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Abstract
We are concerned about sparsely synchronized rhythms (SSRs), associated with diverse cognitive functions, in the

hippocampal dentate gyrus. Distinctly, adult-born immature GCs (imGCs) emerge through neurogenesis, in addition to the

mature granule cells (mGCs) (emerged in the developmental stage). In prior work, these mGCs and imGCs were found to

exhibit their distinct roles in pattern separation and integration for encoding cortical inputs, respectively. But, the

underlying dynamical mechanismremains unclear. In this paper, we first study influence of the young adult-born imGCs on

emergence of SSRs in the populations of the mGCs and the imGCs; population and individual firing behaviors in the SSRs

are intensively studied. We then examine how the SSRs play a role in the underlying mechanism for pattern separation and

integration. Particularly, quantitative relationship between SSRs of the mGCs and the imGCs and their pattern separation

and integration is investigated.
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Introduction

The hippocampus, consisting of the dentate gyrus (DG) and

the subareas CA3 and CA1, performs significant functions

in memory process (Squire 1987; Gluck and Myers 2001).

In this paper, our main concern is the DG (corresponding to

the gate to the hippocampus). The entorhinal cortex (EC)

make excitatory project to the main encoding granule cells

(GCs) in the DG through the perforant paths (PPs). Then,

the principal GCs make pattern separation (i.e., a process

of transforming similar input patterns into less similar

output patterns) for effective encoding of the cortical inputs

(Marr 1971; McNaughton and Morris 1987; Rolls

1989a, b, c; Willshaw and Buckingham 1990; Treves and

Rolls 1991, 1992, 1994; O’Reilly and McClelland 1994;

Beck et al. 2000; Nitz and McNaughton 2004; Leutgeb

et al. 2007; Bakker et al. 2008; Myers and Scharfman

2009, 2011; Yassa and Stark 2011; Schmidt et al. 2012;

Myers et al. 2013; Santoro 2013; Yim et al. 2015; Knierim

and Neunuebel 2016; Scharfman and Myers 2016; Rolls

2016; Chavlis et al. 2017; Kassab and Alexandre 2018; van

Dijk and Fenton 2018; Kim and Lim 2022b).

Most distinctly, adult neurogenesis occurs in the DG,

which leads to appearance of new young immature GCs

(imGCs). Pioneering works of Altman for the adult neu-

rogenesis were made several decades ago (Altman

1962, 1963; Altman and Das 1965). Since pioneering

works of Altman, young imGCs have been found to emerge

via adult neurogenesis in the subgranular zone of the DG

(Ming and Song 2011; Spalding et al. 2013; Bayer 2016;

Boldrini et al. 2018; Gage 2019; Christian et al. 2020;

Wang et al. 2020). The newly-born imGCs move into the

granular layer of the DG. They are found to exhibit distinct

competing properties such as high excitability, weak inhi-

bition, and low excitatory innervation in contrast to the

mature GCs (mGCs) (emerged in the developmental stage)

(Aimone et al. 2009, 2011; Sahay et al. 2011a, b; Dieni

et al. 2016).
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Here, we consider a spiking neural network for the adult

neurogenesis in the DG, composed of both mGCs and

imGCs, which was developed in our prior work for the

effect of adult-born imGCs on pattern separation (Kim and

Lim 2023). In our DG network, both high excitability and

low excitatory innervation for the imGCs are considered.

We note that the influence of low excitatory innervation

(decreasing activation degree) for the imGCs counteracts

the influence of their high excitability (increasing activa-

tion degree).

Our prior work has shown that the mGCs exhibit pattern

separation, while the imGCs show pattern integration (as-

sociating dissimilar patterns) (Kim and Lim 2022b, 2023).

As shown there, the pattern separation (integration) effi-

cacy of the mGCs (imGCs) becomes better for similar

(dissimilar) input patterns. Thus, in a heterogeneous pop-

ulation of mGCs and imGCs, the memory storage capacity

in the CA3 could be optimized via cooperative interplay

through pattern separation and pattern integration. How-

ever, the underlying dynamical mechanism for pattern

separation and integration remains unclear.

In this paper, we are concerned about sparsely syn-

chronized rhythms in the hippocampal DG. In recent years,

much attention has been paid to brain rhythms observed in

local potentials (Buzsáki 2006; Traub and Whittington

2010). Such brain rhythms appear through synchronization

between individual neural firings, and they are related to

diverse sensory and cognitive functions such as sensory

perception, feature integration, selective attention, and

memory formation (Wang 2010). At the population level,

synchronous small-amplitude fast oscillations [e.g., beta

rhythm (15–30 Hz), gamma rhythm (30–100 Hz), and

sharp-wave ripple (100–200 Hz)] are shown in local field

potential recordings (Fisahn et al. 1998; Csicsvari et al.

1998; Fries et al. 2001; Kim and Lim

2013, 2014, 2015a, b, 2018). On the other hand, at the

cellular level, individual cells fire stochastically and spar-

sely at low rates than the population frequency (Fisahn

et al. 1998; Csicsvari et al. 1998; Fries et al. 2001; Kim

and Lim 2013, 2014, 2015a, b, 2018). In this way, single-

cell firing behavior differs distinctly from population firing

behavior. These sparsely synchronized rhythms (SSRs) are

in contrast to the fully synchronized large-amplitude slow

rhythms where individual cells fire regularly like clock

oscillators at the population frequency (Steriade et al.

1993; Destexhe and Sejnowski 2003; Wang 2003).

Here, we first investigate how the adult-born imGCs

affect emergence of SSRs of the mGCs and the imGCs in

our DG spiking neural network; population and individual

firing behaviors in the SSRs are intensively studied. Then,

how the SSRs of the mGCs and the imGCs play a role for

their encoding functions such as pattern separation and

integration is examined. To the best of our knowledge, as a

first time, we make quantitative association between SSRs

of the mGCs and the imGCs and their pattern separation

and integration (facilitating optimal pattern storage in the

CA3). They are found to be negatively correlated; the

better population and individual behaviors in the SSRs are,

the worse their encoding efficacy (through pattern separa-

tion and pattern integration) becomes.

This paper is organized as follows. In the main Sect. 2,

in our DG spiking neural network (Kim and Lim 2023), we

first investigate influence of adult neurogenesis on emer-

gence of SSRs of the mGCs and the imGCs, and then study

quantitative association between the SSRs and the efficacy

of pattern separation and integration. In the Supplementary

Information (SI), brief description on our DG spiking

neural network for adult neurogenesis is given. Finally, we

provide summary and discussion in Sect. 3.

Influence of adult neurogenesis
on emergence of SSRs and quantitative
association between SSRs and pattern
separation and integration

In this section, we first study influence of adult neurogen-

esis on emergence of SSRs of the GCs (mGCs and imGCs)

in our DG spiking neural network, developed in our prior

work (Kim and Lim 2023). Brief description of our DG

spiking neural network is given in the SI; for more details,

refer to Sec. II in (Kim and Lim 2023). For the imGCs, two

competitive properties of high excitability (increasing

activation degree) and low excitatory innervation (de-

creasing activation degree) are considered. Due to low

excitatory innervation, the connection probability pc from

the EC cells and the MCs to the imGCs is reduced to 20 x%

[x (synaptic connectivity fraction); 0� x� 1]; in the case

of mGCs, pc ¼ 20%. As x is decreased from 1 to 0, pop-

ulation and individual firing behaviors of the mGCs and the

imGCs in their SSRs are investigated by employing the

amplitude measure MðXÞ
a (X ¼ m and im for the mGCs and

the imGCs, respectively) (denoting the population syn-

chronization degree) (Kim and Lim 2021) and the random

phase-locking degree L
ðXÞ
d (characterizing regularity of

individual single-cell firings) (Kim and Lim 2022a, b),

respectively.

In our prior work (Kim and Lim 2023), for 0� x� 1 the

mGCs and the imGCs were found to exhibit pattern sepa-

ration and pattern integration, respectively. But, their

underlying mechanism remains unclear. Here, we examine

how the SSRs of the mGCs and the imGCs play a role in

the underlying mechanism for pattern separation and inte-

gration. Particularly, as a first time, we study quantitative

2312 Cognitive Neurodynamics (2024) 18:2311–2321

123



relationship between MðXÞ
a and L

ðXÞ
d of the SSRs and the

pattern separation and integration degrees.

Characterization of SSRs in the presence
of only the mGCs without the imGCs

In this subsection, we first consider the case of presence of

only the mGCs (without the imGCs) to present the methods

characterizing the population and individual firing behav-

iors in the SSRs (Kim and Lim 2022a). Population firing

activity of the active mGCs may be well visualized in the

raster plot of spikes which is a collection of spike trains of

individual active mGCs. Figure 1a1 shows the raster plot

of spikes for 120 active mGCs (activation degree Da of the

mGCs is 6%); for convenience, only a part from t ¼ 300–

1300 ms is shown in the raster plot of spikes. We note that

sparsely synchronized stripes (composed of sparse spikes

and indicating population sparse synchronization) appear

successively.

As a population quantity showing collective behaviors,

we employ an IPSR (instantaneous population spike rate)

which may be obtained from the raster plot of spikes

(Brunel and Wang 2003; Geisler et al. 2005; Brunel and

Hakim 2008; Wang 2010; Kim and Lim 2014, 2018). To

get the smooth IPSR, we employ the kernel density esti-

mation (kernel smoother) (Shimazaki and Shinomoto

2010). Each spike in the raster plot is convoluted (or

blurred) with a kernel function KhðtÞ to get a smooth

estimate of IPSR R(t):

RðtÞ ¼ 1

Na

XNa

i¼1

Xni

s¼1

Khðt � ts;iÞ; ð1Þ

where Na is the number of the active mGCs, ts;i is the sth

spiking time of the ith active mGC, ni is the total number of

spikes for the ith active mGC, and we use a Gaussian

kernel function of band width h:

KhðtÞ ¼
1ffiffiffiffiffiffi
2p

p
h
e�t2=2h2 ; �1\t\1; ð2Þ

where the band width h of KhðtÞ is 20 ms. The IPSR R(t) is

also shown in Fig. 1a2. We note that the IPSR R(t) exhibits

synchronous oscillation with the population frequency

fp ð¼ 18:2 Hz). The population frequency fp is given by the

reciprocal of the global period TG (i.e., fp ¼ 1=TG) which

corresponds to the average ‘‘intermax’’ interval (i.e.,

average interval between neighboring maxima) in the IPSR

R(t). Here, we get NIMI (= 545) intermax intervals during

the stimulus period Ts (¼ 3� 104 ms), and get their

average value (i.e., global period) TG (= 54.9 ms). In this

way, SSR with fp ð¼ 18:2 Hz) appears in the (homoge-

neous) population of active mGCs.

The amplitude of the IPSR R(t) may represent syn-

chronization degree of the SSR. Here, we characterize the

synchronization degree of the SSR in terms of the ampli-

tude measureMa, given by the time-averaged amplitude of

R(t) (Kim and Lim 2021):

Ma ¼ MaðjÞ;MaðjÞ ¼
½RðjÞ

maxðtÞ � R
ðjÞ
minðtÞ�

2
; ð3Þ

where the overline represents time average, MaðjÞ is the

amplitude measure in the jth global cycle (corresponding to

the jth spiking stripe), and R
ðjÞ
maxðtÞ and R

ðjÞ
minðtÞ are the

maximum and the minimum of R(t) in the jth global cycle,

respectively. As Ma increases (i.e., the time-averaged

amplitude of R(t) is increased), synchronization degree of

the SSR becomes higher. Figure 1b shows the plot of the

amplitude MaðjÞ versus the spiking stripe index j (corre-

sponding to the global cycle index). We follow the 546

stripes during the stimulus period Ts (¼ 3� 104 ms), and

the amplitude measure Ma [corresponding to the time-

averaged amplitude MaðjÞ] is thus found to be 3.83.

Next, we consider the individual firing behavior of the

active mGCs. For each active mGC, we get the inter-spike-

interval (ISI) histogram by collecting the ISIs during the

stimulus period Ts (¼ 3� 104 ms). Each active mGC

exhibits intermittent spikings, phase-locked to R(t) at ran-

dom multiples of its global period TG (= 54.9 ms). This is

in contrast to the case of full synchronization where only

Fig. 1 Characterization of the sparsely synchronized rhythm (SSR) in

the presence of only the mGCs without imGCs. a1 Raster plots of

spikes of 120 active mGCs. a2 Instantaneous population spike rate

(IPSR) R(t) of active mGCs. Band width for R(t): h ¼ 20 ms. b Plot of

amplitude measure MaðjÞ of the IPSR R(t) versus j (spiking stripe). c
Inter-spike-interval (ISI) histogram of the 7th (i ¼ 7) active mGC; bin

size = 2 ms. Vertical dotted lines in c represent the integer multiples

of the global period TG (= 54.9 ms) of R(t). Plots of d1 normalized

weight wn and d2 random phase-locking degree L
ðnÞ
d for the nth peak

of the ISI histogram for the 7th active mGC versus n (peak index)
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one dominant peak appears at the global period TG; all cells

fire regularly at each global cycle without skipping. As a

result of random spike skipping, there appear 19 distinct

multiple peaks at the integer multiples of TG in the ISI

histogram. These peaks are called as the random-spike-

skipping peaks. Then, we get the population-averaged ISI

histogram by averaging the individual ISI histograms for

all the active mGCs. In this case, the population-averaged

ISI (hISIi) of all the active mGCs in the population-aver-

aged ISI histogram is 471.7 ms. Then, the population-av-

eraged mean firing rate (MFR) hfii, given by the reciprocal

of hISIi (i.e., hfii ¼ 1=hISIi), is 2.12 Hz, which is much less

than the population frequency fp ð¼ 18:2 Hz) of the SSR,

in contrast to the case of full synchronization where the

population-averaged MFR is the same as the population

frequency.

As an example, we consider the case of the 7th (i ¼ 7)

active mGC. Its ISI histogram is shown in Fig. 1c. In this

case, the 8th-order peak is the highest one, and hence

spiking may occur most probably after 7-times spike

skipping. The nth-order random-spike-skipping peak in the

ISI histogram is located as follows:

ðn� 1

2
Þ TG\ISI\ðnþ 1

2
Þ TG for n� 2; ð4Þ

0\ISI\
3

2
TG for n ¼ 1: ð5Þ

For each nth-order peak, we obtain the normalized weight

wn, given by:

wn ¼
N

ðnÞ
ISI

N
ðtotÞ
ISI

; ð6Þ

where N
ðtotÞ
ISI is the total number of ISIs obtained during the

stimulus period (Ts ¼ 3� 104 ms) and N
ðnÞ
ISI is the number

of the ISIs in the nth-order peak. Figure 1d1 shows the plot

of wn versus n (peak index) for all the 19 peaks in the ISI

histogram of the 7th (i ¼ 7) active mGC. For example, the

highest 8th-order peak has w8 ¼ 0:12.

We now consider the sequence of the ISIs,

fISIðnÞj ; j ¼ 1; . . .;N
ðnÞ
ISIg, within the nth-order peak, and get

the random phase-locking degree L
ðnÞ
d of the nth-order peak

(representing how well intermittent spikes make phase-

locking to the IPSR R(t) at t ¼ nTG). As in the case of the

pacing degree (Kim and Lim 2014), we give a phase w to

each ISI
ðnÞ
j via linear interpolation:

wðDISIðnÞj Þ ¼ p
TG

DISIðnÞj for n� 2; ð7Þ

where DISIðnÞj ¼ ISI
ðnÞ
j � n TG, leading to

�TG
2
\DISIðnÞj \TG

2
. However, for n ¼ 1, w changes

depending on whether the ISI lies in the left or the right

part of the 1st-order peak:

wðDISIð1Þj Þ ¼

p
2 TG

DISIð1Þj for � TG\DISIð1Þj \0;

p
TG

DISIð1Þj for 0\DISIð1Þj \
TG
2
;

8
><

>:

ð8Þ

where DISIð1Þj ¼ ISI
ð1Þ
j � TG:

Then, the contribution of the ISI
ðnÞ
j to the locking degree

L
ðnÞ
d is given by cosðwðnÞ

j Þ; wðnÞ
j ¼ wðDISIðnÞj Þ. An ISI

ðnÞ
j

makes the most constructive contribution to L
ðnÞ
d for

wðnÞ
j ¼ 0, while it makes no contribution to L

ðnÞ
d for wðnÞ

j ¼
p
2
or �p

2
. By averaging the matching contributions of all the

ISIs in the nth-order peak, we get:

L
ðnÞ
d ¼ 1

N
ðnÞ
ISI

XN
ðnÞ
ISI

j

cosðwðnÞ
j Þ: ð9Þ

Fig. 1d2 shows plot of L
ðnÞ
d versus n (peak index) for the 19

random-spike-skipping peaks in the ISI histogram of the

7th active mGC. For example, the highest 8th-order

(n ¼ 8) peak has the maximum value of L
ðnÞ
d (= 0.961).

Through weighted average of the random phase-locking

degrees L
ðnÞ
d of all the peaks, we obtain the (overall) ran-

dom phase-locking degree Ld

Ld ¼
XNp

n¼1

wn � LðnÞ
d ¼ 1

N
ðtotÞ
ISI

XNp

n¼1

XN
ðtotÞ
ISI

j¼1

cosðwðnÞ
j Þ; ð10Þ

where Np is the number of peaks in the ISI histogram. We

note that, Ld corresponds to the average of contributions of

all the ISIs in the ISI histogram. In the case of the 7th

active mGC, the random phase-locking degree Ld, char-

acterizing the sharpness of all the peaks, is 0.92. Hence, the

mGCs make intermittent spikes which are well phase-

locked to R(t) at random multiples of its global period TG.

We repeat the above process in the ISI histogram of

each ith (i ¼ 1; . . .; 120) active mGC and get its random

phase-locking degree LdðiÞ. The range of fLdðiÞg is [0.77,

0.98]. Then, the random phase-locking degree Ld of all the

active mGCs ia given by the average value (= 0.92) of the

distribution fLdðiÞg.

Influence of the adult-born imGCs on emergence
of SSRs and their population and individual
firing behaviors

In this subsection, we consider a heterogeneous population,

composed of mGCs and imGCs; fraction of the imGCs in

the whole population is 10%. As shown in Fig. 2 in Kim
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and Lim (2023), as a result of increased leakage reversal

potential VL, the imGC has lower firing threshold than the

mGC (i.e., high excitability), which results in high acti-

vation of the imGC (Sahay et al. 2011a, b; Spalding et al.

2013; Boldrini et al. 2018; Gage 2019; Wang et al. 2020).

We also note that, the imGC has low excitatory innervation

from the EC cells and the hilar MCs, counteracting its high

excitability (Aimone et al. 2011). In the case of the mGCs,

the connection probability pc from the EC cells and the

MCs to the mGCs is 20%, while in the case of the imGCs,

pc is decreased to 20 x % [x : synaptic connectivity frac-

tion; 0� x� 1]. Due to low excitatory drive from the EC

cells and the MCs, the activation degree of the imGCs

becomes reduced. With decreasing x from 1 to 0, we

investigate the influence of high excitability and low

excitatory innervation for the imGCs on the population and

individual firing behaviors of the mGCs and the imGCs in

their SSRs. We also note that, for 0� x� 1 the mGCs and

the imGCs were found to exhibit pattern separation and

pattern integration, respectively (Kim and Lim 2023).

Hence, we also study quantitative relationship between

SSRs and pattern separation and integration.

Here, as in the case of Fig. 1, we consider a long-term

stimulus stage (300–30,300 ms) (i.e., the stimulus period

Ts ¼ 30; 000 ms), because long-term stimulus is necessary

for analysis of dynamical behaviors. Population firing

activity of the active mGCs and imGCs may be well

visualized in the raster plot of spikes which is a collection

of spike trains of individual active GCs. Figure 2a1–a4

show the raster plots of spikes for the active mGCs (red)

and imGCs (blue) for x ¼ 1.0, 0.7, 0.4, and 0.2, respec-

tively. For convenience, only a part from t ¼ 300–1300 ms

is shown in each raster plot of spikes. We note that sparsely

synchronized stripes (composed of sparse spikes and

indicating population sparse synchronization) appear suc-

cessively; overall, the pacing degree between spikes in the

spiking stripes is low. In the case of mGCs, with decreasing

x from 1 their spiking stripes become clearer, while in the

case of imGCs their stripes become more smeared.

The IPSR (showing population firing behavior) may be

obtained from the raster plot of spikes [see Eq. (1)]. The

IPSRs RðXÞðtÞ of the mGCs (X ¼ m : red) and the imGCs

(X ¼ im : blue) are shown in Fig. 2a1–a4 for x ¼ 1.0, 0.7,

0.4 and 0.2, respectively. We note that RðXÞðtÞ exhibit

synchronous oscillations. But, the average amplitude of

RðXÞðtÞ in each case of mGCs and imGCs is smaller than

that in the case of homogeneous population of only mGCs

in Fig. 1a2, and variations in the amplitudes are also large.

For x ¼ 1, imGCs fire spikings much more actively than

mGCs because the imGCs have high excitability. On the

other hand, firing activity of mGCs becomes much

decreased due to strongly increased feedback inhibition

from the BCs and the HIPP cells. Hence, in the case of

x ¼ 1 the amplitude of RðimÞðtÞ (blue) of the imGCs is

larger than that of RðmÞðtÞ (red) of the mGCs. However, as x

is decreased from 1, firing activity of the imGCs becomes

Fig. 2 SSRs and multi-peaked ISI histograms in each case of the

imGCs and the mGCs. a1–a4 Raster plots of spikes and IPSRs RðXÞðtÞ
for the active imGCs (X ¼ im) and the mGCs (X ¼ m) when x
(synaptic connectivity fraction) is 1.0, 0.7, 0.4, and 0.2, respectively.

b1–b4 Population-averaged ISI histograms for the active imGC and

mGC when x ¼ 1.0, 0.7, 0.4, and 0.2, respectively; bin size = 2 ms.

Vertical dotted lines in b1–b4 represent the integer multiples of the

global period T
ðXÞ
G of RðXÞðtÞ. In a1–a4 and b1–b4, imGCs and imGCs

are denoted in blue and red color, respectively
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rapidly reduced (i.e., the influence of imGCs decreases

rapidly) because of low excitatory innervation from the EC

cells and the MCs. On the other hand, firing activity of

mGCs becomes enhanced due to decrease in the feedback

inhibition into the mGCs from the BCs and the HIPP cells.

Thus, with decreasing x from 1, the amplitude of RðmÞðtÞ of
the mGCs makes an increase because the pacing degree

between spikes in each spiking stripe in the rater plot of

spikes becomes better (i.e., the spiking stripes in the raster

plot of spikes become clearer). In contrast, in the case of

imGCs, the amplitude of RðimÞðtÞ decreases because the

pacing degree of spikes in the raster plot becomes worse

(i.e., the spiking stripes in the raster plot of spikes become

smeared). Thus, for example, for x ¼ 0:2 the amplitude of

RðmÞðtÞ becomes much larger than that of RðimÞðtÞ.
In addition to the (above) population firing activity, we

also study the individual spiking activity of the active GCs.

In each case of the mGCs (X ¼ m) and the imGCs

(X ¼ im), we get the ISI histogram for each active GC by

collecting the ISIs during the stimulus period Ts
(¼ 3� 104 ms), and then obtain the population-averaged

ISI histogram by averaging the individual ISI histograms

for all the active GCs. Figure 2b1–b4 show the population-

averaged ISI histograms for x ¼ 1, 0.7, 0.4, and 0.2,

respectively.

We first consider the case of x ¼ 1 in Fig. 2b1. For the

mGCs (red), each active mGC exhibits intermittent spik-

ings, phase-locked to RðmÞðtÞ at random multiples of its

global period T
ðmÞ
G (= 87.8 ms) [corresponding to the

average ‘‘intermax’’ interval between neighboring maxima

in RðmÞðtÞ]; vertical dotted lines represent integer multiples

of the global period T
ðmÞ
G of RðmÞðtÞ. As a result of random

spike skipping, there appear 12 multiple peaks in the ISI

histogram. The middle 10th-order peak is the highest one,

and hence spiking may occur most probably after 9-times

spike skipping. This is in contrast to the case of full syn-

chronization where only one dominant peak appears at the

global period TG of the IPSR R(t); all cells fire regularly at

each global cycle without skipping. Next, we consider the

case of imGCs (blue). Its ISI histogram has a single peak

near the global period T
ðimÞ
G ð¼ 34:3 ms) of the IPSR

RðimÞðtÞ and its distribution is broadly extended to

� 3 T
ðimÞ
G . The imGCs exhibit spikes mainly at T

ðimÞ
G (i.e.,

they fire mainly in each stripe), but they also show inter-

mittent spikings at 2 T
ðimÞ
G or 3 T

ðimÞ
G (i.e., spike skippings

also occur).

As x is decreased from 1 (i.e., considering low excita-

tory innervation for the imGCs), the influence of the

imGCs becomes weaker. In this case, the imGCs show

more irregular spiking behaviors. Hence, their single-

peaked ISI histograms become broader, as shown in

Fig. 2b2–b4 for x ¼ 0.7, 0.4, and 0.2, respectively. The

order n of peak also increases with decreasing x (n ¼ 2, 4,

and 6 for x ¼ 0.7, 0.4, and 0.2, respectively). Hence, more

spike skippings occur. On the other hand, with decreasing

x from 1, the mGCs exhibit more regular spiking behaviors.

Hence, their ISI histograms become clearer because mul-

tiple peaks become sharper and their heights become

increased [see Fig. 2b2–b4].

From now on, in Fig. 3, we quantitatively characterize

population and individual firing behaviors in the SSRs of

the mGCs (X ¼ m) and the imGCs (X ¼ im). We first

consider the population firing behaviors which are well

shown in RðXÞðtÞ. Figure 3a shows the plots of the popu-

lation frequency f
ðXÞ
p [i.e., the average oscillating frequency

of RðXÞðtÞ, corresponding to the reciprocal of the global

period T
ðXÞ
G of the SSRs for X ¼ m (red crosses) and im

(blue open circles)]. For x ¼ 1, f
ðimÞ
p (= 29.2 Hz) for the

imGCs is faster than f
ðmÞ
p (= 11.4 Hz) for the mGCs, as can

be well seen in Fig. 2a1, mainly because for x ¼ 1 firing of

the imGCs is much more active than that of the mGCs

(resulting from high excitability of the imGCs).

However, as x is decreased from 1 to 0, f
ðimÞ
p decreases to

0 rapidly due to rapid decrease in firing activity of the

imGCs (resulting from their low excitatory innervation).

On the other hand, f
ðmÞ
p increases to 18.6 Hz because of

increase in firing activity of the mGCs (resulting from

Fig. 3 Population and individual firing behaviors in the SSRs of the

imGCs (X ¼ im) and the mGCs (X ¼ m). a Plots of the population

frequencies f ðXÞp versus x (synaptic connectivity fraction). b Plots of

the amplitude measures MðXÞ
a versus x. c Plots of the population-

averaged mean firing rates hf ðXÞi i versus x. d Plots of the random-

phase-locking degrees L
ðXÞ
d versus x. Horizontal dashed lines in a–d

represent fp (= 18.2 Hz),Ma (= 3.83), hfii (= 2.12 Hz), and Ld (= 0.92)

in the presence of only mGCs (without imGCs), respectively. The

mGCs and imGCs are denoted by red crosses and blue open circles,

respectively
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decrease in the feedback inhibition into the mGCs). We

note that, f
ðimÞ
p and f

ðmÞ
p cross at x	 � 0:4; for x[ x	

f
ðimÞ
p [ f

ðmÞ
p ; while for x\x	 f

ðmÞ
p [ f

ðimÞ
p :We also note that,

for x ¼ 0 f
ðmÞ
p (= 18.6 Hz) is a little larger than the dashed

horizontal line (fp ¼ 18:2 Hz) in the homogeneous popu-

lation of only the mGCs (without imGCs), which may be

understood as follows. In the limiting case of x ¼ 0; the

imGCs become completely inactive. Hence, the feedback

inhibition (from the BCs and the HIPP cells) to the mGCs

becomes reduced in comparison to the homogeneous case

consisting of only mGCs, which results in increased firing

activity of the mGCs in the heterogeneous population of

mGCs and imGCs.

The amplitude of the IPSR RðXÞðtÞ may represent syn-

chronization degree of the SSR. Thus, we characterize the

synchronization degree of the SSRs of the mGCs (X ¼ m)

and the imGCs (X ¼ im) in terms of the amplitude measure

MðXÞ
a of Eq. (3), given by the time-averaged amplitude of

RðXÞðtÞ: Fig. 3b shows the plots of MðXÞ
a versus x for the

mGCs (red crosses) and the imGCs (blue open circles). For

x ¼ 1 (i.e., high excitability of the imGCs), MðimÞ
a (= 2.75)

for the imGCs is larger than MðmÞ
a (= 0.99) for the mGCs,

as can be seen well in Fig. 2a1, because the imGCs fire

more actively and coherently than the mGCs.

As x is decreased from 1 to 0 (i.e., low excitatory

innervation to the imGCs) the influence of imGCs becomes

decreased rapidly, which results in more active and

coherent firing activity of the mGCs (due to decreased

feedback to the mGCs from the BCs and the HIPP cells).

Consequently, MðmÞ
a increases to 3.79, while MðimÞ

a

decreases to 0. We note that the limit value (= 3.79) of

MðmÞ
a is a little smaller than Ma (= 3.83) in the homoge-

neous population of only the mGCs (without imGCs)

[represented by the dashed horizontal line in Fig. 3b].

Hence, for all x, MðXÞ
a of the mGCs and the imGCs is less

than that (= 3.83) in the homogeneous case consisting of

only mGCs. Consequently, in the whole range of x, due to

heterogeneity caused by the imGCs, population firing

behaviors (characterized in terms of MðXÞ
a ) of mGCs and

imGCs in their SSRs become deteriorated, in comparison

to that in the presence of only mGCs (without imGCs).

Next, we consider the individual firing behaviors of the

active mGCs and imGCs which are well shown in their ISI

histograms. Figure 3c shows the plots of the population-

averaged MFRs hf ðXÞi i of the individual mGCs (X ¼ m : red

crosses) and imGCs (X ¼ im : blue open circles); hf ðXÞi i
corresponds to the reciprocal of the population-averaged

ISI (hISIiðXÞ) (i.e., hf ðXÞi i ¼ 1=hISIiðXÞ) in the population-

averaged ISI histogram of the X-population.

For x ¼ 1; hf ðimÞi i (= 28.7 Hz) for the imGCs is much

faster than hf ðmÞi i (= 1.12 Hz) for the mGCs, as can be well

seen in Fig. 2b1. In this case, due to their high excitability,

the imGCs exhibit active firing activity, while the mGCs

show very intermittent spikings due to strong feedback

inhibition (from the BCs and the HIPP cells). Thus, in the

case of mGCs the population-averaged MFR hf ðmÞi i is much

less than the population frequency f
ðmÞ
p ð¼ 11:4 Hz) for the

SSR, due to random spike skipping, which is in contrast to

the case of full synchronization where the population-av-

eraged MFR is the same as the population frequency. On

the other hand, in the case of imGCs, their population-

averaged MFR hf ðimÞi i is close to the population frequency

f
ðimÞ
p ð¼ 29:2 Hz) for the SSR, and hence the active imGCs

show nearly fully synchronized rhythm (i.e., most of all

active imGCs fire in each spiking stripe) in the case of

x ¼ 1.

However, as x is decreased from 1 to 0, firing activity of

imGCs is decreased rapidly due to low excitatory inner-

vation. Consequently, hf ðimÞi i decreases so rapidly from

28.7 Hz to 0. Thus, for x\1, active imGCs distinctly

exhibit random spike skipping, leading to SSR with

f
ðimÞ
p [ hf ðimÞi i. On the other hand, with decreasing x from 1,

hf ðmÞi i of the mGCs increases slowly from 1.12 to 2.30 Hz,

because of decrease in feedback inhibition to the mGCs.

When passing a threshold (x� 0:3), hf ðmÞi i crosses the

horizontal dashed line (= 2.12 Hz), representing the pop-

ulation-averaged MFR in the presence of only the mGCs

(without the imGCs). It also crosses the decreasing curve of

hf ðimÞi i for x� 0:2, and then converges to the limit value (=

2.30 Hz).

Next, we characterize the degree of random spike

skipping seen in the ISI histograms in the case of X ¼ m

and im in terms of the random phase-locking degree L
ðXÞ
d of

Eq. (10) (denoting how well intermittent spikes make

phase-locking to the IPSR RðXÞðtÞ at random multiples of

its global period T
ðXÞ
G ). The sharper the random-spike-

skipping peaks in the ISI histogram are, the larger L
ðXÞ
d

becomes.

Figure 3d shows the plots of L
ðXÞ
d versus x for the mGCs

(X ¼ m : red crosses) and the imGCs (X ¼ im : blue open

circles). In the case of mGCs, multi-peaked ISI histograms

appear due to random spike skippings. As x is decreased

from 1, their ISI histograms become clearer because mul-

tiple peaks become sharper and their heights become

increased. Thus, with decreasing x from 1 to 0, L
ðmÞ
d is

found to increase from 0.587 to 0.898. On the other hand,

the ISI histograms for the imGCs have single peaks. As x is
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decreased from 1, their single-peaked ISI histograms

become broader, which leads to more random spike skip-

pings. But, at first, in the nth global cycle where the single

peak exists [e.g., n ¼ 1 (2) for x ¼ 1:0 (0.7)], the random

phase locking degree L
ðimÞ
d ðnÞ increases a little until x is

decreased to x	ð� 0:7Þ. Thus, as x is decreased from 1 to

x	; the overall L
ðimÞ
d increases a little from 0.408 to 0.497.

Then, for x\x	, L
ðimÞ
d decreases rapidly to 0, in contrast to

the case of mGCs.

We also note that, in the limiting case of x ¼ 0; L
ðmÞ
d (=

0.898) is smaller than Ld (= 0.92) in the homogeneous

population of only the mGCs (without imGCs) [represented

by the dashed curve in Fig. 3d]. Hence, for all x, L
ðXÞ
d of

the mGCs and the imGCs is smaller than that (= 0.92) in

the homogeneous case composed of only mGCs. As a

result, in the whole range of x, because of heterogeneity

caused by the imGCs, individual firing behaviors (charac-

terized in terms of L
ðXÞ
d ) of mGCs and imGCs in their SSRs

become deteriorated, in comparison with the homogeneous

case consisting of only mGCs (without imGCs).

Quantitative relationship between SSRs
and pattern separation and integration

In this subsection, we examine how the SSRs of the mGCs

and the imGCs are associated with their encoding functions

such as pattern separation and integration. In our prior

work (Kim and Lim 2023), by varying the synaptic con-

nectivity fraction x, we studied pattern separation (trans-

forming similar input patterns into less similar output

patterns) of the mGCs (X ¼ m) in terms of the pattern

separation degree S
ðXÞ
d [see Fig. 4e in Kim and Lim

(2023)]. The pattern separation degree S
ðXÞ
d is given by the

ratio of D
ðoutÞ
p (pattern distance for the output pattern pair)

to D
ðinÞ
p (pattern distance for the input pattern pair) [see

Eq. (17) in (Kim and Lim 2023)]. For S
ðXÞ
d [ 1 pattern

separation occurs, because the output pattern pair of the

mGCs is more dissimilar than the input pattern pair of the

EC cells. On the other hand, for S
ðXÞ
d \1 no pattern sepa-

ration occurs; instead, pattern convergence takes place. For

the mGCs, with decreasing x from 1, S
ðmÞ
d was found to

decrease from a high value (= 13.142) for x ¼ 1 to a limit

value (= 1.495) for x ¼ 0, as shown in Fig. 4e in Kim and

Lim (2023). Thus, in the whole range of 0� x� 1, the

mGCs perform good pattern separation with S
ðmÞ
d [ 1.

In contrast to the mGCs, the imGCs exhibit pattern

integration (making association between dissimilar pat-

terns), characterized in terms of the integration degree I d.

Id is given by the ratio of the average pattern correlation

degree for the output pattern pair of the imGCs to the

average pattern correlation degree for the input pattern pair

of the EC cells [see Eq. (18) in (Kim and Lim 2023)]. For

x ¼ 1 the pattern integration degree Id of the imGCs is

high (1.9559). With decreasing x from 1 to 0, I d was found

to increase from 1.9559 to 2.2502, as shown in Fig. 4f in

Kim and Lim (2023). Thus, in the whole range of 0� x� 1,

the imGCs are good pattern integrators with Id [ 1:

We investigate quantitative relationship between SSRs

of the mGCs and the imGCs and their pattern separation

and integration. Figure 4a1 and a2 show the plots of the

pattern separation degree S
ðXÞ
d versus MðXÞ

a and S
ðXÞ
d versus

L
ðXÞ
d for X ¼ m (mGCs), respectively. S

ðmÞ
d for the mGCs is

found to be negatively correlated with MðXÞ
a and L

ðXÞ
d of

their SSR with the Pearson’s correlation coefficients r ¼
�0:9994 and �0:9998, respectively (Pearson 1895). Thus,

in the population of the mGCs, the better population and

individual firing behaviors in their SSR are, the worse their

pattern separation becomes.

In the case of X ¼ im (imGCs), plots of the pattern

integration degree Id versus M
ðimÞ
a and Id versus L

ðimÞ
d are

shown in Figs. 4b1-b2, respectively. As in the case of

mGCs, Id for the imGCs is also negatively correlated with

MðimÞ
a with the Pearson’s correlation coefficients

r ¼ �0:8483. Next, we consider quantitative relationship

between Id and L
ðimÞ
d . As shown in Fig. 3d, for

1:0� x� 0:7, L
ðimÞ
d makes a small increase, and then for

x� 0:7 it rapidly decreases to 0. Thus, I d is also negatively

correlated with L
ðimÞ
d in the range of 0:7� x� 0 with the

Fig. 4 Quantitative relationship between SSRs and pattern separation

and integration in each case of mGCs and imGCs. In the case of

mGCs, plots of a1 the pattern separation degree S
ðmÞ
d versusMðmÞ

a and

a2 S
ðmÞ
d versus L

ðmÞ
d : In the case of imGCs, plots of b1 the pattern

integration degree I d versus MðimÞ
a and b2 Id versus L

ðimÞ
d : Fitted

dashed lines are given in a1–b1. In b2, fitted dashed and dotted lines

are obtained from 8 data points for 0:7� x� 0 and 4 data points for

1� x� 0:7, respectively
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Pearson’s correlation coefficients r ¼ �0:9159, as in the

case of MðimÞ
a , while in the initial small range of

1:0� x� 0:7; Id is positively correlated with L
ðimÞ
d with the

Pearson’s correlation coefficients r ¼ 0:9365. Thus, in the

population of the imGCs, for 0:7� x� 0 the better popu-

lation and individual firing behaviors in their SSR are, the

worse their integration becomes.

Summary and discussion

We first studied influence of the adult-born imGCs on

emergence of SSRs of the main-encoding GCs (mGCs and

imGCs) in our DG spiking neural network. Then, we

examined how the SSRs of the mGCs and the imGCs play

a role in pattern separation and integration (facilitating

optimal pattern storage in the CA3). Particularly, as a first

time, quantitative association between the SSRs and the

pattern separation and integration was made.

The imGCs show two marked properties; (1) high

excitability (increasing activation degree) and (2) low

excitatory innervation (decreasing activation degree).

Thus, the influence of low excitatory innervation counter-

acts the influence of high excitability. The connection

probability pc from the EC cells and the MCs to the imGCs

is 20 x % [x (synaptic connectivity fraction); 0� x� 1], in

contrast to the case of mGCs with pc ¼ 20%. As x is

decreased from 1 to 0, SSRs of the mGCs and the imGCs

were found to emerge, and population and individual firing

behaviors in the SSRs were characterized in terms of the

amplitude measure MðXÞ
a (X ¼ m and im) and the random

phase-locking degree L
ðXÞ
d , respectively.

As shown in Fig. 3, as x is decreased from 1, the

amplitude measure MðmÞ
a and the random phase-locking

degree L
ðmÞ
d were found to increase in the case of mGCs.

With decreasing x from 1, influence of the imGCs became

weaker, which resulted in increase in MðmÞ
a and L

ðmÞ
d for

the mGCs. In contrast, as x decreases from 1, MðimÞ
a of the

imGCs was found to monotonically decrease, and their

L
ðimÞ
d was found to first slowly a little increase and then

rapidly decrease to zero (i.e., for x\0:7, monotonic

decrease to zero occurs). In this way, the changing ten-

dency for the imGCs was in contrast to that of the mGCs.

We also note that in the heterogeneous population (con-

sisting of the mGCs and the imGCs), MðXÞ
a and L

ðXÞ
d

(X ¼ m and im) were less than those in the homogeneous

population of only mGCs without imGCs. Due to hetero-

geneity caused by the imGCs, the population and individ-

ual firing behaviors of the GCs in the SSRs became

deteriorated, in comparison with those in the presence of

only mGCs (without imGCs).

In our prior work (Kim and Lim 2023), in the whole

range of x (i.e., for 1� x� 0), the mGCs and the imGCs

were found to exhibit pattern separation and pattern inte-

gration, respectively. As x is decreased from 1, the pattern

separation degree S
ðmÞ
d of the mGCs was found to decrease,

as shown in Fig. 4e in Kim and Lim (2023), because their

activation degree increased. In contrast to the mGCs, the

imGCs was found to show pattern integration, and its

degree I d was found to increase as x is decreased from 1,

due to increase in correlation between the imGCs [see

Fig. 4f in Kim and Lim (2023)]. But, the underlying

dynamical mechanism for pattern separation and integra-

tion remains unclear. We examined how the SSRs of the

mGCs and the imGCs are associated with their encoding

functions such as pattern separation and integration.

Quantitative relationship between SSRs and pattern sepa-

ration and integration was shown in Fig. 4. S
ðmÞ
d for the

mGCs was found to be negatively correlated with MðmÞ
a

and L
ðmÞ
d of their SSRs. Thus, in the population of the

mGCs, the better population and individual firing behaviors

in their SSRs are, the worse their pattern separation effi-

cacy becomes. Also, in the case of imGCs, for 0:7� x� 0;

Id was found to be negatively correlated to MðimÞ
a and

L
ðimÞ
d of their SSRs. Hence, in the population of imGCs, for

0:7� x� 0; the better population and individual firing

behaviors in their SSRs are, the worse their pattern inte-

gration efficacy becomes.

Finally, we summarize our main results. The DG is the

gateway to the hippocampus. Encoding cortical inputs in

the DG facilitates pattern storage in the CA3. Distinctly,

young imGCs appear in the DG through adult neurogene-

sis. Our main concern is to study the influence of imGCs on

the encoding functions in the DG. As is well known, the

mGCs and the imGCs in the DG exhibit pattern separation

and pattern integration (Kim and Lim 2023). The pattern

separation (integration) efficacy of the mGCs (imGCs)

becomes better for similar (dissimilar) input patterns. Thus,

in a heterogeneous population of mGCs (pattern separators)

and imGCs (pattern integrators), the memory storage

capacity could be optimized through cooperative interplay

via pattern separation and pattern integration.

We note that, during such pattern separation and inte-

gration, SSRs were found to emerge in the populations of

the mGCs and the imGCs. We first studied influence of

adult-born imGCs on population and individual firing

behaviors in the SSRs of mGCs and imGCs. Then, we

investigated quantitative relationship between the SSRs of

the mGCs and the imGCs and their encoding functions

(i.e., pattern separation and pattern integration). They were
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found to be negatively correlated; the better population and

individual behaviors in the SSRs are, the worse their

encoding efficacy (via pattern separation and pattern inte-

gration) becomes. To the best of our knowledge, as a first

time, we made quantitative association between SSRs of

the mGCs and the imGCs and their pattern separation and

integration (facilitating optimal pattern storage in the

CA3). However, this kind of negative correlations do not

imply causal relationship. Hence, in future work, it would

be interesting to intensively investigate their dynamical

causation.
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