Ith GR cluster [see Eq. (25)], the
conjunction index C(I)

in for the total synaptic input is given by
the cross-correlation at the zero-time lag (i.e., Corr (I)in (0)) between
⟨g (I)

tot (t)⟩r and ⟨g (w)
tot (t)⟩r :

Corr (I)in (τ ) =
∆⟨g (w)

tot (t + τ )⟩r∆⟨g (I)
tot (t)⟩r√

∆⟨g (w)
tot (t)⟩r

2
√

∆⟨g (I)
tot (t)⟩r

2
, (30)

where ∆⟨g (w)
tot (t)⟩r = ⟨g (w)

tot (t)⟩r − ⟨g (w)
tot (t)⟩r , ∆⟨g (I)

tot (t)⟩r =

⟨g (I)
tot (t)⟩r −⟨g (I)

tot (t)⟩r , and the overline represents the time average.
Thus, we have two types of conjunction indices, C(I) [output
conjunction index: given by Corr (I)GR(0)] and C(I)

in [input conjunction
index: given by Corr (I)in (0)] for the output and the input in the Ith
GR cluster, respectively.

Fig. 7(c) shows the plot of fraction of input conjunction indices
{C(I)

in } in the whole GR clusters. We note that the distribution of
input conjunction indices in Fig. 7(c) is nearly the same as that
of output conjunction indices in Fig. 6(a). C(I)

in increases slowly
from the negative value to the peak at 0.55, and then it decreases
rapidly. In this distribution of {C(I)

in }, the range is (−0.57, 0.85),
the mean is 0.321, and the standard deviation is 0.516. Then,
we obtain the diversity degree Din for the total synaptic inputs
{⟨g (I)

tot (t)⟩r} of all the GR clusters:

Din = Relative Standard Deviation for the Distribution of {C(I)
in }.

(31)

Hence, Din ≃ 1.607 for the synaptic inputs, which is nearly
the same as D∗ (≃ 1.613) for the spiking patterns of GR cells.
Consequently, diverse total synaptic inputs into the GR clusters
lead to generation of diverse outputs (i.e., spiking patterns) of the
GR cells.
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.3. Effect of diverse recoding in GR clusters on synaptic plasticity at
F-PC synapses

Based on dynamical classification of spiking patterns of GR
lusters, we investigate the effect of diverse recoding in the GR
lusters on synaptic plasticity at PF-PC synapses. As shown in
he above subsection, MF context input signals for the post-eye-
ovement are diversely recoded in the granular layer (corre-
ponding to the input layer of the cerebellar cortex). The
iversely-recoded in-phase and out-of-phase PF (student) signals
corresponding to the outputs from the GR cells) are fed into
he PCs (i.e., principal cells of the cerebellar cortex) and the
Cs in the Purkinje-molecular layer (corresponding to the output
ayer of the cerebellar cortex). The PCs also receive in-phase
rror-teaching CF (instructor) signals from the IO, along with the
nhibitory inputs from the BCs. Then, the synaptic weights at the
F-PC synapses vary depending on the relative phase difference
etween the PF (student) signals and the CF (instructor) signals.
We first consider the change in normalized synaptic weights

˜ of active PF-PC synapses during learning in the optimal case of
∗
c = 0.06;

˜ij(t) =
J (PC,PF)
ij (t)

J (PC,PF)
0

. (32)

here the initial synaptic strength (J (PC,PF)
0 = 0.006) is the same

or all PF-PC synapses. Figs. 8(a1)–8(a5) show cycle-evolution of
istribution of J̃(t) of active PF-PC synapses. With increasing the
earning cycle, normalized synaptic weights J̃(t) are decreased
due to LTD at PF-PC synapses, and eventually their distribution
seems to be saturated at about the 300th cycle. We note that
in-phase PF signals are strongly depressed (i.e., strong LTD) by
the in-phase CF signals, while out-of-phase PF signals are weakly
depressed (i.e., weak LTD) due to the phase difference between
the PF and the CF signals. As shown in Fig. 4(c2), the activation
degree A(G) of the in-phase spiking group (G = i) is dominant
at the middle stage of the cycle, while at the other parts of the
cycle, the activation degrees of the in-phase (G = i) and the out-
of-phase (G = o) spiking groups are comparable. Consequently,
strong LTD occurs at the middle stage, while at the initial and
final stages somewhat less LTD takes place due to contribution
of both the out-of-phase spiking group (with weak LTD) and the
in-phase spiking group.

To more clearly examine the above cycle evolutions, we get
the bin-averaged (normalized) synaptic weight in each ith bin
(bin size: ∆t = 100 ms):

⟨J̃(t)⟩i =
1
Ns,i

Ns,i∑
f=1

J̃i,f (t), (33)

here J̃i,f is the normalized synaptic weight of the f th active
F signal in the ith bin, and Ns,i is the total number of active
F signals in the ith bin. Figs. 8(b1)–8(b5) show cycle-evolution
f bin-averaged (normalized) synaptic weights ⟨J̃(t)⟩ of active
F signals. In each cycle, ⟨J̃(t)⟩ forms a well-shaped curve. With

increasing the cycle, the well curve comes down, its modulation
[= (maximum − minimum)/2] increases, and saturation seems to
occur at about the 300th cycle.

We also get the cycle-averaged mean ⟨J̃(t)⟩ via time average
f ⟨J̃(t)⟩ over a cycle:

⟨J̃⟩ =
1
Nb

Nb∑
i=1

⟨J̃(t)⟩i, (34)

here Nb is the number of bins for cycle averaging, and the
verbar represents the time average over a cycle. Figs. 8(c) and
185
8(d) show plots of the cycle-averaged mean ⟨J̃(t)⟩ and the modu-
lation MJ for ⟨J̃(t)⟩ versus cycle. The cycle-averaged mean ⟨J̃(t)⟩
ecreases from 1 to 0.372 due to LTD at PF-PC synapses. However,
trength of the LTD varies depending on the stages of the cycle.
t the middle stage, strong LTD occurs, due to dominant contri-
ution of in-phase active PF signals. On the other hand, at the
nitial and the final stage, somewhat less LTD takes place, because
oth the out-of-phase spiking group (with weak LTD) and the
n-phase spiking group make contributions together. As a result,
ith increasing cycle, the middle-stage part comes down more
apidly than the initial and final parts, and hence the modulation

J increases from 0 to 0.112.
We now decompose the whole active PF signals into the

n-phase and the out-of-phase active PF signals, and make an
ntensive investigation on their effect on synaptic plasticity at
F-PC synapses. Fig. 9 shows cycle-evolution of distributions of
ormalized synaptic weights J̃ (G) of active PF signals in the G

spiking group [(a1)–(a5) in-phase (G = i) and (b1)–(b5) out-of-
phase (G = o)] in the optimal case of p∗

c = 0.06; the out-of-phase
spiking group consists of the anti-phase and the complex out-of-
phase spiking groups. With increasing learning cycle, normalized
synaptic weights J̃ (G) for the in-phase and the out-of-phase PF
signals are decreased, and saturated at about the 300th cycle.

We note that the strength of LTD varies distinctly depending
on the type of spiking group. The student PF signals (correspond-
ing to the axons of the GR cells) are classified as in-phase or
out-of-phase PF signals with respect to the ‘‘reference’’ signal
RGR(t). Here, RGR(t) is the instantaneous whole-population spike
rate of Eq. (18)(denoting the population-averaged firing activity
in the whole population of the GR cells). It is basically in propor-
tion to the sinusoidal MF context signal fMF(t) of Eq. (1), although
its top part becomes lowered and flattened due to inhibitory
coordination of GO cells. The PF student signals (coming from
the GR clusters) are characterized in terms of their conjunction
indices C(I) of Eq. (25) between the instantaneous cluster spike
rate R(I)

GR(t) and the reference signal RGR(t). The ranges of {C(I)
} for

the in-phase and the out-of-phase spiking groups are (0.39, 0.85)
and (−0.57, 0.39), respectively, as shown in Fig. 6(d). The range
for the out-of-phase spiking group is broader than that for the
in-phase spiking group. These student PF signals are depressed
by the instructor CF signals (coming from the IO neuron). We
also note that the instructor CF signals are in-phase with the
reference signal RGR(t), because the CF signals are also basically
in proportion to the sinusoidal IO desired signal fDS(t) of Eq. (2)
hich is in-phase with fMF(t). Hence, in-phase student PF signals
re strongly depressed by the instructor CF signals, because they
re ‘‘well-matched’’ with the in-phase CF signals. On the other
and, out-of-phase student PF signals are weakly depressed by
he instructor CF signals, because they are ‘‘ill-matched’’ with the
n-phase CF signals.

In the case of active in-phase PF signals, the distribution of
heir normalized synaptic weights J̃ (G)(t) (G = i) forms the
ottom dense bands in Figs. 8(a1)–8(a5), due to strong LTD at the
n-phase PF-PC synapses. The (vertical) widths of these bottom
ands are narrow because of the narrow range of {C (I)

}. On the
ther hand, in the case of active out-of-phase PF signals, the
istribution of {J̃ (G)(t)} (G = o) constitutes the upper sparse well-
haped parts in Figs. 8(a1)–8(a5), because of weak LTD at the
ut-of-phase PF-PC synapses. Due to the broad range of {C (I)

},
he heights of the well-shaped parts for the out-of-phase PF
ignals are higher than those of the bottom bands for the in-
hase PF signals with the narrow range. Moreover, the shapes
or the distributions of {J̃ (G)(t)} are consistent with the activation
degrees A(G) of Eq. (21) of the active PF signals in the G spiking
group which is also shown in Fig. 4(c2). The activation degree A(o)

(G = o) for the out-of-phase spiking group has a small minimum
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Fig. 8. Change in synaptic weights of active PF-PC synapses during learning in the optimal case of p∗
c = 0.06. (a1)–(a5) Cycle-evolution of distribution of normalized

ynaptic weights J̃ of active PF signals. (b1)–(b5) Cycle-evolution of bin-averaged (normalized) synaptic weights ⟨J̃⟩ of active PF signals. Bin size: ∆t = 100 ms. Plots
f (c) cycle-averaged mean ⟨J̃⟩ and (d) modulation MJ for ⟨J̃⟩ versus cycle.
Fig. 9. Change in synaptic weights of active PF-PC synapses in each spiking group during learning in the optimal case of p∗
c = 0.06. Cycle-evolution of distributions

of normalized synaptic weights J̃ (G) of active PF signals in the G spiking group [G: (a1)–(a5) in-phase and (b1)–(b5) out-of-phase]. Cycle-evolution of distributions of
normalized synaptic weights J̃ (G) of active out-of-phase PF signals in the G spiking group [G: (c1)–(c5) anti-phase and (d1)–(d5) complex out-of-phase].
a
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p
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in the middle stage of cycle, which leads to the well-shaped
distributions of {J̃ (G)(t)} (G = o). Hence, the in-phase PF signals
(with strong LTD) make a large contribution in the middle stage of
cycle, while at the initial and the final stage, contributions of both
the out-of-phase PF signals (with weak LTD) and the in-phase PF
signals are comparable.

In the above way, effective depression (i.e., strong/weak LTD)
at PF-PC synapses occurs, depending on the spiking type (in-
phase or out-of-phase) of the active PF signals; strong (weak) LTD
takes place for the in-phase (out-of-phase) PF signals. However,
contributions of these in-phase and out-of-phase spiking groups
vary depending on the stages of cycle. Fig. 4(c2) shows the acti-
vation degree A(G) of the in-phase (G = i) and the out-of-phase
(G = o) spiking groups. In the middle stage of cycle, the in-phase
spiking group has a larger activation degree A(i). On the other
hand, at the initial and the final stage, the activation degrees of
 l

186
the in-phase and the out-of-phase spiking groups are comparable.
Hence, strong LTD takes place in the middle stage, due to a
large contribution of the in-phase spiking group. Thus, the in-
phase spiking group makes a big contribution to formation of the
minimum of bin-averaged (normalized) synaptic weights ⟨J̃(t)⟩
in Figs. 8(b1)–8(b5). In contrast, at the initial and the final stage
of cycle, less LTD occurs because of comparable contributions of
both the out-of-phase spiking group with weak LTD and the in-
phase spiking group with strong LTD. Hence, maxima of ⟨J̃(t)⟩
ppear at the initial and the final stage of cycle because both the
weakly-depressed) out-of-phase and the (strongly-depressed)
n-phase spiking groups contribute together.

In this way, the in-phase and the out-of-phase spiking groups
lay their own roles in formation of modulation of ⟨J̃(t)⟩. The
inimum of ⟨J̃(t)⟩ in the middle stage of cycle is formed via a

arge contribution of the in-phase spiking group with strong LTD,
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Fig. 10. Optimal case of p∗
c = 0.06. (a1)–(a5) Cycle-evolution of bin-averaged (normalized) synaptic weights ⟨J̃ (G)⟩ of active PF signals in the G spiking-group. Plots

f (b) cycle-averaged mean ⟨J̃ (G)⟩ and (c) modulation M(G)
J for ⟨J̃ (G)⟩ versus cycle. (d1)–(d5) Cycle-evolution of firing fraction F (G) of active PF signals in the G spiking

roup. (e1)–(e5) Cycle-evolution of weighted bin-averaged synaptic weights ⟨WJ
(G)

⟩ of active PF signals in the G spiking group; for comparison, bin-averaged synaptic

eights ⟨J̃⟩ in the whole population of GR cells are also given. (f1) Plots of cycle-averaged means ⟨WJ
(G)

⟩ and ⟨J̃⟩ for ⟨WJ
(G)

⟩ and ⟨J̃⟩ versus cycle. (f2) Plots of

ercentage contributions PC (G) of the G spiking group (i.e., ⟨WJ
(G)

⟩/⟨J̃⟩) versus cycle. Left, right, and middle vertical gray bands in each cycle in (e1)–(e5) denote the

nitial, final, and middle stages, respectively. Plots of stage-averaged values ⟨WJ
(G)

⟩ and ⟨J̃⟩ versus cycle at the (g1) middle, (g2) initial, and (g3) final stages of a
ycle. Plots of percentage contributions PC (G) of the G spiking group versus cycle at the (h1) middle, (h2) initial, and (h3) final stages of a cycle.
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hile formation of the maxima of ⟨J̃(t)⟩ in the initial and the final
tage is made via comparable contributions of the out-of-phase
piking group with weak LTD and the in-phase spiking group
ith strong LTD. Consequently, this kind of constructive interplay
etween the in-phase (strong LTD) and the out-of-phase (weak
TD) spiking groups leads to a big modulation of ⟨J̃(t)⟩, as shown
n Fig. 8(d). (More detailed discussion on this point will be given
elow in Fig. 10.)
We also make further decomposition of the out-of-phase PF

ignals into the anti-phase and the complex out-of-phase ones.
ig. 9 also shows cycle-evolution of distributions of normalized
ynaptic weights J̃ (G) of active out-of-phase PF signals in the
G spiking group [G: (c1)–(c5) anti-phase and (d1)–(d5) com-
plex out-of-phase]. As the learning cycle is increased, normalized
synaptic weights J̃ (G) for the anti-phase and the complex out-
f-phase PF signals are decreased and saturated at about the
00th cycle. In the case of anti-phase PF signals, weak depression
ccurs, and they constitute the top part for the out-of-phase PF
ignals in Figs. 9(b1)–9(b5). On the other hand, in the case of
omplex out-of-phase PF signals, intermediate LTD takes place,
nd they form the bottom part for the out-of-phase PF signals in
igs. 9(b1)–9(b5). These anti-phase (weak LTD) and complex out-
f-phase (intermediate LTD) spiking groups make contribution to
ormation of maxima of ⟨J̃(t)⟩ at the initial and the final stage of
ycle, together with the in-phase spiking group with strong LTD.
Figs. 10(a1)–10(a5) show cycle-evolutions of bin-averaged

normalized) synaptic weights ⟨J̃ (G)(t)⟩ of active PF signals in
he G spiking-group [i.e., corresponding to the bin-averages for
he distributions of J̃ (G)(t) in Figs. 9(a1)–9(a5) and Figs. 9(b1)–
(b5)]; G: in-phase (solid circles) and out-of-phase (open circles).
n the case of in-phase PF signals, they are strongly depressed
ithout modulation. On the other hand, in the case of out-of-
hase PF signals, they are weakly depressed with modulation; at
he initial and the final stages, they are more weakly depressed
n comparison with the case at the middle stage.
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The cycle-averaged means ⟨J̃ (G)(t)⟩ and modulations M(G)
J for

J̃ (G)(t)⟩ are given in Figs. 10(b) and 10(c), respectively. Both cycle-
veraged means in the cases of the in-phase and the out-of-phase
F signals decrease, and saturations occur at about the 300th
ycle. In comparison with the case of out-of-phase PF signals
open circles), the cycle-averaged means in the case of in-phase
F signals (solid circles) are more reduced; the saturated limit
alue in the case of in-phase (out-of-phase) PF signals is 0.199
0.529). In contrast, modulation occurs only for the out-of-phase
F signals (open circles), it increases with cycle, and becomes
aturated at about the 300th cycle where the saturated value is
.087.
In addition to the above bin-averaged (normalized) synaptic

eights ⟨J̃ (G)(t)⟩, we need another information on firing fraction
(G)(t) of active PF signals in the G (in-phase or out-of-phase)
piking group to obtain the contribution of each spiking group
o the bin-averaged synaptic weights ⟨J̃(t)⟩ of active PF signals in
he whole population. The firing fraction F (G)

i of active PF signals
n the G spiking group in the ith bin is given by:

(G)
i =

N (G)
s,i

Ns,i
, (35)

where Ns,i is the total number of active PF signals in the ith bin
and N (G)

s,i is the number of active PF signals in the G spiking group
in the ith bin. We note that F (G)(t) is the same, independently of
the learning cycle, because firing activity of PF signals depends
only on the GR and GO cells in the granular layer.

Figs. 10(d1)–10(d5) show the firing fraction F (G)(t) of active PF
signals in the G spiking group. The firing fraction F (G)(t) for the in-
hase (G = i) active PF signals (solid circles) forms a bell-shaped
urve, while F (G)(t) for the out-of-phase (G = o) active PF signals
(open circles) forms a well-shaped curve. The bell-shaped curve
for the in-phase PF signal is higher than the well-shaped curve for
the out-of-phase PF signal. For the in-phase PF signals, the firing
fraction F (i)(t) is about 0.94 (i.e., 94%) at the middle stage, and
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bout 0.51 (i.e., 51%) at the initial and the final stage. On the other
and, for the out-of-phase PF signals, the firing fraction F (o)(t) is

about 0.49 (i.e., 49%) at the initial and the final stage, and about
0.06 (i.e., 6%) at the middle stage. Consequently, the fraction of
in-phase active PF signals is dominant at the middle stage, while
at the initial and the final stage, the fractions of both in-phase
and out-of-phase active PF signals are nearly the same.

The weighted bin-averaged synaptic weight ⟨W (G)
J ⟩i for each G

piking group in the ith bin is given by the product of the firing
raction F (G)

i and the bin-averaged (normalized) synaptic weight
J̃ (G)⟩i:

W (G)
J ⟩i = F (G)

i ⟨J̃ (G)⟩i, (36)

here the firing fraction F (G)
i plays a role of a weighting function

for ⟨J̃ (G)⟩i. Then, the bin-averaged (normalized) synaptic weight
⟨J̃⟩i of active PF signals in the whole population in the ith bin [see
Eq. (33)] is given by the sum of weighted bin-averaged synaptic
weights ⟨W (G)

J ⟩i of all spiking groups:

⟨J̃⟩i =

all spiking groups∑
G

⟨W (G)
J ⟩i. (37)

ence, ⟨W (G)
J (t)⟩ represents contribution of the G spiking group

o ⟨J̃(t)⟩ of active PF signals in the whole population.
Figs. 10(e1)–10(e5) show cycle-evolution of weighted bin-

averaged synaptic weights ⟨W (G)
J (t)⟩ of active PF signals in the G

spiking group [G: in-phase (solid circles) and out-of-phase (open
circles)]. In the case of in-phase PF signals, the bin-averaged
(normalized) synaptic weights ⟨J̃ (G)(t)⟩ are straight horizontal
lines, the firing fraction F (G)(t) is a bell-shaped curve, and hence
their product leads to a bell-shaped curve for the weighted bin-
averaged synaptic weight ⟨W (G)

J (t)⟩. With increasing the cycle, the
horizontal straight lines for ⟨J̃ (G)(t)⟩ come down rapidly, while
there is no change with cycle in F (G)(t). Hence, the bell-shaped
curves for ⟨W (G)

J (t)⟩ also come down quickly, their modulations
also are reduced in a fast way, and they become saturated at
about the 300th cycle.

On the other hand, in the case of out-of-phase PF signals,
the bin-averaged (normalized) synaptic weights ⟨J̃ (G)(t)⟩ lie on a
well-shaped curve, the firing fraction F (G)(t) also is a well-shaped
curve, and then their product results in a well-shaped curve
for the weighted bin-averaged synaptic weight ⟨W (G)

J (t)⟩. With
increasing the cycle, the well-shaped curves for ⟨J̃ (G)(t)⟩i come
down slowly, while there is no change with cycle in F (G)(t). Hence,
the well-shaped curves for ⟨W (G)

J (t)⟩ also come down gradually,
their modulations also are reduced little by little, and eventually
they get saturated at about the 300th cycle.

For comparison, bin-averaged (normalized) synaptic weights
⟨J̃(t)⟩ of active PF signals in the whole population (crosses) are
also given in Figs. 10(e1)–10(e5), and they form a well-shaped
curve. According to Eq. (37), the sum of the values at the solid
circle (in-phase) and the open circle (out-of-phase) at a time t in
each cycle is just the value at the cross (whole population). At the
middle stage of each cycle, contributions of in-phase PF signals
(solid circles) are dominant [i.e., contributions of out-of-phase
PF signals (open circles) are negligible], while at the initial and
the final stage, contributions of out-of-phase PF signals are larger
than those of in-phase PF signals (both contributions must be
considered). Consequently, ⟨J̃(t)⟩ of active PF signals in the whole
population becomes more reduced at the middle stage than at the
initial and the final stage, due to the dominant effect (i.e., strong
LTD) of in-phase active PF signals at the middle stage, which
results in a well-shaped curve for ⟨J̃(t)⟩ in the whole population.
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We make a quantitative analysis for contribution of ⟨W (G)
J (t)⟩

in each G spiking group to ⟨J̃(t)⟩ in the whole population.
Fig. 10(f1) shows plots of cycle-averaged weighted synaptic
weight ⟨W (G)

J (t)⟩ (i.e., time average of ⟨W (G)
J (t)⟩ over a cycle)

in the G spiking-group [G: in-phase (solid circles) and out-of-
phase (open circles)] and cycle-averaged synaptic weight ⟨J̃(t)⟩ of
Eq. (34) in the whole population (crosses) versus cycle. The cycle-
averaged weighted synaptic weights ⟨W (G)

J (t)⟩ in the in-phase
spiking group (solid circles) are larger than those in the out-of-
phase spiking group (open circles), and their sums correspond to
the cycle-averaged synaptic weight ⟨J̃(t)⟩ in the whole population
(crosses). With increasing cycle, both ⟨W (G)

J (t)⟩ and ⟨J̃(t)⟩ become
saturated at about the 300th cycle. In the in-phase spiking group
⟨W (G)

J (t)⟩ decreases rapidly from 0.722 to 0.198, while ⟨W (G)
J (t)⟩

in the out-of-phase spiking group decreases slowly from 0.273 to
0.174. Thus, the saturated values of ⟨W (G)

J (t)⟩ in both the in-phase
nd the out-of-phase spiking groups become close.
The percentage contribution PC (G) of ⟨W (G)

J (t)⟩ in the G spiking

group to ⟨J̃(t)⟩ in the whole population is given by:

PC (G)(%) =
⟨W (G)

J (t)⟩

⟨J̃(t)⟩
× 100. (38)

Fig. 10(f2) shows a plot of PC (G) versus cycle [G: in-phase (solid
circles) and out-of-phase (open circles)]. PC (G) of the in-phase
spiking group decreases from 72.2% to 53.2%, while PC (G) of the
out-of-phase spiking group increases from 27.3% to 46.8%. Thus,
the saturated values of PC (G) of both the in-phase and the out-of-
phase spiking groups get close.

We are particularly interested in the left, the right, and the
middle vertical gray bands in each cycle in Figs. 10(e1)–10(e5)
which denote the initial (0 < t < 100 ms), the final (1900 < t <

2000 ms), and the middle (900 < t < 1100 ms) stages, respec-
tively. In the case of in-phase (out-of-phase) spiking group, the
maximum (minimum) of ⟨W (G)

J (t)⟩ appears at the middle stage,
while the minimum (maximum) occurs at the initial and the final
stage. Figs. 10(g1)–10(g3) show plots of stage-averaged weighted
synaptic weight ⟨W (G)

J (t)⟩ [i.e., time average of ⟨W (G)
J (t)⟩ over

a stage] in the G spiking-group [G: in-phase (solid circles) and
out-of-phase (open circles)] and stage-averaged synaptic weight
⟨J̃(t)⟩ [i.e., time average of ⟨J̃(t)⟩ over the stage] in the whole
population (crosses) versus cycle in the middle, the initial, and
the final stages, respectively. The sum of the values of ⟨W (G)

J (t)⟩
at a time t in the in-phase and the out-of-phase spiking groups
corresponds to the value of ⟨J̃(t)⟩ in the whole population. As
the cycle is increased, both ⟨W (G)

J (t)⟩ and ⟨J̃(t)⟩ become saturated
at about the 300th cycle. Figs. 10(h1)–10(h3) also show plots of
percentage contribution PC (G) of the G spiking group (i.e., ratio of
he stage-averaged weighted synaptic weight ⟨W (G)

J (t)⟩ in the G

spiking group to the stage-averaged synaptic weight ⟨J̃(t)⟩ in the
hole population) in the middle, the initial, and the final stages,
espectively [G: in-phase (solid circles) and out-of-phase (open
circles)].

In the case of in-phase spiking group, ⟨W (G)
J (t)⟩ decreases

rapidly with cycle in all the 3 stages, while in the case of out-
of-phase spiking group, it also decreases in a relatively slow way
with cycle. At the middle stage, ⟨W (G)

J (t)⟩ in the in-phase spiking
group (solid circles) is much higher than that in the out-of-phase
spiking group (open circles), and it decreases rapidly from 0.944
to 0.266. In this case, the percentage contribution PC (G) of the in-
phase spiking group increases from 94.4% to 97.0%. Consequently,
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he contribution of in-phase spiking group is dominant at the
iddle stage, which leads to strong LTD at the PF-PC synapses. On

he other hand, at the initial and the final stage, with increasing
ycle ⟨W (G)

J (t)⟩ in the out-of-phase spiking group becomes larger
than that in the in-phase spiking group. The percentage contri-
bution PC (G) of the out-of-phase spiking group increases from
49.2% to 70.2%, while that of the in-phase spiking group decreases
from 50.8% to 29.8%. As a result, the contribution of out-of-phase
spiking group at the initial and the final stage is larger than that
of in-phase spiking group, which results in weak LTD at the PF-PC
synapses.

In the above way, under good balance between the in-phase
and the out-of-phase spiking groups (i.e., spiking-group ratio
R∗

≃ 1.008) in the optimal case of p∗
c = 0.06, effective depres-

sion (i.e., strong/weak LTD) at the PF-PC synapses causes a big
modulation in synaptic plasticity, which also leads to large modu-
lations in firing activities of the PCs and the VN neuron (i.e., emer-
gence of effective learning process). Hence, diverse recoding in
the granular layer (i.e., appearance of diverse spiking patterns
in the GR clusters) which results in effective (strong/weak) LTD
at the PF-PC synapses is essential for effective motor learning
for the OKR adaptation, which will be discussed in the following
subsection.

3.4. Effect of PF-PC synaptic plasticity on subsequent learning pro-
cess in the PC-VN-IO system

As a result of diverse recoding in the GR clusters, strong LTD
occurs at the middle stage of a cycle due to dominant contri-
bution of the in-phase spiking group. On the other hand, at the
initial and the final stage, somewhat less LTD takes place due to
contribution of both the out-of-phase spiking group (with weak
LTD) and the in-phase spiking group. Due to this kind of effective
(strong/weak) LTD at the PF-PC synapses, a big modulation in
synaptic plasticity at the PF-PC synapses (i.e., big modulation in
bin-averaged normalized synaptic weight ⟨J̃(t)⟩) emerges. In this
subsection, we investigate the effect of PF-PC synaptic plasticity
with a big modulation on the subsequent learning process in the
PC-VN-IO system.

Fig. 11 shows change in firing activity of PCs during learning
in the optimal case of p∗

c = 0.06. Cycle-evolutions of raster
plots of spikes of 16 PCs and the corresponding instantaneous
population spike rates RPC(t) are shown in Figs. 11(a1)–11(a5)
and Figs. 11(b1)–11(b5), respectively. Since the number of PCs
is small, RPC(t) seems to be a little rough. To get a smooth es-
timate for RPC(t), we make 100 realizations. Realization-averaged
smooth instantaneous population spike rates ⟨RPC(t)⟩r are given
n Figs. 11(c1)–11(c5); ⟨· · ·⟩r denotes realization average and the
number of realizations is 100. ⟨RPC(t)⟩r seems to be saturated at
bout the 300th cycle.
With increasing the learning cycle, raster plots of spikes of all

he 16 PCs become more and more sparse at the middle stage,
hich may be clearly seen in the instantaneous population spike
ate ⟨RPC(t)⟩r . Due to the effect of synaptic plasticity at the PF-PC
ynapses, the minimum of ⟨RPC(t)⟩r appears at the middle stage,
hile the maximum occurs at the initial and the final stage. Thus,
he modulation of ⟨RPC(t)⟩r increases with increasing the cycle.

In-phase PF (student) signals are strongly depressed by the in-
phase CF (instructor) signals, while out-of-phase PF signals are
weakly pressed due to the phase difference between the out-of-
phase PF signals and the in-phase CF signals. Fraction of in-phase
PF signals at the middle stage of a cycle is dominant. On the other
hand, at the initial and the final stage, fraction of out-of-phase
PF signals are larger than that of in-phase PF signals. Thus, bin-
averaged normalized synaptic weights ⟨J̃(t)⟩ form a well-shaped
urve, as shown in Figs. 8(b1)–8(b5). That is, strong LTD occurs
189
at the middle stage, while at the initial and the final stages, weak
LTD takes place. As a result of this kind of effective depression
(strong/weak LTD) at the (excitatory) PF-PC synapses, ⟨RPC(t)⟩r
becomes lower at the middle stage (strong LTD) than at the
initial and the final stage (weak LTD). Thus, ⟨RPC(t)⟩r forms a
well-shaped curve with a minimum at the middle stage.

Figs. 11(d1) and 11(d2) show plots of cycle-averaged mean
⟨RPC(t)⟩r (i.e., time average of ⟨RPC(t)⟩r over a cycle) and modu-
lation MPC of ⟨RPC(t)⟩r versus cycle, respectively. Due to LTD at
the PF-PC synapses, the cycle-averaged mean ⟨RPC(t)⟩r decreases
onotonically from 86.1 Hz, and it becomes saturated at 51.7 Hz
t about the 300th cycle. On the other hand, the modulation
PC increases monotonically from 2.6 Hz, and it get saturated at

24.1 Hz at about the 300th cycle. Consequently, a big modulation
occurs in MPC due to the effective depression (strong/weak LTD)
at the PF-PC synapses. These PCs (principal cells of the cerebellar
cortex) exert effective inhibitory coordination on the VN neuron
which evokes OKR eye-movement.

Fig. 12 shows change in firing activity of the VN neuron which
produces the final output of the cerebellum during learning in
the optimal case of p∗

c = 0.06. Cycle-evolutions of raster plots of
spikes of the VN neuron (i.e., collection of spike trains for all the
realizations; number of realizations is 100) and the bin-averaged
instantaneous individual firing rates fVN(t) [i.e., the number of
spikes of the VN neuron in a bin divided by the bin width (∆t =

100 ms)] are shown in Figs. 12(a1)–12(a5) and Figs. 12(b1)–
12(b5), respectively. fVN(t) seems to be saturated at about the
300th cycle.

In contrast to the case of PCs, as the cycle is increased, raster
plots of spikes of the VN neuron become more and more dense
at the middle stage, which may be clearly seen in the instanta-
neous individual firing rates fVN(t). Due to the effective inhibitory
coordinations of PCs on the VN neuron, the maximum of fVN(t)
appears at the middle stage, while the minimum occurs at the
initial and the final stage. Thus, fVN(t) forms a bell-shaped curve.

Figs. 12(c1) and 12(c2) show plots of cycle-averaged mean
fVN(t) of fVN(t) [i.e., time average of fVN(t) over a cycle] and
modulation MVN of fVN(t) versus cycle, respectively. Due to the
decreased inhibitory inputs from the PCs, the cycle-averaged
mean fVN(t) increases monotonically from 44.3 Hz, and it becomes
saturated at 71.5 Hz at about the 300th cycle. Also, the modu-
lation of fVN(t) increases from 20.2 Hz, and it gets saturated at
32.5 Hz at about the 300th cycle. As a result of effective inhibitory
coordination of PCs, a big modulation occurs in MVN.

The learning gain degree Lg , corresponding to the modulation
gain ratio, is given by the normalized modulation of fVN(t) divided
by that at the 1st cycle:

Lg =
MVN

MVN at the 1st cycle
, (39)

where MVN at the 1st cycle is 20.2 Hz. Fig. 12(d) shows a plot
of Lg versus cycle. Lg increases monotonically from 1, and it
becomes saturated at about the 300th cycle. Thus, we get the
saturated learning gain degree L∗

g (≃ 1.608). As will be seen
in the next subsection, L∗

g (≃ 1.608) is the largest one among
the available ones. Hence, in the optimal case of p∗

c = 0.06
where spiking patterns of GR clusters with the diversity degree
D∗ (≃ 1.613) are the most diverse, motor learning for the OKR
adaptation with the saturated learning gain degree L∗

g (≃ 1.608)
is the most effective.

Learning progress may be seen clearly in the IO system. During
the learning cycle, the IO neuron receives both the excitatory
desired signal for a desired eye-movement and the inhibitory
signal from the VN neuron (denoting a realized eye-movement).
We introduce the learning progress degree Lp, given by the ratio
of the cycle-averaged inhibitory input from the VN neuron to the
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Fig. 11. Change in firing activity of PCs during learning in the optimal case of p∗
c = 0.06. (a1)–(a5) Raster plots of spikes of PCs and (b1)–(b5) instantaneous

population spike rates RPC(t). (c1)–(c5) Realization-averaged instantaneous population spike rates ⟨RPC(t)⟩r ; number of realizations is 100. Plots of (d1) cycle-averaged
mean ⟨RPC(t)⟩r and (d2) modulations MPC for ⟨RPC(t)⟩r versus cycle.

Fig. 12. Change in firing activity of the VN neuron during learning in the optimal case of p∗
c = 0.06. (a1)–(a5) Raster plots of spikes of the VN neuron (i.e., collection

of spike trains for all the realizations; number of realizations is 100) and (b1)–(b5) bin-averaged instantaneous individual firing rate fVN(t); the bin size is ∆t = 100
ms. Plots of (c1) cycle-averaged mean fVN(t) and (c2) modulation MVN for fVN(t) versus cycle. (d) Plot of learning gain degree Lg versus cycle.
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Fig. 13. Change in firing activity of the IO neuron during learning in the optimal case of p∗
c = 0.06. Plots of (a1) realization-average for the cycle-averaged inhibitory

synaptic current from the VN neuron (⟨I (IO,VN)
GABA ⟩r ) (open circles) and realization-average for the magnitude of the cycle-averaged excitatory synaptic current through

he IO desired signal (⟨|I (IO,DS)
AMPA |⟩r ) (crosses) versus cycle; number of realizations ⟨· · ·⟩r is 100. (a2) Plot of learning progress degree Lp versus cycle. (b1)–(b5) Raster

lots of spikes of the IO neuron (i.e., collection of spike trains for all the realizations; number of realizations is 100) and (c1)–(c5) bin-averaged instantaneous
ndividual firing rate fIO(t); the bin size is ∆t = 400 ms. (d) Plot of cycle-averaged individual firing rate fIO(t) versus cycle.
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magnitude of the cycle-averaged excitatory input via the desired
signal:

Lp =
I (IO,VN)
GABA

|I (IO,DS)
AMPA |

, (40)

here I (IO,VN)
GABA is the cycle-averaged inhibitory GABA receptor-

ediated current from the VN neuron into the IO neuron, and
I (IO,DS)
AMPA is the cycle-averaged excitatory AMPA receptor-mediated
urrent into the IO neuron via the desired signal; no (excitatory)
MDA receptors exist on the IO neuron. [Note that the 4th term in
q. (3) is given by −I (X)syn,i(t), because I (IO,CN)

GABA > 0 and I (IO,US)
AMPA < 0.]

Fig. 13(a1) shows plots of I (IO,VN)
GABA (open circles) and |I (IO,DS)

AMPA |

(crosses) versus cycle in the optimal case of p∗
c = 0.06. With

increasing the cycle, the cycle-averaged inhibitory input from the
VN neuron increases, and converges to the constant magnitude
of the cycle-averaged excitatory input through the IO desired
signal. Thus, as shown in Fig. 13(a2), Lp increases with cycle, and
at about the 300th cycle, it becomes saturated at Lp = 1. In
this saturated case, the cycle-averaged excitatory and inhibitory
inputs into the IO neuron are balanced.

We also study the firing activity of IO neuron during learning
process. Figs. 13(b1)–13(b5) and Figs. 13(c1)–13(c5) show cycle-
evolutions of raster plots of spikes of the IO neuron (i.e., collection
191
of spike trains for all the realizations; number of realizations is
100) and the bin-averaged instantaneous individual firing rates fIO
[i.e., the number of spikes of the IO neuron in a bin divided by the
bin width (∆t = 400 ms)], respectively. In the 1st cycle, relatively
ense spikes appear at the middle stage of the cycle in the raster
lot of spikes, due to the effect of excitatory IO desired signal.
owever, with increasing the cycle, spikes at the middle stage
ecome sparse, because of increased inhibitory input from the VN
euron. In this case, the bin-averaged instantaneous individual
iring rate fIO(t) of the IO neuron forms a bell-shaped curve due
o the sinusoidally-modulating desired input signal into the IO
euron. With increasing the cycle, the amplitude of fIO(t) de-

creases due to the inhibitory input from the VN neuron, and
it becomes saturated at about the 300th cycle. Thus, the cycle-
averaged individual firing rate fIO(t) is decreased from 1.51 Hz
to 0.09 Hz, as shown in Fig. 13(d). The firing output of the IO
neuron is fed into the PCs via the CFs. Hence, with increasing the
cycle, the error-teaching CF instructor signals become weaker and
saturated at about the 300th cycle.

While the saturated CF signals are fed into the PCs, saturation
for the cycle-averaged bin-averaged synaptic weights ⟨J̃(t)⟩ ap-
pears [see Fig. 8(c)]. Then, the subsequent learning process in the
PC-VN system also becomes saturated, and we get the saturated
learning gain degree L∗(≃ 1.608), which is shown in Fig. 12(d).
g
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Fig. 14. Highly-connected case of pc = 0.6. (a) Raster plot of spikes of 103

randomly chosen GR cells. (b) Instantaneous whole-population spike rate RGR(t)
in the whole population of GR cells. Band width for RGR(t): h = 10 ms.
(c) Distribution of conjunction indices {C(I)

} for the GR clusters in the whole
population. (d) Fraction of spiking groups. Distributions of conjunction indices
{C(I)

} for the (e1) in-phase and (e2) out-of-phase spiking groups. Bin size for
the histograms in (c) and (e1)–(e2) is 0.1. (f) Ranges of {C(I)

} in the in-phase
and the out-of-phase spiking groups.

3.5. Dependence of diversity degree D and learning gain degree Lg
on pc (connection probability from GO to GR cells)

In the above subsections, we consider only the optimal case of
p∗
c = 0.06 (i.e., 6%) where the spiking patterns of the GR clusters

are the most diverse. From now on, we vary the connection prob-
ability pc from GO to GR cells, and investigate the dependence of
the diversity degree D for the spiking patterns of the GR clusters
and the learning gain degree Lg on pc .

We first consider the highly-connected case of pc = 0.6
(i.e., 60%). Fig. 14(a) shows the raster plot of spikes of 103 ran-
domly chosen GR cells, and the population-averaged firing activ-
ity in the whole population of GR cells may be well seen in the
instantaneous whole-population spike rate RGR(t) in Fig. 14(b). As
shown in Fig. 2(b), each GR cluster is bounded by two glomeruli
(corresponding to the terminals of the MFs) at both ends. Each
glomerulus receives inhibitory inputs from nearby 81 GO cells
with the connection probability pc = 0.6. Hence, on average,
about 49 GO cell axons innervate each glomerulus. Then, each GR
cell in a GR cluster receives about 97 inhibitory inputs via two
dendrites which contact the two glomeruli at both ends. Due to
the increased inhibitory inputs from the pre-synaptic GO cells,
spike density in the raster plot is decreased, and the top part
of RGR(t) becomes lowered and broadly flattened, in comparison
with the optimal case in Fig. 4(b). Thus, RGR(t) becomes more
different from the firing rate fMF for the MF signal in Fig. 1(b1).

GR cells in each GR cluster shares the same inhibitory and
the excitatory inputs through their dendrites which synaptically
contact the two glomeruli at both ends. Thus, GR cells in each
GR cluster exhibit similar firing activity. Then, similar to the
case of RGR(t), the cluster-averaged firing activity in the Ith GR
cluster (I = 1, . . . , 210) may be well described in terms of its
instantaneous cluster spike rate R(I) (t) of Eq. (24). In this case,
GR
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the conjunction index C(I) of the Ith GR cluster (representing the
similarity degree between the spiking behavior [R(I)

GR(t)] of the Ith
GR cluster and that of the whole population [RGR(t)]) is given
by the cross-correlation at the zero time lag between R(I)

GR(t) and
GR(t) [see Eq. (25)].
Fig. 14(c) shows the distribution of conjunction indices {C (I)

}

with a peak at 0.65. When compared with the optimal case in
Fig. 6(a) with a peak at 0.55, the whole distribution is moved to
the right, and the values of C (I) for all the GR clusters are positive.
Thus, all the anti-phase and complex out-of-phase spiking pat-
terns with negative values of C (I) disappear. Only the in-phase and
out-of-phase spiking patterns with positive values of C (I) persist.
Consequently, the mean of the distribution {C (I)

} is increased
to 0.613, while the standard deviation is decreased to 0.125, in
comparison to the optimal case where the mean and the standard
deviation are 0.320 and 0.516, respectively. Then, the diversity
degree D of the spiking patterns {R(I)

GR(t)} in all the GR clusters,
epresenting a quantitative measure for diverse recoding in the
ranular layer, is given by the relative standard deviation for the
istribution {C (I)

} [see Eq. (26)]. In the highly-connected case of
c = 0.6, its diversity degree is D ≃ 0.204 which is much smaller
han D∗ (≃ 1.613) in the optimal case.

The reduction in D for the spiking patterns (corresponding
o the firing outputs) of the GR clusters arises due to decrease
n differences between the total synaptic inputs into each GR
luster. As the connection probability pc from the GO to GR cells
s increased, differences between the total inhibitory synaptic
nputs from the pre-synaptic GO cells into each GR cluster are
ecreased due to increase in the number of pre-synaptic GO cells.
n the other hand, the excitatory inputs into each GR cluster
ia MFs are Poisson spike trains with the same firing rates, and
ence they are essentially the same. Thus, differences between
he total synaptic inputs (including both the inhibitory and the
xcitatory inputs) into each GR cluster become reduced. These
ess different inputs into the GR clusters produce less different
utputs (i.e. spiking patterns) in the GR clusters, which leads to
ecreases in the diversity degree D in the highly-connected case.
We decompose the whole GR clusters into the in-phase and

the out-of-phase spiking groups. Unlike the optimal case of p∗
c =

.06, no anti-phase spiking group appears. Fig. 14(d) shows the
raction of spiking groups. The in-phase spiking group is a major
ne with fraction 81.5%, while the out-of-phase spiking group is
minor one with fraction 18.5%. In comparison with the optimal
ase where the fraction of in-phase spiking group is 50.2%, the
raction of in-phase spiking group for pc = 0.6 is so much
ncreased. In this highly-connected case, the spiking-group ratio,
iven by the ratio of the fraction of the in-phase spiking group
o that of the out-of-phase spiking group, is R ≃ 4.405 which
s much larger than that (R∗

≃ 1.008) in the optimal case.
hus, good balance between the in-phase and the out-of-phase
piking groups in the optimal case becomes broken up because
he in-phase spiking group is a dominant one. In this unbalanced
ase, the diversity degree D for the spiking patterns in the GR
lusters is decreased so much to D ≃ 0.204, in comparison with
D∗ (≃ 1.613) in the optimal case of p∗

c = 0.06.
Figs. 14(e1) and 14(e2) also show plots of the fractions of

conjunction indices C(I) of the GR clusters in the in-phase and
the out-of-phase spiking groups, respectively. The ranges for the
distributions {C(I)

} in the two spiking groups are also given in the
bar diagram in Fig. 14(f). As in the optimal case of p∗

c = 0.06 in
Figs. 5 and 6, we determine the threshold Cth (≃ 0.41) between
the in-phase and the out-of-phase spiking patterns by making
intensive examination of phase difference of R(I)

GR(t) of the GR
clusters relative to RGR(t). For C(I) > Cth, in-phase spiking patterns
with one or more peaks in the middle part of cycle exist. On
the other hand, when passing the threshold C from the above
th
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Fig. 15. Change in synaptic weights of active PF-PC synapses and firing activity of PCs during learning in the highly-connected case of pc = 0.6; for comparison,
data in the optimal case of p∗

c = 0.06 are also given. (a1)–(a5) Cycle-evolution of bin-averaged (normalized) synaptic weights ⟨J̃(t)⟩ of active PF signals (bin size:

∆t = 100 ms). Plots of (b1) cycle-averaged mean ⟨J̃(t)⟩ and (b2) modulation MJ for ⟨J̃(t)⟩ versus cycle. (c1)–(c5) Realization-averaged instantaneous population
spike rate ⟨RPC (t)⟩r ; the number of realizations is 100. Plots of (d1) cycle-averaged mean ⟨RPC (t)⟩r and (d2) modulations MPC for ⟨RPC (t)⟩r versus cycle. In (a1)–(a5),
b1)–(b2), and (d1)–(d2), solid (open) circles represent data in the case of pc = 0.6 (0.06). In (c1)–(c5), solid (dotted) lines denote data in the case of pc = 0.6 (0.06).
i.e., for C(I) < Cth) out-phase spiking patterns appear. These out-
f-phase spiking patterns have left-skewed (right-skewed) peaks
ear the 1st (3rd) quartile of cycle (i.e., near t = 500 (1500) ms).
In the case of in-phase spiking group, the distribution {C(I)

}

ith a peak at 0.65 has positive values in the range of (0.41, 0.92).
When compared with the optimal case where the range is (0.39,
0.85), the range in the highly-connected case of pc = 0.6 is
shifted to the right and a little widened. Also, the mean and
standard deviation for pc = 0.6 are 0.677 and 0.094, respectively.
In comparison with the optimal case where the mean is 0.538 and
the standard deviation is 0.181, the relative standard deviation for
pc = 0.6 is much reduced.

Also, in the case of the out-of-phase spiking group, the distri-
bution {C(I)

} with a peak at 0.35 has only positive values in the
range of (0.09, 0.41), and its mean and standard deviations are
0.325 and 0.067, respectively. Unlike the optimal case, there are
no out-of-phase spiking patterns with negative values of C(I). Only
out-of-phase spiking patterns which are developed from the in-
phase spiking patterns appear, and hence they have just positive
values of C(I). Thus, the range for pc = 0.6 is moved to the
positive region, and it becomes narrowed, in comparison to the
optimal case where the range is (−0.20, 0.39). Also, the relative
standard deviation for pc = 0.6 is much decreased, in comparison
to the optimal case where the mean and the standard deviation
are 0.102 and 0.328, respectively.

In the optimal case of p∗
c = 0.06, the in-phase and the out-

f-phase spiking groups are shown to play their own roles for
ynaptic plasticity at the PF-PC synapses, respectively. As a result
f cooperation in their good-balanced state, effective depression
strong/weak LTD) at the PF-PC synapses occurs, which eventually
193
leads to effective motor learning for the OKR adaptation in the PC-
VN-IO system. On the other hand, in the highly-connected case
of pc = 0.6, the in-phase spiking group becomes a dominant one,
and hence good balance between the in-phase and the out-of-
phase spiking groups is broken up. In such an unbalanced state,
contribution of the out-of-phase spiking group to the synaptic
plasticity at the PF-PC synapses is decreased so much, which is
clearly shown below.

Fig. 15 shows change in synaptic weights of active PF-PC
synapses and firing activity of PCs during learning in the highly-
connected case of pc = 0.6. Cycle-evolution of bin-averaged
synaptic weights ⟨J̃(t)⟩ (solid circles) of active PF signals is shown
in Figs. 15(a1)–15(a5). For comparison, data for ⟨J̃(t)⟩ (open cir-
cles) in the optimal case of p∗

c = 0.06 are also given. In com-
parison with the optimal case, the bin-averaged synaptic weights
⟨J̃(t)⟩ at the middle stage are less depressed, while at the initial
and the final stage, they are more depressed. Thus, the mod-
ulation of ⟨J̃(t)⟩ is reduced so much. This small modulation is
distinctly in contrast to the big modulation in the optimal case.
⟨J̃(t)⟩ also becomes saturated at about the 300th cycle, as in the
optimal case.

In this highly-connected case of pc = 0.6, less depression
(in the bin-averaged synaptic weights ⟨J̃(t)⟩) at the middle stage
may be easily understood in the following way. We note that,
at the middle stage, the in-phase spiking group makes a dom-
inant contribution to ⟨J̃(t)⟩ (i.e., the contribution of the out-of-
phase spiking group to ⟨J̃(t)⟩ may be negligible), as discussed
in Fig. 10 in the optimal case of pc = 0.06. However, the
degree of depression changes depending on the relative phase

difference between the in-phase PF (student) signals and the
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rror-teaching (instructor) CF signals. The CF signals are in-phase
nes with respect to the firing rate fDS(t) of the Poisson spike

trains for the IO desired signal (for a desired eye-movement) in
Fig. 1(b2), and the in-phase PF signals are in-phase ones relative
to the instantaneous whole-population spike rate RGR(t). We note
that, depending on pc , the reference signal RGR(t) for the in-
phase PF signals has a varying ‘‘matching’’ degree relative to the
sinusoidally-modulating IO desired signal fDS(t). Here, the match-
ing degree Md is quantitatively given by the cross-correlation at
the zero-time lag [CorrM(0)] between RGR(t) and fDS(t):

CorrM(τ ) =
∆fDS(t + τ )∆RGR(t)√

∆f 2DS(t)
√

∆R2
GR(t)

, (41)

here ∆fDS(t) = fDS(t)− fDS(t), ∆RGR(t) = RGR(t)−RGR(t), and the
overline denotes the time average over a cycle.

With increasing pc , the top part of RGR(t) becomes more
broadly flattened, and hence its matching degree with respect
to fDS(t) is decreased. For pc = 0.6, Md = 0.625, which is
smaller than that (Md = 0.857) in the optimal case of p∗

c = 0.06.
Hence, due to decrease in the matching degree between RGR(t)
and fDS(t), on average, in-phase PF signals for pc = 0.6 are
less depressed by the CF signals than those in the optimal case.
Thus, in the highly-connected case of pc = 0.6, the bin-averaged
synaptic weights ⟨J̃(t)⟩ (solid circles) at the middle stage (with a
dominant in-phase spiking group) are less depressed than those
(open circles) in the optimal case. In this way, at the middle stage
where the contribution of the in-phase spiking group is dominant,
the depression degree for ⟨J̃(t)⟩ is determined by the matching
degree Md between RGR(t) and fDS(t).

More depression (in the bin-averaged synaptic weights ⟨J̃(t)⟩)
at the initial and the final stage for pc = 0.6 can also be clearly
understood as follows: In the optimal case, at the initial and the
final stages, the firing fractions F (G)(t) of the in-phase (51%) and
the out-of-phase (49%) spiking groups are nearly the same (see
Eq. (35) and Fig. 10). Hence, at the initial and the final stage,
somewhat less LTD occurs at the PF-PC synapses, in contrast to
strong LTD at the middle stage, because both the out-of-phase
spiking group (with weak LTD) and the in-phase spiking group
make contributions together. However, in the highly-connected
case of pc = 0.6, the fraction of the in-phase spiking group
is so much increased to 81.5%, in comparison to the optimal
case (50.2%). Hence, the firing fraction of the in-phase spiking
group becomes much larger even at the initial and the final stage
(F (G)(t) = 0.82). Thus, the bin-averaged synaptic weights ⟨J̃(t)⟩
(solid circles) at the initial and the final stage are more depressed
than those (open circles) in the optimal case. In this way, at
the initial and the final stage, the depression degree for ⟨J̃(t)⟩ is
determined by the relative fractions of the in-phase and the out-
of-phase spiking groups; as the fraction of the in-phase spiking
group is increased, ⟨J̃(t)⟩ is more depressed.

Figs. 15(b1) and 15(b2) show plots of cycle-averaged mean
⟨J̃(t)⟩ and modulation MJ for ⟨J̃(t)⟩ versus cycle, respectively;
pc = 0.6 (solid circles) and p∗

c = 0.06 (open circles). Both
the cycle-averaged mean ⟨J̃(t)⟩ and the modulation MJ for ⟨J̃(t)⟩
become saturated at about the 300th cycle. With increasing the
cycle, the cycle-averaged mean ⟨J̃(t)⟩ decreases from 1 to 0.374
ue to LTD at the PF-PC synapses, which is similar to the optimal
ase of p∗

c = 0.06 where ⟨J̃(t)⟩ decreases from 1 to 0.372. On
the other hand, the modulation MJ increases very slowly from 0
o 0.023, in contrast to the optimal case with a big modulation
here it increases quickly from 0 to 0.112. When compared
ith the optimal case, bin-averaged synaptic weights ⟨J̃(t)⟩ at

the initial and the final stage come down more rapidly (i.e., they
are more depressed), while at the middle stage, they come down
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relatively slowly (i.e., they are less depressed). This kind of less-
effective synaptic plasticity at the PF-PC synapses arises due to
the decreased matching degree of Eq. (41) between RGR(t) and
fDS(t) (leading to less depression at the middle stage) and the
much-increased fraction of in-phase spiking group (resulting in
more depression at the initial and the final stage). As a result, the
modulation MJ makes a slow increase to its saturated value (=
0.023), which is markedly in contrast to the optimal case with a
big modulation.

We next consider the effect of PF-PC synaptic plasticity with
a reduced small modulation on the subsequent learning process
in the PC-VN system. Figs. 15(c1)–15(c5) show cycle-evolution of
realization-averaged instantaneous population spike rate ⟨RPC(t)⟩r
of the PCs (number of realizations: 100); pc = 0.6 (solid line) and
p∗
c = 0.06 (dotted line). As a result of PF-PC synaptic plasticity,

⟨RPC(t)⟩r becomes lower at the middle stage than at the initial
and the final stage. Thus, like the case of ⟨J̃(t)⟩, ⟨RPC(t)⟩r forms a
well-shaped curve, and it becomes saturated at about the 300th
cycle. At the middle stage, ⟨RPC(t)⟩r (solid line) for pc = 0.6 is
larger than that (dotted line) in the optimal case of p∗

c = 0.06 due
to less-depressed ⟨J̃(t)⟩. On the other hand, at the initial and the
final stages ⟨RPC(t)⟩r (solid line) for pc = 0.6 is smaller than that
(dotted line) in the optimal case of p∗

c = 0.06 because of more-
depressed ⟨J̃(t)⟩. As a result of such less-effective PF-PC synaptic
plasticity, the modulation of ⟨RPC(t)⟩r for pc = 0.6 becomes
so small, in contrast to the optimal case with a big modulation
(which arises from the effective PF-PC synaptic plasticity).

Figs. 15(d1) and 15(d2) show plots of cycle-averaged mean
⟨RPC(t)⟩r and modulation MPC for ⟨RPC(t)⟩r versus cycle, respec-
tively; pc = 0.6 (solid circles) and p∗

c = 0.06 (open circles). Both
⟨RPC(t)⟩r and MPC become saturated at about the 300th cycle.
With increasing the cycle, the cycle-averaged mean ⟨RPC(t)⟩r de-
creases from 86.1 Hz to 51.8 Hz due to LTD at the PF-PC synapses,
which is similar to the optimal case where ⟨RPC(t)⟩r decreases
from 86.1 Hz to 51.7 Hz. On the other hand, the modulations MPC
increase slowly from 2.6 Hz to 5.6 Hz, which is distinctly in con-
trast to the optimal case where it increases rapidly from 2.6 Hz to
24.1 Hz. Such a small modulation in ⟨RPC(t)⟩r for pc = 0.6 arises
due to the less-effective depression at the PF-PC synapses. These
principal PCs of the cerebellar cortex also exert less-effective
inhibitory coordination on the VN neuron which evokes OKR
eye-movement.

Change in firing activity of the VN neuron during learning in
the highly-connected case of pc = 0.6 (solid circles) is shown in
Fig. 16; for comparison, data in the optimal case of p∗

c = 0.06
(open circles) are also given. Figs. 16(a1)–16(a5) show cycle-
evolution of bin-averaged instantaneous individual firing rate
fVN(t). It seems to be saturated at about the 300th cycle. Due
to the inhibitory coordination of PCs on the VN neuron, the
maximum of fVN(t) occurs at the middle stage, while the minima
appear at the initial and the final stage. Thus, fVN(t) forms a bell-
shaped curve, in contrast to the well-shaped curves of ⟨RPC(t)⟩r .
fVN(t) (solid circles) at the middle stage is smaller than that (open
circles) in the optimal case of p∗

c = 0.06 due to more inhibition
of the PCs on the VN neuron, while at the initial and the final
stage, fVN(t) (solid circles) is larger than that (open circles) in the
optimal case because of less inhibition of PCs on the VN neuron.
As a result of such less-effective inhibitory coordination of the
PCs, the modulation of fVN(t) becomes smaller than that in the
optimal case.

Figs. 16(b) and 16(c) show plots of cycle-averaged mean fVN(t)
and modulation MVN for fVN(t). Both fVN(t) and MVN become
saturated at about the 300th cycle. fVN(t) increases from 44.3 Hz
to 71.4 Hz, which is nearly the same as that in the optimal case
where it increases from 44.3 Hz to 71.5 Hz. MVN also increases
slowly from 20.2 Hz to 22.6 Hz, which is in contrast to the optimal
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Fig. 16. Change in firing activity of the VN neuron during learning in the highly-connected case of pc = 0.6; for comparison, data in the optimal case of p∗
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are also given. (a1)–(a5) Cycle-evolution of bin-averaged instantaneous individual firing rates fVN(t); the bin size is ∆t = 100 ms. Plots of (b) cycle-averaged mean
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case where MVN increases quickly from 20.2 Hz to 32.5 Hz. Then,
the learning gain degree Lg , given by the normalized gain ratio, is
shown in Fig. 16(d). Lg increases from 1 and becomes saturated
at L∗

g ≃ 1.118 at about the 300th cycle which is smaller than the
saturated learning gain degree L∗

g (≃ 1.608) in the optimal case.
Consequently, due to the less-effective coordination of PCs, the
saturated learning gain degree becomes smaller.

To sum up the highly-connected case of pc = 0.6, good balance
between the in-phase and the out-of-phase spiking group in the
optimal case (R∗

≃ 1.008) is broken up, because the fraction of
in-phase spiking group becomes dominant (R ≃ 4.405). Thus,
he diversity degree for the spiking patterns of the GR clusters
s so much decreased (D ≃ 0.204), in comparison with D∗ (≃
.613) in the optimal case. Due to increase in the fraction of the
n-phase spiking group and decrease in the matching degree be-
ween RGR(t) and fDS(t), synaptic plasticity at the PF-PC synapses
ecomes less effective, which also results in less-effective motor
earning for the OKR eye-movement.

We next consider the lowly-connected cases of pc = 0.006
i.e. 0.6%). Figs. 17(a) and 17(b) show the raster plot of spikes
f 103 randomly-chosen GR cells and the instantaneous whole-
opulation spike rate RGR(t) in the whole population of GR cells
or pc = 0.006, respectively. In this lowly-connected case, the
nhibitory inputs from GO cells into the GR clusters are so much
educed, and the excitatory MF signals into the GR clusters be-
ome dominant inputs. Hence, the raster plot of spikes becomes
ore dense, and RGR(t) becomes more similar to the firing rate

MF(t) of the Poisson spike train for the MF signal in Fig. 1(b1), in
ontrast to the highly-connected case of pc = 0.6 with broadly
lattened top part in RGR(t) [see Fig. 14(b)].

Due to so much decrease in inhibitory inputs from the GO
cells into the GR clusters, only the in-phase spiking group [where
spiking patterns are similar to fMF(t)] appears (i.e., all the out-of-
hase spiking group disappears), which is distinctly in contrast to
he optimal case of p∗

c = 0.06 where diverse spiking groups such
s the in-phase, anti-phase, and complex out-of-phase spiking
roups coexist. The distribution of conjunction indices {C(I)

} of the
195
GR clusters (C(I): representing the similarity degree between the
spiking behavior [R(I)

GR(t): instantaneous cluster spike rate] of the
Ith GR cluster and that [RGR(t)] in the whole population) is shown
in Fig. 17(c). In comparison to the optimal case in Fig. 6(a), the
distribution is shifted to the positive region, due to existence of
only the in-phase GR clusters with positive values of C(I). Thus, it
as a peak at 0.75, and its range is (0.32, 0.98).
In this lowly-connected case of pc = 0.006, the mean and

he standard deviation for the distribution {C(I)
} are 0.737 and

.129, respectively, which is in contrast to the optimal case with
he smaller mean (= 0.320) and the larger standard deviation (=
.516). Then, the diversity degree D of the spiking patterns in all

the GR clusters, given by the relative standard deviation for the
distribution {C (I)

} [see Eq. (26)], is D ≃ 0.175 which is much
smaller than D∗ (≃ 1.613) in the optimal case. Consequently,
the degree in diverse recoding in the granular layer is so much
reduced in the lowly-connected case of pc = 0.006, due to exis-
tence of only the in-phase spiking group without the out-of-phase
spiking group.

We also compare the lowly-connected case of pc = 0.006 with
the highly-connected case of pc = 0.6 in Fig. 14. The diversity
degree D (≃ 0.204) for pc = 0.6 is also much reduced in
comparison with D∗ (≃ 1.613) in the optimal case. However, it is
a little larger than D ≃ 0.175 for pc = 0.006, because for pc = 0.6
a minor out-of-phase spiking group with positive values of C(I)

exists, along with the major in-phase spiking group. We also note
that, the in-phase spiking patterns in both the lowly- and the
highly-connected cases have completely different waveforms. For
pc = 0.006 the in-phase spiking patterns are more similar to the
sinusoidally-modulating MF signal fMF(t), while those for pc = 0.6
are more different from fMF(t) due to broad flatness in their top
part. Thus, the matching degree Md (= 0.981) of Eq. (41) for
pc = 0.006 is larger than that (= 0.625) for pc = 0.6. In this way,
there are two independent ways via increase or decrease in pc
from the optimal value p∗

c (= 0.06) to break up the good balance

between the in-phase and the out-of-phase spiking groups, which
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Fig. 17. Lowly-connected case of pc = 0.006. (a) Raster plot of spikes of
03 randomly chosen GR cells. (b) Instantaneous whole-population spike rate
GR(t) in the whole population of GR cells. Band width for RGR(t): h = 10
s. (c) Distribution of conjunction indices {C (I)

} for the GR clusters in the
hole population. (d1) Plot of matching degree Md versus pc . (d2) Plot of
he minimum ⟨J̃(t)⟩min versus pc . (e1)–(e5) Cycle-evolution of bin-averaged
nstantaneous individual firing rates fVN(t); the bin size is ∆t = 100 ms. (f)
lot of learning gain degree Lg (solid circles) versus cycle; for comparison, data
open circles) in the optimal case of p∗

c = 0.06 are also given.

results in decrease in the diversity degree in recoding of the GR
cells.

As a result of reduced diversity in recoding of the GR cells, the
modulation for the bin-averaged synaptic weights ⟨J̃(t)⟩ is much
decreased, in contrast to the big modulation in the optimal case
of p∗

c = 0.06. Fig. 17(d1) shows the plot of the matching degree
Md between RGR(t) and fDS(t) versus pc . With decreasing pc , Md
increases monotonically. Hence, Md (= 0.981) for pc = 0.006 is
larger than that (= 0.857) in the optimal case of pc = 0.06. Due to
increase in Md, at the middle stage in the lowly-connected case
of pc = 0.006, more depression in ⟨J̃(t)⟩ is expected to occur, in
comparison to the optimal case. Fig. 17(d2) shows the plot of the
minimum ⟨J̃(t)⟩min of the well-shaped curve for ⟨J̃(t)⟩ (appearing
at t = 1000 ms) versus pc . We note that, as pc is decreased
from p∗

c (= 0.06), ⟨J̃(t)⟩min decreases so much slowly. Hence,
⟨J̃(t)⟩min (= 0.267) for pc = 0.006 becomes just a little smaller
than that (= 0.274) in the optimal case. Thus, for pc = 0.006
⟨J̃(t)⟩ is only a little more depressed than that in the optimal case
of pc = 0.06. At the initial and the final stage, only in-phase
spiking group exists, unlike the optimal case where both the in-
phase and the out-of-phase spiking groups coexist. Hence, much
more depression in ⟨J̃(t)⟩ occurs in comparison to the optimal
case. Thus, modulation in ⟨J̃(t)⟩ for pc = 0.006 becomes much
reduced, in comparison to the optimal case.

To make this point more clear, we divide the distribution of
conjunction indices {C(I)

} with a range (0.32, 0.98) in Fig. 17(c)
into the two parts by taking the mean (= 0.737) as a reference.
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Thus, the 1st in-phase spiking sub-group has its conjunction
indices higher than the mean (= 0.737) [i.e., the range is (0.737,
0.98)], while the 2nd in-phase spiking sub-group has its conjunc-
tion indices lower than than the mean [i.e., the range is (0.32,
0.737)]. In this way, the whole in-phase spiking group is decom-
posed into the two sub-groups. Then, we obtain the firing fraction
F (G)
i of active PF signals in the G spiking group [see Eq. (35)],
where G corresponds to the 1st or the 2nd in-phase spiking sub-
group. Similar to Figs. 10(d1)–10(d5), the firing fraction F (G)(t)
for the 1st (2nd) in-phase spiking sub-group is found to form
a bell-shaped (well-shaped) curve. At the initial and the final
stages, the firing fractions F (G)(t) for the 1st and the 2nd in-phase
spiking sub-groups are equal (i.e., 50%). On the other hand, at the
middle stage, the values of F (G)(t) for the 1st and the 2nd in-phase
spiking sub-group are 0.61 (61%) and 0.39 (39%), respectively. We
note that more depression in ⟨J̃(t)⟩ occurs for the 1st in-phase
spiking group because their conjunction indices are larger than
those in the 2nd in-phase spiking sub-group. Judging from the
ratio of their firing fractions, at the middle stage (0.61 : 0.39),
⟨J̃(t)⟩ is a little more depressed, in comparison to the initial and
the final stage (0.5 : 0.5). Thus, in the lowly-connected case of
pc = 0.006, a small modulation appears in ⟨J̃(t)⟩, in contrast to
the big modulation in the optimal case. The less-effective synaptic
plasticity at the PF-PC synapses leads to reduced modulation
in the realization-averaged instantaneous population spike rate
⟨RPC(t)⟩r of the principal PCs in the cerebellar cortex which also
exert less-effective inhibitory coordination on the VN neuron
which produces the final output of the cerebellum (i.e., OKR
eye-movement). Figs. 17(e1)–17(e5) show cycle-evolution of the
bin-averaged instantaneous firing rate fVN(t) (solid circles) of the
VN neuron for pc = 0.006; for comparison, data (open circles)
in the optimal case of p∗

c = 0.06 are also given. With increasing
the cycle, fVN(t) seems to be saturated at about the 300th cycle.
fVN(t) (solid circles) at the middle stage is a little larger than that
(open circles) in the optimal case due to a little less inhibition of
the PCs on the VN neuron for pc = 0.006. On the other hand, at
the initial and the final stage, fVN(t) (solid circles) is much larger
than that (open circles) in the optimal case because of much less
inhibition of PCs on the VN neuron in comparison to the optimal
case.

In this way, as a result of less-effective inhibitory coordination
of the PCs, the modulation of fVN(t) becomes much smaller than
that in the optimal case. Plots of the learning gain degree Lg
[corresponding to the modulation gain ratio for fVN(t)] are shown
in Fig. 17(f) in both the lowly-connected case of pc = 0.006 (solid
circles) and the optimal case of p∗

c = 0.06 (open circles). For
pc = 0.006 Lg increases very slowly and becomes saturated at
L∗

g ≃ 1.099 at about the 300th cycle. This saturated learning gain
degree L∗

g (≃ 1.099) is much smaller than that (L∗
g ≃ 1.608) in

the optimal case. Consequently, low diversity in recoding of the
GR cells for pc = 0.006 results in less-effective motor learning for
the OKR adaptation.

Before proceeding to the general variation of pc , we now sum-
marize the main points obtained in the above highly-connected
(pc = 0.6) and lowly-connected (pc = 0.006) cases. In both the
highly- and the lowly-connected cases, their diversity degrees D
[= 0.204 (Pc = 0.6) and 0.175 (pc = 0.006)] for spiking patterns
of the GR clusters are so much decreased in comparison to that
(D = 1.613) in the optimal case of p∗

c = 0.06, because the fraction
of the in-phase spiking group is increased from 50.2% to 81.5%
(pc = 0.6) and 100% (pc = 0.006). At the initial and the final
stage, the degree of depression in the bin-averaged (normalized)
synaptic weight ⟨J̃(t)⟩ is determined by the firing fractions F (G)

of Eq. (35) of the in-phase and the out-of-phase spiking groups.
For pc = 0.6 and 0.006, F (i) of the in-phase spiking group is 0.82

(82%) and 1.0 (100%), respectively, in comparison to 0.51 (51%) in
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Fig. 18. Strong correlation between the diversity degree D and the saturated
learning gain degree L∗

g . (a) Fraction of in-phase (solid circles) and out-of-phase
(open circles) spiking groups. (b) Plot of diversity degree D for the spiking
patterns of all the GR clusters versus pc . (c) Saturated learning gain degree L∗

g
versus pc . (d) Plot of L∗

g versus D.

the optimal case of p∗
c = 0.06. Hence, for pc = 0.6 and 0.006, due

to increased firing fraction of the in-phase spiking group (with
strong LTD), more depression in ⟨J̃(t)⟩ occurs at the initial and
the final stage of cycle, which is in contrast to the optimal case
(e.g., see Fig. 15).

In the middle stage, the in-phase spiking group make a dom-
inant contribution, independently of pc ; F (i)

= 0.94 (94% for
p∗
c = 0.06), 0.98 (98% for pc = 0.6), and 1.0 (100% for pc = 0.006).

However, the effect of the dominant in-phase spiking group on
depression in ⟨J̃(t)⟩ varies depending on pc . The degree of de-
pression in ⟨J̃(t)⟩ is determined by the matching degree Md of
Eq. (41) between the instantaneous whole-population spike rate
RGR(t) and the IO desired signal fDS(t); RGR(t) plays a ‘‘reference’’
signal for the in-phase ‘‘student’’ PF signals and the error-teaching
instructor CF signals are in-phase with fDS(t). Depending on pc ,
the reference signal RGR(t) has a changing matching degree Md
with respect to fDS(t). With decreasing pc , Md is monotonically
increased [see Fig. 17(d1)] [i.e, RGR(t) becomes more similar to
the sinusoidal IO desired signal fDS(t)].

In the highly-connected case of pc = 0.6, Md = 0.625,
which is smaller in comparison with Md = 0.857 in the optimal
case of p∗

c = 0.06. Due to decrease in Md for p=0.6, in the
middle stage (where the in-phase spiking group is dominant),
less depression in ⟨J̃(t)⟩ occurs (see Fig. 15). Consequently, for
pc = 0.6 the modulation in ⟨J̃(t)⟩ decreases, in comparison to that
in the optimal case, due to more depression at the initial and the
final stage and less depression at the middle stage.

In the lowly-connected-connected case of pc = 0.006, Md =

0.981, which is larger than that (Md = 0.857) in the optimal case
of p∗

c = 0.06. However, as shown in Fig. 17(d2), the minimum
⟨J̃(t)⟩min of the well-shaped curve for ⟨J̃(t)⟩ decreases so much
slowly with decreasing pc . Thus, for pc = 0.006 only a little
more depression in ⟨J̃(t)⟩ in comparison with the optimal case.
As explained in the above, at the initial and the final stage, only
197
the in-phase spiking group (with strong LTD) exists, in contrast
to the optimal case where both the out-of-phase (with weak LTD)
and the in-phase spiking groups. Hence, much more depression
takes place in comparison to the optimal case. As a result, for
pc = 0.006 the modulation in ⟨J̃(t)⟩ is decreased, in comparison
with that in the optimal case, because of much more depression
at the initial and the final stage and a little more depression at
the middle stage.

Such decrease in modulation in ⟨J̃(t)⟩ for pc = 0.6 and
0.006 causes a small modulation in firing activity RPC(t) of the
PCs, which then exerts less-effective inhibitory coordination on
the VN neuron (which evokes the OKR). Consequently, a small
modulation in the firing activity fVN(t) of the VN neuron arises
[see Fig. 16 for pc = 0.6 and Fig. 17 for pc = 0.006]. Consequently,
for pc = 0.6 and 0.006 where the diversity degree in recoding
of GR cells is decreased, less-effective motor learning for the OKR
adaptation occurs, in comparison to the optimal case of pc = 0.06.

Finally, based on the above two examples for the highly- and
the lowly-connected cases, we investigate dependence of the
diversity degree D for the spiking patterns of the GR clusters and
the saturated learning gain degree L∗

g on pc by varying it from
the optimal value (p∗

c = 0.06). Fig. 18(a) shows plots of fractions
of the in-phase and the out-of-phase spiking groups versus pc .
The fraction of the in-phase spiking group (solid circles) forms a
well-shaped curve with a minimum at pc = p∗

c (= 0.06), while
the fraction of the out-of-phase spiking group (open circles) forms
a bell-shaped curve with a maximum at the optimal value of p∗

c =

0.06. For sufficiently small pc , we have two sample cases where
the fraction of in-phase spiking group is 1 (i.e., the fraction of out-
of-phase spiking group is 0). We note that, in the optimal case
of p∗

c = 0.06, fractions of the in-phase (50.2%) and the out-of-
phase spiking (49.8%) groups are well balanced (i.e., good balance
between the in-phase and the out-of-phase spiking groups). As
pc is changed (i.e., increased or decreased) from p∗

c , the fraction
of the in-phase spiking group increases, and then the spiking-
group ratio R (i.e., the ratio of the fraction of the in-phase spiking
group to that of the out-of-phase spiking group) increases from
the golden spiking-group ratio R∗ (≃ 1.008) in the optimal case.

Figs. 18(b) and 18(c) show plots of the diversity degree D for
the spiking patterns of the GR clusters and the saturated learning
gain degree L∗

g versus pc , respectively. The diversity degrees D
forms a bell-shaped curve with a maximum D∗ (≃ 1.613) in
the optimal case of p∗

c = 0.06 with the golden spiking-group
ratio R∗

≃ 1.008 (i.e., good balance between the in- and the
out-of-phase spiking group). We note that, in this optimal case
where the recoding of the GR cells is the most diverse, the
saturated learning gain degree L∗ also has its maximum (L∗

g ≃

1.608). As pc is changed (i.e., increased or decreased) from the
optimal value (= 0.06), the spiking-group ratio R is increased,
because of increase in the fraction of in-phase spiking group.
Then, the diversity degree D in recodings of the GR cells becomes
decreased, which also results in decrease in the saturated learning
gain degree L∗

g from the maximum. Thus, L∗
g also forms a bell-

shaped curve, as in the case of D, and they have their maxima at
the optimal values (p∗

c = 0.06).
Fig. 18(d) shows a plot of L∗

g versus D. As shown clearly in
Fig. 18(d), both L∗

g and D have a strong correlation with the
Pearson’s correlation coefficient r ≃ 0.9998. Consequently, the
more diverse the recoding of the GR cells, the more effective the
motor learning for the OKR adaptation.

4. Summary and discussion

We are interested in the gain adaptation of OKR for the eye
movement. Various experimental works on the OKR have been

done in rabbits, mice, and zebrafishes (Harvey et al., 1997; Huang
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Neuhauss, 2008; Iwashita et al., 2001; Matsuno et al., 2016;
agao, 1983, 1988; Scheetz et al., 2017; Tabata et al., 2010).
oreover, some features of the OKR adaptation were successfully

eproduced through computational simulations in the adaptive
ilter model (Gomi & Kawato, 1992) and the spiking network
odel (Yamazaki & Nagao, 2012). However, effects of diverse

ecoding of GR cells on the OKR adaptation in previous com-
utational works are necessary to be more clarified in several
ynamical aspects. Particularly, the previous works lacked com-
lete dynamical classification of diverse spiking patterns of GR
ells and their association with the error-teaching CF signals. We
ote that such dynamical classification of diverse recoding of
R cells may be a basis for clear understanding of the synaptic
lasticity at the PF-PC synapses and the subsequent learning
rogress in the PC-VN-IO system.
Our cerebellar ring network is essentially the same as the

quare-lattice network in the previous works (Yamazaki & Nagao,
012; Yamazaki & Tanaka, 2007a). The authors explained that the
tructural parameters of their square-lattice network model were
elected on the basis of the anatomical observations for the cat
Palkovits, Magyar, & Szentágothai, 1971a, 1971b, 1972). The pa-
ameters for the single neuron models and the synaptic currents
ere also adopted from the known physiological data. Hence, the
quare-lattice network may be regarded as a biological neural
etwork, based on the anatomical and the physiological data. For
he effective study of OKR, we first introduced one-dimensional
ing network. This ring network with simple architecture has
dvantage for computational and analytical efficiency, and its
isual representation may be easily made. We note that the
arameters for the architecture, the single LIF neuron models, and
he synaptic currents in our ring network were chosen, based
n those in the biological square-lattice network (Yamazaki &
agao, 2012; Yamazaki & Tanaka, 2007a). Moreover, we also
mployed a refined rule for the synaptic plasticity, based on the
xperimental results (Safo & Regehr, 2008). In this sense, the ring
etwork seems to be more effective for the study of OKR than the
quare-lattice network.
For the first time, we made complete quantitative classifica-

ion of diverse spiking patterns in the GR clusters via introduction
f the conjunction index {C(I)

} and the diversity degree D. Each
piking pattern in the Ith GR cluster may be characterized in
erms of its conjunction index C(I), denoting the degree for the
ssociation of the spiking behavior of each Ith GR cluster [char-
cterized by the instantaneous cluster spike rate R(I)

GR(t)] with
he population-averaged firing activity in the whole population
given by the instantaneous whole-population spike rate RGR(t)].
hen, the whole spiking patterns are decomposed into the two
ypes of in-phase and out-of-phase spiking groups which are in-
hase and out-of-phase with respect to the ‘‘reference’’ signal
GR(t), respectively. Furthermore, the degree of diverse recoding
f the GR cells may be quantified in terms of the diversity degree
, given by the relative standard deviation in the distribution of
C(I)

}. Thus, D gives a quantitative measure for diverse recoding of
R cells. Dynamical origin for the appearance of diverse spiking
atterns (i.e., outputs of the GR clusters) has also been investi-
ated. It has thus been found that diverse total synaptic inputs
including both the excitatory inputs via MFs and the inhibitory
nputs from the pre-synaptic GO cells) into the GR clusters lead to
roduction of diverse spiking patterns in the GR clusters. Based on
he dynamical classification of diverse spiking patterns in the GR
lusters, we made intensive investigations on the effect of diverse
ecoding of GR cells on the OKR adaptation (i.e., its effect on
he synaptic plasticity at the PF-PC synapses and the subsequent
earning process in the PC-VN-IO system). To the best of our
nowledge, this type of approach, based on the in-phase and the
ut-of-phase spiking groups, is unique for the study of OKR.
198
In our refined rule for the synaptic plasticity, we discuss
he major LTD (∆LTD(1)), the minor LTD (∆LTD(2)), and ∆LTP
hrough comparison of their magnitudes. Synaptic plasticity (LTD
r LTP) at PF-PC synapses occurs depending on the relative time
ifference ∆t (= tCF − tPF ) between the activation times of the
rror-teaching instructor CF and the student PF signals. An in-
tructor CF activation at a time t gives rise to the 1st type of major
TD of Eq. (14) in conjunction with earlier student PF signals in
n effective range of 0 < ∆t < ∆t∗r (= 277.5 ms). In the absence
f such CF activation, a student PF firing at the time t may cause
TD or LTP, depending on the presence of earlier CF firings in an
ffective range. The PF activation at the time t causes another
TD in association with earlier CF activations in an effective range
f ∆t∗l (= −117.5 ms) < ∆t < 0. However, the probability
f occurrence of earlier CF activations within the effective range
s very low because the mean firing rates of CF signals are ∼

.5 Hz). Hence, this 2nd type of LTD of Eq. (15) is a minor one
n comparison to the 1st type of major LTD. In the absence of
his kind of earlier CF firings, ∆LTP of Eq. (16) takes place due
o the PF activation alone. In the previous works (Yamazaki &
agao, 2012; Yamazaki & Tanaka, 2007a), only the major LTD was
onsidered along with ∆LTP (i.e., minor LTD was ignored). Even
n these cases, we expect that essentially the same results as ours
ould be obtained, because the major LTD is a dominant one.
In the synaptic plasticity rule of Eqs. (14)–(16), we note that

he update rate δLTP in Eq. (16) for the ∆LTP is just 1
10 of the up-

ate rate δLTD in Eq. (14) for the major LTD (∆LTD(1)). Hence, the
ffect of ∆LTP is smaller than that of the major LTD, and the major
TD becomes the dominant synaptic modification at the PF-PC
ynapses. Due to the dominant effect of the major LTD, with in-
reasing the cycle, the cycle-averaged bin-averaged (normalized)
ynaptic weight ⟨J̃(t)⟩ decreases and becomes saturated at about
the 300th cycle, as shown in Fig. 8(c). To examine the saturation
of ⟨J̃(t)⟩, we consider the cycle-summed ∆LTD (⟨∆LTD⟩s) [∆LTP
(⟨∆LTP⟩s)] in each cycle, given by the sum of ∆LTDij (∆LTPij)
occurring at all the active PF-PC synapses during the whole cycle
(0 < t < 2000 ms), where ∆LTDij = ∆LTD(1)

ij + ∆LTD(2)
ij

see Eqs. (14)–(16)]. In the beginning cycles, |⟨∆LTD⟩s| (i.e., the
agnitude of ⟨∆LTD⟩s) is larger than ⟨∆LTP⟩s, and hence ∆LTD is
ominant. However, as the cycle is increased, |⟨∆LTD⟩s| decreases
onotonically, and becomes saturated at about the 300th cycle,
ecause with increasing the cycle the error-teaching CF instructor
ignal becomes weaker and saturated at about the 300th cycle
e.g., see Fig. 13(d)]. In this saturated case, the saturated value
f |⟨∆LTD⟩s| becomes the same as that of ⟨∆LTP⟩s. Consequently,
ycle-level dynamical balance between ∆LTD and ∆LTP emerges,
hich leads to the saturation of the cycle-averaged bin-averaged
normalized) synaptic weight ⟨J̃(t)⟩, as shown in Fig. 8(c).

Diversely-recoded student PF signals from GR cells and the
instructor error-teaching CF signals from the IO neuron are fed
into the PCs. We note that the CF signals are always in-phase with
respect to the reference signal RGR(t). During the whole learning
process, the in-phase and the out-of-phase spiking groups have
been found to play their own roles, respectively. The strength of
LTD changes markedly depending on the type of spiking group
(i.e., it varies distinctly depending on the phase difference be-
tween the instructor CF and the student PF signals), as shown
in Fig. 9. The in-phase student PF signals have been found to
be strongly depressed (i.e., strong LTD) by the instructor CF
signals, because they are well-matched with the in-phase CF
signals [e.g., see Figs. 9(a1)–9(a5)]. On the other hand, the out-of-
phase student PF signals have been found to be weakly depressed
(i.e., weak LTD) by the instructor CF signals, because they are
ill-matched with the in-phase CF signals [e.g., see Figs. 9(b1)–
9(b5)]. In this way, occurrence of strong or weak LTD depends
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ust on the phase relation between the instructor CF and the
tudent PF signals. We also expect that such occurrence is nearly
ndependent of detailed form of the time window ∆JLTD(∆t)
f Eq. (17) for the synaptic plasticity. [i.e., the same kind of
trong and weak LTD may be expected to occur in the previous
ramework of synaptic plasticity rule (Yamazaki & Nagao, 2012;
amazaki & Tanaka, 2007a)].
However, contributions of these in-phase and out-of-phase

piking groups vary depending on the stage of cycle. In the
iddle stage of each cycle, strong LTD takes place through domi-
ant contributions of the in-phase spiking group, which results
n emergence of a minimum of the bin-averaged (normalized)
ynaptic weight ⟨J̃⟩ of active PF signals. In contrast, at the initial
nd the final stage of each cycle, less LTD occurs (i.e., maxima
f ⟨J̃⟩ appear) because both the out-of-phase spiking group with
eak LTD and the in-phase spiking group with strong LTD make
ontributions together. Hence, the bin-averaged synaptic weights
J̃⟩ have been found to form a well-shaped curve (i.e., appearance
f a minimum in the middle stage and maxima at both the initial
nd final stages). In this way, a big modulation in ⟨J̃⟩ emerges

through interplay of the in-phase and the out-of-phase spiking
groups.

Due to this kind of effective depression (i.e., strong/weak LTD)
at the PF-PC synapses, the (realization-averaged) instantaneous
population spike rate ⟨RPC(t)⟩r of PCs (corresponding to the prin-
cipal outputs of the cerebellar cortex) has been found to form
a well-shaped curve with a minimum in the middle stage. Con-
sequently, a big modulation occurs in ⟨RPC(t)⟩r . These PCs exert
effective inhibitory coordination on the VN neuron (which evokes
OKR eye-movement). Thus, the (realization-averaged) instanta-
neous individual firing rate fVN(t) of the VN neuron has been
found to form a bell-shaped curve with a maximum in the middle
stage. The maximum in the middle stage of cycle is formed due to
dominant contribution of the in-phase spiking group with strong
LTD, while appearance of minima at the initial and the final stage
is made via comparable contributions of the in-phase and the
out-of-phase spiking groups. In this case, the learning gain degree
Lg , corresponding to the modulation gain ratio (i.e., normalized
modulation divided by that at the 1st cycle for fVN), has been
found to increase with learning cycle and to be saturated at about
the 300th cycle.

In the cerebellar ring network, we varied the connection prob-
ability pc from the GO cells to the GR cells, and investigated
dependence of the diversity degree D of spiking patterns of GR
ells and the saturated learning gain degree L∗

g on pc . Both D
nd L∗

g have been found to form bell-shaped curves with peaks
t the same optimal value of p∗

c = 0.06. Hence, the average
umber of pre-synaptic GO cells for each GR cell in our op-
imal case is Npre,GO = 10, which seems to be close to that
Npre,GO = 8) in the square-lattice network whose structural
arameters are based on the anatomical data of the cat (Palkovits
t al., 1971a, 1971b, 1972; Yamazaki & Nagao, 2012; Yamazaki &
anaka, 2007a). However, generally Npre,GO seems to vary depend-
ng on the species of animals (e.g., cat or rat); for the rat, refer
o the works Brickley, Cull-Candy, and Farrant (1996) and Jakab
nd Hámori (1988). Furthermore, Npre,GO may also vary depending
n the network models in computational works. Hence, to avoid
irect comparison of Npre,GO in our computational optimal case
ith real experimental structural data seems to be reasonable.
ere, the optimal case in our computational work corresponds to
ust the one where both D and L∗

g have their peak values.
Moreover, both the diversity degree D of spiking patterns

f the GR cells and the saturated learning gain degree L∗
g have

een found to have a strong correlation with Pearson correla-
ion coefficient r ≃ 0.9998. Consequently, the more diverse
he spiking patterns of GR cells, the more effective the motor
 o

199
earning for the OKR adaptation, which is the main result in our
omputational works. In the optimal case of p∗

c = 0.06 with
he maximum diversity degree D∗ (= 1.613), the in-phase and
he out-of-phase spiking groups keep good balance (i.e., their
ractions are nearly equal; spiking-group ratio R∗

= 1.008). At
he middle stage of each cycle, PF signals are strongly depressed
y the instructor CF signals due to dominant contribution of the
n-phase spiking group with strong LTD. On the other hand, at
he initial and the final stage, both the in-phase (strong LTD)
nd the out-of-phase (weak LTD) spiking group make comparable
ontributions together, and hence PF signals are less depressed.
his kind of effective depression (i.e., strong/weak LTD) causes
big modulation in synaptic plasticity, which eventually results

n effective motor learning for the OKR adaptation. On the other
and, in the highly- or the lowly-connected case (e.g., pc = 0.6
r 0.006), the in-phase spiking group becomes dominant, and
ence good balance between the in-phase and the out-of-phase
piking groups becomes broken up, and the diversity degree for
c = 0.6 and 0.006 are so much decreased to D = 0.204 and
.175, respectively. In such an unbalanced state, at the initial and
he final stage of each cycle, the contribution of the out-of-phase
piking group to the synaptic plasticity at the PF-PC synapses is
uch decreased, and hence more depression occurs at the initial
nd the final stage due to major contribution of the in-phase
piking group. This kind of less effective depression at the PF-PC
ynapses gives rise to a small modulation in synaptic plasticity,
hich also leads to less effective motor learning. Consequently,
ore diversity of spiking patterns of GR cells results in more
ffective motor learning for the OKR adaptation
For examination of our main result, we propose a real exper-

ment for the OKR. To control pc in a given species of animals
e.g., a species of rabbit, mouse, or zebrafish) in an experiment
eems to be practically difficult, unlike the case of computational
euroscience where pc can be easily changed. Instead, we con-
ider an experiment for several species of animals (e.g., 3 species
f rabbit, mouse, and zebrafish). In each species, we consider a
arge number of randomly chosen GR cells (i = 1, . . . , L). Then,
hrough many learning cycles, one can obtain the peristimulus
ime histogram (PSTH) for each ith GR cell [i.e., (bin-averaged)
nstantaneous individual firing rate f (i)GR(t) of the ith GR cell]. GR
ells are expected to exhibit diverse PSTHs. Then, in the case of
ach ith GR cell, we obtain its conjunction index Ci between its
STH f (i)GR(t) and the CF signal from the IO neuron [i.e., the PSTH
f the IO neuron fIO(t)]. In this case, the conjunction index Ci is
iven by the cross-correlation at the zero-time lag between f (i)GR(t)
nd fIO(t). Thus, we get the diversity degree D of PSTHs of GR
ells, given by the relative standard deviation in the distribution
f {Ci}, for the species.
Besides the PSTHs of GR cells, under the many learning cycles,

e can also get a bell-shaped PSTH of a VN neuron [i.e., (bin-
veraged) instantaneous individual firing rate fVN(t) of the VN
euron]. The normalized modulation of fVN(t) (divided by that at
he 1st cycle) corresponds to the learning gain degree Lg . Thus,
set of (D,Lg ) can be experimentally obtained for each species,
nd the set of (D,Lg ) may vary depending on the species. Then,
or example in the case of 3 different species of rabbit, mouse, and
ebrafish, with the three different data sets for (D,Lg ), one can
xamine our main result (i.e., whether more diversity in PSTHs of
R cells results in more effective motor learning for the OKR).
In recent experimental works, dense and similar recodings of

he GR cells were observed (Badura & De Zeeuw, 2017; Bengts-
on & Jörntell, 2009; Giovannucci et al., 2017; Knogler, Markov,
ragomir, Štih, & Portugues, 2017; Wagner, Kim, Savall, Schnitzer,
Luo, 2017), in contrast to the classical Marr–Albus theory (Al-
us, 1971; Marr, 1969) where sparse and dissimilar recodings

f the GR cells are postulated. At the population level, firing
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ctivities of the GR cells were found to be dense (Badura &
e Zeeuw, 2017; Giovannucci et al., 2017; Knogler et al., 2017;
agner et al., 2017), and in Bengtsson and Jörntell (2009), the MF

nput codes were found to be preserved in the response of the GR
ells (i.e., similar recoding). Based on our computational works,
e also discuss how such dense and similar recodings may occur.
e first note that, in the GR layer in Fig. 2(a), the inhibitory GO

ells make inhibitory control on the firing activity of the GR cells.
ence, the spiking activity of the GR cells may vary depending
n the strength of inhibitory control from the GO cells. In our
ork, we were focused on the inhibitory effect of the GO cells
n the firing activity of the GR cells by varying the connection
robability pc from the GO to the GR cells. The population-level

firing activity is well visualized in the raster plot of spikes and
the corresponding IPSR RGR(t) shows collective firing activity of
the GR cells. In the optimal case of p∗

c = 0.06, the cycle-averaged
activation degree A(t) (= 0.772) is high, which leads to the spike
density in the raster plot of spikes becomes high [Fig. 4(a)]. Hence,
the recoding of the GR cells in this optimal case may be regarded
as dense recoding. Due to the effect of inhibitory GO cells, the
top part of RGR(t) becomes lowered and flattened [see Fig. 4(b)],
nd hence the IPSR RGR(t) has a different waveform with a central
lateau, in comparison with the sinusoidally-modulated MF input
n Fig. 1(b1). Consequently, the population-level firing activity of
he GR cells may be regarded as dissimilar recoding.

We also studied another lowly-connected case pc = 0.006.
n this case, the inhibitory inputs from the GO cells to the GR
ells are so much decreased. Hence, the raster plot of spikes
ecomes more dense (the cycle-averaged activation degree is

A(t) = 0.875) [Fig. 17(a)], but the waveform of the IPSR RGR(t)
ecomes more similar to the sinusoidally-modulated MF signal
Fig. 17(b)]. Thus, for pc = 0.006, dense and similar recodings
eem to occur, in contrast to the optimal case of p∗

c = 0.06
ith dense and dissimilar recodings. If the strength of inhibitory
ontrol of the GO cells is sufficiently strong (i.e, corresponding to
ery large pc), sparse recoding may be expected to occur. Judging
ased on our computational works, dense or sparse recoding and
imilar or dissimilar recoding of GR cells may appear depending
n the strength of inhibitory control of the GO cells. Hence, we
peculate that the experimental works on diverse and similar
ecoding (Badura & De Zeeuw, 2017; Bengtsson & Jörntell, 2009;
iovannucci et al., 2017; Knogler et al., 2017; Wagner et al., 2017)
ight correspond to the case where the inhibitory effect of GO
ells might be so low, so that the possibility for occurrence of
ense and similar recodings of the GR cells might become high.
We now discuss our results briefly in comparison with other

revious works (Cayco-Gajic, Clopath, & Silver, 2017; Gao, van
eugen, & De Zeeuw, 2012; Inagaki & Hirata, 2017). It was dis-
ussed in Gao et al. (2012) that various forms of synaptic plas-
icity occur at different sites in the cerebellum, and they work
ynergistically to create optimal outputs for behavior. In the case
f synaptic plasticity at the PF-PC synapse, LTD occurs when firing
f the PF signal is in-phase (in conjunction) with that of the
F signal. On the other hand, in the absence of the CF signal,
he PF signal becomes out-of-phase, and LTP takes place. This
echanism for the synaptic plasticity at the PF-PC synapse is
ssentially similar to that in our work. However, in our case,
e employed a refined rule for the synaptic plasticity with a
ime window for the LTD (see Fig. 3), based on the experimental
esult in Safo and Regehr (2008), which has more quantitative
dvantages. In the presence of a CF firing, a major LTD (∆LTD(1))
ccurs in conjunction with earlier PF firings, while a minor LTD
∆LTD(2)) takes place in association with later PF firings. Outside
he effective range of LTD, PF firings alone result in LTP. The GR
ells receive both the excitatory synaptic inputs via the MFs and
he inhibitory synaptic inputs from the GO cells. It was shown in
200
ayco-Gajic et al. (2017) that sparse excitatory synaptic connec-
ivity via Nsyn (= 3 ∼ 5) MFs is crucial for pattern separation of
he MF inputs. In contrast to the work in Cayco-Gajic et al. (2017),
e controlled the inhibitory synaptic inputs into the GR cells by
hanging the connection probability pc from the GO cells to the
R cells, and investigated the effect of diverse recoding of GR
ells on the motor learning. It was thus found that the saturated
earning gain degree L∗

g for the OKR is maximum for an optimal
alue of pc (= 0.06).
In Inagaki and Hirata (2017), Inagaki and Hirata studied the

otor learning for the vestibulo-ocular reflex in the case that
ach GR cell receives 6 excitatory MF inputs and 3 inhibitory GO-
ell inputs. There are 3 types of vestibular, efference-copy, and
etinal-slip input signals from the MF. Thus, 9 diverse types of GR
ells were prepared depending on the fractions of the vestibular,
he efference-copy, and the retinal-slip signals (conveyed via MF
nputs). In this case, motor learning for the vestibular ocular
eflex was induced by a combination of LTD and LTP at the PF-
C synapses. Moreover, different types of signal processing were
equired for high- and low-gain motor learning. In contrast to this
ork, we considered a single type of sinusoidal MF input. Then,
iverse spiking patterns of GR cells were shown to arise due to
nhibitory coordination of the GO cells. Based on the in-phase
nd the out-of-phase spiking groups, we investigated the effect
f diverse recoding of the GR cells on the motor learning for the
KR.
Finally, we discuss limitations of our present work and future

orks. In the present work, we did not take into considera-
ion intra-population synaptic connections, and hence no motor
hythms appear in the presence of just inter-population synaptic
onnections. When we add intra-population couplings between
nhibitory GO cells, a granular motor rhythm of 7 ∼ 25 Hz
ay appear in the granular layer (i.e., GR-GO feedback sys-

em) (D’Angelo et al., 2009). Ultrafast motor rhythm of ∼ 200 Hz
ay also appear in the Purkinje (molecular) layer by adding

ntra-population synaptic connections between PCs (BCs) (So-
ages et al., 2008). In the system of IO neurons, ∼ 10 Hz motor
hythm appears in the presence of electric gap junctions be-
ween IO neurons (Llinás, 2011). Hence, in a future work, it
ould be interesting to investigate the effect of motor rhythms
n diverse recoding of GR cells and learning process in the
C-VN-IO system by adding intra-population couplings. Beyond
he synaptic plasticity at PF-PC synapses (considered in this
ork), diverse synaptic plasticity occurs at other synapses in the
erebellum (Gao et al., 2012; Hansel, Linden, & D’Angelo, 2001)
uch as synaptic plasticity at PF-BC and BC-PC synapses (Lennon,
amazaki, & Hecht-Nielsen, 2015), at MF-cerebellar nucleus and
C-cerebellar nucleus synapse (Zheng & Raman, 2010), and at
F-GR cells synapses (D’Angelo & De Zeeuw, 2008). Therefore,
s a future work, it would be interesting to study the effect
f diverse synaptic plasticity at other synapses on cerebellar
otor learning. In addition to variation in pc , another possibility

o change synaptic inputs into the GR cells is to vary NMDA
eceptor-mediated maximum conductances ḡ (GR)

NMDA and ḡ (GO)
NMDA,

ssociated with persistent long-lasting firing activities. It would
lso be interesting to investigate the effect of NMDA receptor-
ediated synaptic inputs on diverse recoding of GR cells and
otor learning in the OKR adaptation by changing ḡ (GR)

NMDA and
¯
(GO)
NMDA. This work is beyond the scope of the present work, and

hence it is left as a future work.
We also discuss another interesting future work. In the present

work, we varied the connection probability pc (from the GO cells
to the GR cells) while the synaptic weight J (GR,GO) (= 10.0) per
synapse is unchanged. Hence, with increasing (decreasing) pc ,
the total inhibitory synaptic strength K (GR,GO) on each GR cell
also increases (decreases). Instead, one may consider another case
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Table A.1
Parameter values for LIF neuron models with AHP currents for the granule (GR) cell and the Golgi (GO) cell in the
granular layer, the Purkinje cell (PC) and the basket cell (BC) in the Purkinje-molecular layer, and the vestibular
nucleus (VN) and the inferior olive (IO) neurons.
X-population Granular layer Purkinje-molecular layer VN neuron IO neuron

GR cell GO cell PC BC

CX 3.1 28.0 107.0 107.0 122.3 10.0

I (X)L
g (X)
L 0.43 2.3 2.32 2.32 1.63 0.67

V (X)
L −58.0 −55.0 −68.0 −68.0 −56.0 −60.0

I (X)AHP

ḡ (X)
AHP 1.0 20.0 100.0 100.0 50.0 1.0

τ
(X)
AHP 5.0 5.0 5.0 2.5 2.5 10.0
V (X)
AHP −82.0 −72.7 −70.0 −70.0 −70.0 −75.0

v
(X)
th −35.0 −52.0 −55.0 −55.0 −38.8 −50.0

I (X)ext 0.0 0.0 250.0 0.0 700.0 0.0
R
i

Table A.2
Parameter values for synaptic currents I (T ,S)

R (t) into the granule (GR) and the
olgi (GO) cells in the granular layer. The GR cells receive excitatory inputs via
ossy fibers (MFs) and inhibitory inputs from GO cells. The GO cells receive
xcitatory inputs via parallel fibers (PFs) from GR cells.
Target cells (T ) GR GO

Source cells (S) MF MF GO PF PF
Receptor (R) AMPA NMDA GABA AMPA NMDA

ḡ (T )
R 0.18 0.025 0.028 45.5 30.0

J (T ,S)
ij 8.0 8.0 10.0 0.00004 0.00004

V (S)
R 0.0 0.0 −82.0 0.0 0.0

τ
(T )
R 1.2 52.0 7.0, 59.0 1.5 31.0, 170.0
A1 , A2 0.43, 0.57 0.33, 0.67

Table A.3
Parameter values for the synaptic currents I (T ,S)

R (t) into the vestibular nucleus
VN) and the inferior olive (IO) neurons. The VN neuron receives excitatory
nputs via MFs and inhibitory inputs from PCs. The IO neuron receives excitatory
nput via the desired signal (DS) and inhibitory input from the VN neuron.
Target cells (T ) PC BC

Source cells (S) PF CF BC PF
Receptor (R) AMPA AMPA GABA AMPA

ḡ (T )
R 0.7 0.7 1.0 0.7

J (T ,S)
ij 0.006 1.0 5.3 0.006

V (S)
R 0.0 0.0 −75.0 0.0

τ
(T )
R 8.3 8.3 10.0 8.3

Table A.4
Parameter values for the synaptic currents I (T ,S)

R (t) into the vestibular nucleus
VN) and the inferior olive (IO) neurons. The VN neuron receives excitatory
nputs via MFs and inhibitory inputs from PCs. The IO neuron receives excitatory
nput via the desired signal (DS) and inhibitory input from the VN neuron.
Target cells (T ) VN IO

Source cells (S) MF MF PC DS VN
Receptor (R) AMPA NMDA GABA AMPA GABA

ḡ (T )
R 50.0 25.8 30.0 1.0 0.18

J (T ,S)
ij 0.002 0.002 0.008 1.0 5.0

V (S)
R 0.0 0.0 −88.0 0.0 −75.0

τ
(T )
R 9.9 30.6 42.3 10.0 10.0

where pc is changed while maintaining a constant K (GR,GO). For
eeping the value of K (GR,GO) to be a constant, the synaptic weight
(GR,GO) must also change depending on the variation of pc ; when
c is increased (decreased), J (GR,GO) should decrease (increase)
uch that K (GR,GO) is a constant. We made a preliminary work on
his issue by fixing the constant value of K (GR,GO) at K (GR,GO)∗ in
he optimal case of p∗

c = 0.06. Particularly, we were interested
n how the spiking patterns in the GR clusters, characterized by
201
(I)
GR(t), and the population-averaged firing activity, given by the
nstantaneous whole-population spike rate RGR(t), change when
varying pc . We first considered the highly-connected case of pc =

0.6 (with K (GR,GO)
= K (GR,GO)∗). In comparison with the highly-

connected case in Fig. 14 where K (GR,GO) > K (GR,GO)∗, shapes
of RGR(t) and R(I)

GR(t) in the case of K (GR,GO)
= K (GR,GO)∗ were

nearly unchanged, while their amplitudes were increased because
K (GR,GO) was decreased to K (GR,GO)∗. We note that the conjunction
index C(I) between R(I)

GR(t) and RGR(t) represents the degree for
similarity between their shapes. Hence, the distribution of {C(I)

}

in the case of K (GR,GO)
= K (GR,GO)∗ was found to be nearly the same

as that in Fig. 14(c). We also get the diversity degree D (≃ 0.195)
for the spiking patterns, which is close to that (D ≃ 0.204) in
Fig. 14(c). In this highly-connected case, decrease in the synaptic
weight J for maintaining the value of K (GR,GO) seems to have
effect mainly on the amplitudes of spiking patterns without much
alteration of their shapes, and hence the diversity for the spiking
patterns seems to be determined mainly by the high connectivity
from the GO to the GR cells. Consequently, in both cases with and
without maintaining the constant K (GR,GO)∗, the diversity degree
D for the spiking patterns seems to be nearly the same.

Next, we considered the lowly-connected case of pc = 0.006
where K (GR,GO)

= K (GR,GO)∗. In comparison to the lowly-connected
case in Fig. 17 with K (GR,GO) < K (GR,GO)∗, both the shapes and the
amplitudes of R(I)

GR(t) and RGR(t) were changed. Because K (GR,GO)

was increased to K (GR,GO)∗, amplitudes of R(I)
GR(t) and RGR(t) were

lowered and their top shapes became flattened. Thus, the spiking
patterns in the case of K (GR,GO)

= K (GR,GO)∗ tended to be some-
what similar to those in the optimal case of p∗

c = 0.06. We note
that, in this lowly-connected case, both the low-connectivity pc
and the increase in synaptic weight J seem to determine the di-
versity for the spiking patterns, unlike the highly-connected case.
Mainly due to increased synaptic weight J , conjunction indices
for the spiking patterns were broadly distributed in a range of
(−0.17,0.75), in contrast to that in Fig. 17(c). Out-of-phase spiking
patterns with negative conjunction indices also appear, unlike the
case in Fig. 17 where only in-phase spiking patterns exist. In this
case, we obtain the diversity degree is D (≃ 1.192), which is
much larger than that (D ≃ 0.175) in the case of Fig. 17. However,
it is still smaller than that (D∗

≃ 1.613) in the optimal case.
To get the effect of low connectivity, we start from the optimal
case of p∗

c = 0.06 in Fig. 6, and decrease pc from 0.06 to 0.006
(lowly-connected case) while maintaining the constant K (GR,GO)∗.
The range in the distribution of conjunction indices in the optimal
case is (−0.57,0.85). We note that this range became narrowed
in the case of lowly-connected case of pc = 0.006. Through
decrease from p∗

c to 0.006, in-phase and anti-phase spiking pat-
terns with higher magnitudes of conjunction indices seems to
be ‘‘degraded’’, and accordingly their magnitude of conjunction
indices seem to be lowered. We conjecture that the connection



S.-Y. Kim and W. Lim Neural Networks 134 (2021) 173–204

i
i
c

Table B.5
Glossary for various terms which characterize the cerebellar model.
Terms Description

Ai(t): activation degree Fraction of active GR cells
A(G)
i (t): activation degree Fraction of active GR cells in the G spiking groupin the G spiking group

C(I): output conjunction index
The degree for the conjunction of the spiking behavior
in each Ith GR cluster with the population-averaged
spiking behavior in the whole population

C(I)
in : input conjunction index

The degree for the conjunction of the total synaptic
input into each Ith GR cluster with the cluster-averaged
total synaptic input

D : output diversity degree Relative standard deviation for the distribution of {C(I)
}

Din: input diversity degree Relative standard deviation for the distribution of {C(I)
in }

f (i)GR(t): instantaneous individual Individual firing activity of active GR cellsfiring rate
f (p)GR (t): instantaneous population Population firing activity of the whole GR cellsfiring rate
fX (t): firing rate Firing activity of the X cell (X = VN and IO)

Lg : learning gain degree
Modulation gain ratio. Normalized modulation of the
individual firing rate fVN(t) of the VN neuron divided
by that at the 1st cycle

Lp: learning progress degree
Ratio of the cycle-averaged inhibitory input from the
VN neuron to the cycle-averaged excitatory input via
the IO desired signal

Md: matching degree
Matching degree between RGR(t) (instantaneous whole-
population spike rate in the whole population of GR cells)
and fDS(t) (IO desired signal)

R(I)
GR(t): instantaneous cluster Spiking behavior in each Ith GR clusterspike rate

RX (t): instantaneous whole- Population behavior of X cellspopulation spike rate
⟨W (G)

J (t)⟩: weighted synaptic Contribution of the G spiking group to ⟨J̃(t)⟩ of active
weight in the G spiking group PF signals in the whole population
probability of pc = 0.006 would be too small to warrant the high-
degree conjunction for the in-phase and the anti-phase spiking
patterns. Based on the results of this preliminary work, we hy-
pothesize a possibility that the diversity degree D might have
ts maximum at the same optimal value of p∗

c = 0.06 even
n the case of maintaining the constant K (GR,GO)∗; in the lowly-
onnected case of pc < p∗

c , D would decrease in a much slow way
in comparison with the case without maintaining the constant
K (GR,GO)∗. To confirm this hypothesis, more intensive future work
is necessary by decreasing pc from p∗

c in the lowly-connected case
with the constant K (GR,GO)∗ where changes in both pc and J have
effects on spiking patterns.
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Appendix A. Parameter values for the LIF neuron models and
the synaptic currents

In this appendix, we list four tables which show parameter
values for the LIF neuron models in Section 2.3 and the synaptic
currents in Section 2.4. These values are adopted from phys-
iological data (Yamazaki & Nagao, 2012; Yamazaki & Tanaka,
2007a).
202
For the LIF neuron models, the parameter values for the ca-
pacitance CX , the leakage current I (X)L , the AHP current I (X)AHP , and
the external constant current I (X)ext are given in Table A.1.

For the synaptic currents, the parameter values for the max-
imum conductance ḡ (T )

R , the synaptic weight J (T ,S)
ij , the synaptic

reversal potential V (S)
R , the synaptic decay time constant τ

(T )
R ,

and the amplitudes A1 and A2 for the type-2 exponential-decay
function in the granular layer, the Purkinje-molecular layer, and
the other parts for the VN and IO are given in Tables A.2, A.3, and
A.4, respectively.

Appendix B. Glossary

In this appendix, glossary for various terms characterizing the
cerebellar model is given in Table B.5.
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