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Young immature granule cells (imGCs) appear via adult neurogenesis in the hippocampal dentate
gyrus (DG). In comparison to mature GCs (mGCs) (born during development), the imGCs exhibit
two competing distinct properties such as high excitability and low excitatory innervation. We
develop a spiking neural network for the DG, incorporating the imGCs, and investigate their effect
on pattern separation (i.e., a process of transforming similar input patterns into less similar output
patterns). We first consider the effect of high excitability. The imGCs become very highly active
due to their low firing threshold. Then, because of high activation, strong pattern correlation
occurs, which results in pattern integration (i.e., making association between events). On the other
hand, the mGCs exhibit very sparse firing activity due to strongly increased feedback inhibition
(caused by the high activation of the imGCs). As a result of high sparsity, the pattern separation
efficacy (PSE) of the mGCs becomes very high. Thus, the whole population of GCs becomes a
heterogeneous one, composed of a (major) subpopulation of mGCs (i.e., pattern separators) with

very low activation degree D
(m)
a and a (minor) subpopulation of imGCs (i.e., pattern integrators)

with very high activation degreeD
(im)
a . In the whole heterogeneous population, the overall activation

degree D
(w)
a of all the GCs is a little reduced in comparison to the activation degree D

(out)
a in the

presence of only mGCs without imGCs. However, no pattern separation occurs, due to heterogeneous
sparsity, in contrast to the usual intuitive thought that sparsity could improve PSE. Next, we
consider the effect of low excitatory innervation for the imGCs, counteracting the effect of their
high excitability. With decreasing the connection probability of excitatory inputs to the imGCs,

D
(im)
a decreases so rapidly, and their effect becomes weaker. Then, the feedback inhibition to

the mGCs is also decreased, leading to increase in D
(m)
a of the mGCs. Accordingly, D

(w)
a of the

whole GCs also increases. In this case of low excitatory connectivity, the imGCs perform pattern

integration. On the other hand, due to increase in D
(m)
a , the PSE of the mGCs decreases from a

high value to a limit value. In the whole population of all the GCs, when the excitatory connection
probability decreases through a threshold, pattern separation starts, the overall PSE increases and
approaches that of the mGCs. However, due to heterogeneity caused by the imGCs, the overall PSE
becomes deteriorated, in comparison with that in the presence of only mGCs.

PACS numbers: 87.19.lj, 87.19.lm, 87.19.lv
Keywords: Hippocampal dentate gyrus, Adult neurogenesis, Immature granule cells, High excitability, Low
excitatory innervation, Pattern separation efficacy

I. INTRODUCTION

The hippocampus, composed of the dentate gyrus
(DG) and the subregions CA3 and CA1, plays impor-
tant roles in memory formation, storage, and retrieval
(e.g., episodic and spatial memory) [1, 2]. In particular,
the subregion CA3 has been considered as an autoasso-
ciative network, because of extensive recurrent collateral
synapses between the pyramidal cells in the CA3 [3–12].
This autoassociative network operates in both the storage
and the recall modes. Storage capacity of the autoasso-
ciative network implies the number of distinct patterns
that can be stored and accurately recalled. Such stor-
age capacity could be increased if the input patterns into
the CA3 are sparse (containing few active elements in
each pattern) and orthogonalized (nonoverlapping: ac-
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tive elements in one pattern are unlikely to be active in
other patterns). This process of transforming a set of
input patterns into sparser and orthogonalized patterns
is called pattern separation [3–29].

Here, we are concerned about the DG which is the
gateway to the hippocampus. The excitatory granule
cells (GCs) in the DG receive excitatory inputs from the
entorhinal cortex (EC) via the perforant paths (PPs).
As a preprocessor for the CA3, the principal GCs per-
form pattern separation on the input patterns from the
EC by sparsifying and orthogonalizing them, and pro-
vide the pattern-separated outputs to the pyramidal cells
in the CA3 through the mossy fibers (MFs) [11–22].
Then, a new pattern may be stored in modified collat-
eral synapses between the pyramidal cells in the CA3. In
this way, pattern separation in the DG could facilitate
pattern storage in the CA3.

The whole GCs are grouped into the lamellar clusters
[30–33]. In each cluster, there exist one inhibitory bas-
ket cell (BC) and one inhibitory HIPP (hilar perforant
path-associated) cell, together with excitatory GCs. Dur-
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ing pattern separation, the GCs show sparse firing ac-
tivity via the winner-take-all competition [34–44]. Only
strongly active GCs survive under the feedback inhibitory
inputs from the BC and the HIPP cell. We note that,
sparsity (resulting from strong feedback inhibition) has
been considered to improve the pattern separation effi-
cacy [11–19, 21, 22].

One of the most distinctive characteristics of the DG
is occurrence of adult neurogenesis which results in the
generation of new GCs during adulthood. Altman’s pio-
neering studies in adult rat and cat brains for the adult
neurogenesis were done decades ago in the 1960s [45–47].
Since then, adult neurogenesis has been shown to be a
robust phenomenon, occurring in most mammals, mainly
in the subgranular zone of the DG and the subventricular
zone of the lateral ventricles [48–50]. The new GCs born
in the subgranular zone migrate into the granular layer of
the DG. The whole population of GCs is thus composed
of mature GCs (mGCs) born during the development and
adult-born immature GCs (imGCs). In contrast to the
mGCs, the young adult-born imGCs are known to have
marked properties such as high excitability, weak inhibi-
tion, and low excitatory innervation [51–55].

In this paper, we develop a spiking neural network for
the DG, including both mGCs and imGCs; the fraction
of the imGCs is 10 %. In our DG network, high ex-
citability of imGCs is considered, and approximately no
inhibition is provided to the imGCs. We first investigate
the effect of adult-born imGCs with high excitability on
pattern separation [51–54]. The imGCs show high acti-
vation due to lower firing threshold [i.e., their activation

degree D
(im)
a (= 45 %) becomes very high]. As a result,

in the subpopulation of the imGCs, output patterns be-
come highly overlapped (i.e, their Pearson’s correlation
coefficient is very high). Thus, instead of pattern sepa-
ration, pattern integration (i.e., making association be-
tween events) occurs due to strong pattern correlation.

On the other hand, the activation degree D
(m)
a (= 1.1 %)

of the mGCs becomes very low due to strong feedback in-
hibition from the inhibitory basket cells (BCs) and HIPP
(hilar perforant path-associated) cells (caused by high ac-
tivation of the imGCs). As a result of high sparsity, the
efficacy of pattern separation of the mGCs becomes very
high. In this way, the whole population of GCs is a het-
erogeneous one, consisting of a (major) subpopulation

of mGCs (pattern separators) with very low D
(m)
a and

a (minor) subpopulation of imGCs (pattern integrators)

with very high D
(im)
a . In the whole heterogeneous popu-

lation, the overall activation degree D
(w)
a of all the GCs

is 5.5 % [a little less than D
(out)
a (= 6 %) in the presence

of only mGCs without imGCs]. Although D
(w)
a is a little

reduced (i.e., sparser firing activity), no pattern separa-
tion occurs, due to heterogeneous sparsity, in contrast to
the usual intuitive thought that sparsity could improve
pattern separation efficacy.

Next, we consider the effect of low excitatory inner-
vation for the imGCs, counteracting the effect of high

excitability [55]. In the case of mGCs, they receive ex-
citatory inputs from the entorhinal cortex (EC) via per-
forant paths (PPs) and from the hilar mossy cells (MCs)
with the connection probability pc (= 20 %). On the
other hand, the imGCs receive low excitatory drive from
the EC via the PPs and from the MCs with lower connec-
tion probability pc (= 20 x %) (x : synaptic connectivity
fraction; 0 ≤ x ≤ 1).

With decreasing x from 1, D
(im)
a of the imGCs de-

creases so rapidly, and their effect becomes weaker.
Then, the feedback inhibition to the mGCs is also de-

creased, and hence D
(m)
a of the mGCs becomes increased.

Accordingly, D
(w)
a of the whole GCs also increases. In

the whole range of 0 ≤ x ≤ 1, the imGCs are good pat-
tern integrators with strong pattern correlation. On the
other hand, due to increase in D(m), the pattern separa-
tion efficacy of the mGCs decreases from the high value
for x = 1 to a limit value. In the whole population of all
the GCs, due to decreased effect of the imGCs, when x
decreases through a threshold, pattern separation starts,
and then the overall efficacy of pattern separation in-
creases and approaches that of the mGCs. In the limit
case of x = 0 where all imGCs are silent, the limit ef-
ficacy of pattern separation in the whole population is
lower than that in the presence of only mGCs (without

imGCs), mainly because D
(w)
a (= 7.3 %) is larger than

Da (= 6 %) in the absence of imGCs. In this way, due to
heterogeneity caused by the imGCs (performing pattern
integration), the overall efficacy of pattern separation in
the whole heterogeneous population of the GCs becomes
deteriorated.

This paper is organized as follows. In Sec. II, we de-
scribe a spiking neural network for the adult neurogenesis
in the hippocampal DG. Then, in the main Sec. III, we
investigate the effect of the adult-born imGCs on pattern
separation by varying x (synaptic connectivity fraction).
Finally, we give summary and discussion in Sec. IV.

II. SPIKING NEURAL NETWORK FOR THE
ADULT NEUROGENESIS IN THE DENTATE

GYRUS

In this section, we describe our spiking neural net-
work for the adult neurogenesis in the DG. Based on the
anatomical and the physiological properties described in
[16, 17, 21], we developed the DG spiking neural net-
works in the works for the winner-take-all competition
[44], the sparsely synchronized rhythm [56], and the pat-
tern separation [57]. Here, we first refine our prior spik-
ing neural networks to include more synaptic connections
with a high degree of anatomical and physiological real-
ism [58, 59], and then incorporate the young adult-born
imGCs to complete structure of our spiking neural net-
work for the adult neurogenesis.

Obviously, our spiking neural network will not capture
all the detailed anatomical and physiological complex-
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FIG. 1: Spiking neural network for the hippocampal dentate
gyrus (DG). (a) Schematic representation of of major cells
and synaptic connections in our DG network incorporating
adult-born immature GCs (imGCs). Fraction of the imGCs
is 10 % in the whole population of GCs. Note that there
are no inhibitory inputs into the imGCs, in contrast to the
case of mGCs. Here, BC, MC, HIPP, PP, GL, and ML repre-
sent the basket cell, the mossy cell, the hilar perforant path-
associated cell, perforant path, granular layer, and molecular
layer, respectively. (b) Box diagram for our DG network with
3 types of synaptic connections. Blue, red, and black lines
represent lamellar, cross-lamellar, and random connections,
respectively.

ity of the DG. But, with a limited number of essential
elements and synaptic connections in our DG network,
effect of the imGCs on the pattern separation could be
successfully studied. Hence, our spiking neural network
model would build a foundation upon which additional
complexity may be added and guide further research.

A. Architecture of The Spiking Neural Network of
The DG

Figure 1 shows (a) schematic representation of major
cells and synaptic connections in our DG network incor-
porating adult-born imGCs and (b) the box diagram for
the DG network with 3 types of lamellar (blue), cross-
lamellar (red), and random (black) synaptic connections.
In our DG network, the fraction of imGCs is 10 % in
the whole population of GCs, high excitability of the
imGCs is considered, there are no inhibitory inputs into
the imGCs, and their low excitatory innervation is also
taken into consideration [51–55].

In the DG, we consider the granular layer (GL), com-
posed of the excitatory mGCs and imGCs and the in-
hibitory BCs, and the underlying hilus, consisting of the
excitatory MCs and the inhibitory HIPP cells, whose ax-
ons project to the upper molecular layer (ML). We note
that there are two types of excitatory cells, GCs and
MCs, in contrast to the case of the CA3 and CA1 with
only one type of excitatory pyramidal cells.

From the outside of the DG, the EC provides the exter-
nal excitatory inputs randomly to the mGCs, the imGCs,
and the inhibitory BCs (with dendrites extending to the
outer ML) via PPs [16–19, 21]. Thus, both the mGCs
and the imGCs receive direct excitatory EC input via
PPs (EC → mGC and imGCs) through random connec-
tions in Fig. 1(b). The connection probability pc for EC
→ mGC and BC is 20 %, while pc for EC → imGC is
decreased to 20 x % [x (synaptic connectivity fraction);
0 ≤ x ≤ 1] due to low excitatory innervation. Moreover,
only the mGCs receive indirect feedforward inhibitory
input, mediated by the BCs (EC → BC → mGC).

In the GL, the whole GCs (i.e., both the mGCs and
the imGCs) are grouped into lamellar clusters [30–33],
and one inhibitory BC exists in each cluster. Here, the
BC (receiving excitation from the whole GCs in the same
cluster) provides the feedback inhibition to only all the
mGCs via lamellar connections in Fig. 1(b); a primary
mGC-BC feedback loop is formed. Thus, in each cluster
the BC provides both the feedforward and the feedback
inhibition to all the mGCs in the same cluster.

In the hilus, we also consider lamellar organization for
the MCs and HIPP cells [17–19, 60] (i.e., all the MCs and
the HIPP cells in the hilus also are grouped into lamellar
clusters). As in the case of BC, the HIPP cell receives
excitation from the whole GCs in the same cluster, and
projects the feedback inhibition to all the mGCs in the
same cluster through lamellar connections; a secondary
mGC-HIPP feedback loop is formed. Thus, there appear
two kinds of feedback loops of mGC-BC and mGC-HIPP.

In our DG network, the MCs play the role of “con-
troller” for the activities of the two feedback loops of
mGC-BC and mGC-HIPP. Each MC in a cluster receives
excitation from the whole GCs in the same cluster (lamel-
lar connection), while it makes excitatory projection ran-
domly to the mGCs and the imGCs in other clusters via
cross-lamellar connections [60]. The connection proba-
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bility pc for MC → mGC is 20 %, while pc for MC →
imGC is decreased to 20 x % (0 ≤ x ≤ 1) because of
low excitatory innervation. Thus, the GC-MC driving
loop for determining the activities of the controller MCs
is formed.

The MCs control the activities of the feedback loops
of mGC-BC and mGC-HIPP. Each MC in a cluster re-
ceives inhibition from the BC and the HIPP cell in the
same cluster (lamellar connection). Then, the MCs in
the cluster project excitation to the BCs in other clus-
ters through cross-lamellar connections (the connection
probability pc for MC → BC is 20 %) [60], while they
provide excitation to the HIPP cell in the same cluster
(lamellar connection). Thus, two “control” loops of MC-
BC and MC-HIPP, controlling the activities of the two
feedback loops of mGC-BC and mGC-HIPP, are formed.
Finally, the HIPP cell disinhibits the BC in the same
cluster (lamellar connection for HIPP → BC); there are
no reverse synaptic connections for HIPP→ BC [58, 59].
Thus, the activity of the BC in a cluster is controlled
through excitation from the MCs in other clusters (cross-
lamellar connections) and inhibition from the HIPP cell
in the same cluster (lamellar connection).

The mGCs in a cluster exhibit sparse firing activity via
the winner-take-all competition [34–44]. Only strongly
active mGCs may survive under the feedback inhibition
from the BC and the HIPP cell in the same cluster. Here,
the activities of the BC and the HIPP cell are controlled
by the controller MCs; in the case of BC, the HIPP cell
also disinhibits it. On the other hand, the imGCs receive
no inhibition. Particularly, due to their low firing thresh-
old, they become highly active, in contrast to the case of
mGCs [51–54]. However, when considering their low ex-
citatory innervation from the EC cells and the MCs, their
firing activity is reduced [55].

Based on the anatomical information given in [16–
19, 21], we choose the numbers of the GCs, BCs, MCs,
and HIPP cells in the DG and the EC cells. As in our
prior works [44, 56, 57], we develop a scaled-down spik-
ing neural network where the total number of excitatory
GCs (NGC) is 2,000, corresponding to 1

500 of the 106 GCs
found in rats [61]. The fraction of imGCs in the whole
population of the GCs is 10 %, and hence the number
of the imGCs (mGCs) is 200 (1800). The whole GCs
(i.e., mGCs and imGCs) are grouped into the Nc (= 20)
lamellar clusters [30–33]. Then, in each cluster, there

are n
(c)
GC (= 100) GCs (i.e., 90 mGC and 10 imGCs) and

one inhibitory BC [17–19]. As a result, the number of
the BCs (NBC) in the whole DG network becomes 20,
corresponding to 1/100 of NGC [59, 62–66].

The EC layer II projects the excitatory inputs to the
mGCs, the imGCs, and the BCs via the PPs through
random connections [16–19, 21]. The estimated num-
ber of the EC layer II cells (NEC) is about 200,000 in
rats, which corresponds to 20 EC cells per 100 GCs [67].
Hence, we choose NEC = 400 in our DG network. Also,
the activation degree of the EC cells is chosen as 10% [68].
Thus, we randomly choose 40 active ones among the 400

EC cells. Each active EC cell is modeled in terms of the
Poisson spike train with frequency of 40 Hz [69].

Next, we consider the hilus, composed of the excita-
tory MCs and the inhibitory HIPP cells [60, 70–75]. In
rats, the number of MCs (NMC) is known to change from
30,000 to 50,000, and the estimated number of HIPP cells
(NHIPP) is about 12,000 [76]. In our scaled-down DG
network, we choose NMC = 60 and NHIPP = 20. All the
MCs and the HIPP cells are also grouped into the 20
lamellar clusters, as in the case of the GCs and the BCs.

Hence, in each cluster, there are n
(c)
MC (= 3) MCs and one

HIPP cell [17–19].
With the above information on the numbers of the rel-

evant cells and the synaptic connections between them,
we develop a one-dimensional ring network for the adult
neurogenesis in the DG, as in our prior works [44, 56, 57];
e.g., refer to Figs. 1(b1)-1(b3) in [57] for the schematic
diagrams of the ring networks. Due to the ring structure,
our spiking neural network has advantage for computa-
tional efficiency, and its visual representation may also
be easily made.

B. Single Neuron Models and Synaptic Currents in
The DG Spiking Neural Network

As elements of our DG spiking neural network for the
adult neurogenesis, we choose leaky integrate-and-fire
(LIF) neuron models with additional afterhyperpolariza-
tion (AHP) currents which determines refractory periods,
as in our prior DG networks [44, 56, 57]. This LIF neuron
model is one of the simplest spiking neuron models [77].
Due to its simplicity, it may be easily analyzed and sim-
ulated. It has thus been very popularly used as a spiking
neuron model.

The governing equations for evolutions of dynamical
states of individual cells in the X population are as fol-
lows:

CX
dv

(X)
i (t)

dt
= −I(X)

L,i (t)− I(X)
AHP,i(t) + I

(X)
ext − I

(X)
syn,i(t),

i = 1, · · · , NX , (1)

where NX is the total number of cells in the X popu-
lation, X = mGC, imGC, and BC in the granular layer
and X = MC and HIPP in the hilus. In Eq. (1), CX
(pF) represents the membrane capacitance of the cells in
the X population, and the dynamical state of the ith cell
in the X population at a time t (msec) is characterized

by its membrane potential v
(X)
i (t) (mV). We note that

the time-evolution of v
(X)
i (t) is governed by 4 types of

currents (pA) into the ith cell in the X population; the

leakage current I
(X)
L,i (t), the AHP current I

(X)
AHP,i(t), the

external constant current I
(X)
ext (independent of i), and

the synaptic current I
(X)
syn,i(t).

The equation for a single LIF neuron model (without
the AHP current and the synaptic current) describes a
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simple parallel resistor-capacitor (RC) circuit. In this
case, the 1st type of leakage current is due to the resistor
and the integration of the external current is due to the
capacitor which is in parallel to the resistor. When its
membrane potential reaches a threshold, a neuron fires
a spike, and then the 2nd type of AHP current follows.
As the decay time of the AHP current is increased, the
refractory period becomes longer. Here, we consider a
subthreshold case where the 3rd type of external constant

current is zero (i.e., I
(X)
ext = 0) [21].

The 1st type of leakage current I
(X)
L,i (t) for the ith cell

in the X population is given by:

I
(X)
L,i (t) = g

(X)
L (v

(X)
i (t)− V (X)

L ), (2)

where g
(X)
L and V

(X)
L denote conductance (nS) and re-

versal potential for the leakage current, respectively. The

ith cell fires a spike when its membrane potential v
(X)
i

reaches a threshold v
(X)
th at a time t

(X)
f,i . Then, the 2nd

type of AHP current I
(X)
AHP,i(t) follows after spiking (i.e.,

t ≥ t(X)
f,i ), :

I
(X)
AHP,i(t) = g

(X)
AHP (t) (v

(X)
i (t)− V (X)

AHP ) for t ≥ t(X)
f,i .

(3)

Here, V
(X)
AHP represents the reversal potential for the AHP

current, and the conductance g
(X)
AHP (t) is given by an

exponential-decay function:

g
(X)
AHP (t) = ḡ

(X)
AHP e−(t−t

(X)
f,i )/τ

(X)
AHP , (4)

where ḡ
(X)
AHP and τ

(X)
AHP denote the maximum conductance

and the decay time constant for the AHP current, re-

spectively. With increasing τ
(X)
AHP , the refractory period

becomes longer.
The parameter values of the capacitance CX , the leak-

age current I
(X)
L (t), and the AHP current I

(X)
AHP (t) are

the same as those in our prior DG networks [44, 56, 57],
and refer to Table 1 in [44]. These parameter values are
based on physiological properties of the GC, BC, MC,
and HIPP cell [21, 72].

We note that, the GC in Table 1 in [44] corresponds to
the mGC. The imGCs also have the same parameter val-
ues as those of the mGC, except for the leakage reversal
potential VL. The mGC with VL = −75 mV exhibits a
spiking transition when passing a threshold I∗ = 80 mV.
Here, we consider a case that the imGC has an increased
leakage reversal potential of VL = −72 mV, which could
lead to intrinsic high excitability. Then, it shows a firing
transition when passing I∗ = 69.7 pA. In this way, the
imGC may have a lower firing threshold [51–54], which
is well shown in Fig. 2 for the f − I (i.e., firing rate-
current) curves of the mGC (red curve) and the imGC
(blue curve).

Next, we consider the 4th type of synaptic current

I
(X)
syn,i(t) into the ith cell in the X population, composed

50 100 150 200
0

20

40
 imGC;  mGC

f(
H
z)

I (pA)

FIG. 2: Firing transitions of mature GCs (mGCs) and adult-
born immature GCs (imGCs). f − I (f : firing rate and I :
current) curve for the mature GC (mGC) (red line) and the
imGC (blue line).

of the following 3 types of synaptic currents:

I
(X)
syn,i(t) = I

(X,Y )
AMPA,i(t) + I

(X,Y )
NMDA,i(t) + I

(X,Z)
GABA,i(t). (5)

Here, I
(X,Y )
AMPA,i(t) and I

(X,Y )
NMDA,i(t) are the exci-

tatory AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) receptor-mediated and NMDA
(N -methyl-D-aspartate) receptor-mediated currents
from the presynaptic source Y population to the
postsynaptic ith neuron in the target X population,

respectively. In contrast, I
(X,Z)
GABA,i(t) is the inhibitory

GABAA (γ-aminobutyric acid type A) receptor-mediated
current from the presynaptic source Z population to the
postsynaptic ith neuron in the target X population.

Like the case of the AHP current, the R (= AMPA,
NMDA, or GABA) receptor-mediated synaptic current

I
(T,S)
R,i (t) from the presynaptic source S population to the
ith postsynaptic cell in the target T population is given
by:

I
(T,S)
R,i (t) = g

(T,S)
R,i (t) (v

(T )
i (t)− V (S)

R ). (6)

Here, g
(T,S)
(R,i) (t) and V

(S)
R represent synaptic conductance

and synaptic reversal potential (determined by the type
of the presynaptic source S population), respectively.

In the case of the R (=AMPA and GABA)-mediated
synaptic currents, we get the synaptic conductance

g
(T,S)
R,i (t) from:

g
(T,S)
R,i (t) = K

(T,S)
R

NS∑
j=1

w
(T,S)
ij s

(T,S)
j (t), (7)

where K
(T,S)
R is the synaptic strength per synapse for the

R-mediated synaptic current from the jth presynaptic
neuron in the source S population to the ith postsynap-
tic cell in the target T population. The inter-population
synaptic connection from the source S population (with
Ns cells) to the target T population is given by the

connection weight matrix W (T,S) (= {w(T,S)
ij }) where

w
(T,S)
ij = 1 if the jth cell in the source S population
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TABLE I: Parameters for the synaptic currents I
(GC,S)
R (t) into the GCs (granule cells). The whole population of the GCs is

composed of a major subpopulation of mGCs (mature GCs) and a minor subpopulation of imGCs (immature GCs). Both the
mGCs and the imGCs receive the excitatory inputs from the EC (entorhinal cortex) cells and the hilar MCs (mossy cells);
synaptic parameters for the excitatory inputs are valid for both the mGCs and the imGCs. In addition, the mGCs receive the
feedforward and feedback inhibitory inputs from the BCs (basket cells) and the feedback inhibitory input from the HIPP (hilar
perforant-associated) cells, while there are no inhibitory inputs into the imGCs.

Target Cells (T ) GC

Source Cells (S) EC BC HIPP MC

Receptor (R) AMPA NMDA GABA GABA AMPA NMDA

K
(T,S)
R 0.89 0.15 15.0 3.0 0.07 0.01

τ
(T,S)
R,r 0.1 0.33 0.9 0.5 0.1 0.33

τ
(T,S)
R,d 2.5 50.0 6.8 6.0 2.5 50.0

τ
(T,S)
R,l 3.0 3.0 0.85 1.6 3.0 3.0

V
(S)
R 0.0 0.0 -86.0 -86.0 0.0 0.0

TABLE II: Parameters for the synaptic currents I
(BC,S)
R (t) into the BCs (basket cells). The BCs receive the excitatory inputs

from the EC (entorhinal cortex) cells, the GCs (granulce cells; both mGCs and imGCs) and the MCs (mossy cells) and the
inhibitory input from the HIPP (hilar perforant-associated) cells

Target Cells (T ) BC

Source Cells (S) EC GC MC HIPP

Receptor (R) AMPA NMDA AMPA NMDA AMPA NMDA GABA

K
(T,S)
R 0.75 0.13 0.38 0.02 6.14 0.36 9.22

τ
(T,S)
R,r 2.0 6.6 2.5 10.0 2.5 10.0 0.4

τ
(T,S)
R,d 6.3 126.0 3.5 130.0 3.5 130.0 5.8

τ
(T,S)
R,l 3.0 3.0 0.8 0.8 3.0 3.0 1.6

V
(S)
R 0.0 0.0 0 0 0.0 0.0 -86.0

is presynaptic to the ith cell in the target T population;

otherwise w
(T,S)
ij = 0. The fraction of open ion channels

at time t is also represented by s(T,S)(t).
In contrast, in the NMDA-receptor case, some of the

postsynaptic NMDA channels are blocked by the positive
magnesium ion Mg2+ [78]. Hence, the conductance in the
case of NMDA receptor is given by [21]:

g
(T,S)
R,i (t) = K̃

(T,S)
R f(v(T )(t))

NS∑
j=1

w
(T,S)
ij s

(T,S)
j (t). (8)

Here, K̃
(T,S)
R is the synaptic strength per synapse, and

the fraction of NMDA channels that are not blocked by
the Mg2+ ion is given by a sigmoidal function f(v(T )(t)):

f(v(T )(t)) =
1

1 + η · [Mg2+]o · exp(−γ · v(T )(t))
. (9)

Here, v(T )(t) is the membrane potential of the target cell,
[Mg2+]o is the outer Mg2+ concentration, η denotes the
sensitivity of Mg2+ unblock, γ represents the steepness of
Mg2+ unblock, and the values of parameters change de-
pending on the target cell [21]. For simplicity, some ap-
proximation to replace f(v(T )(t)) with 〈f(v(T )(t))〉 [i.e.,
time-averaged value of f(v(T )(t)) in the range of v(T )(t)

of the target cell] has been done in [56]. Then, an effective

synaptic strengthK
(T,S)
NMDA(= K̃

(T,S)
NMDA〈f(v(T )(t))〉) was in-

troduced by absorbing 〈f(v(T )(t))〉 into K
(T,S)
NMDA. Thus,

with the scaled-down effective synaptic strength K
(T,S)
NMDA

(containing the blockage effect of the Mg2+ ion), the con-
ductance g for the NMDA receptor may also be well ap-
proximated in the same form of conductance as the other
AMPA and GABA receptors in Eq. (7). Thus, we get all

the effective synaptic strengths K
(T,S)
NMDA from the synap-

tic strengths K̃
(T,S)
NMDA in [21] by considering the average

blockage effect of the Mg2+ ion. Consequently, we can
use the same form of synaptic conductance of Eq. (7) in
all the cases of R = AMPA, NMDA, and GABA.

The postsynaptic ion channels are opened through
binding of neurotransmitters (emitted from the source
S population) to receptors in the target T population.
The fraction of open ion channels at time t is represented

by s(T,S)(t). The time course of s
(T,S)
j (t) of the jth cell

in the source S population is given by a sum of double

exponential functions E
(T,S)
R (t− t(j)f − τ

(T,S)
R,l ):

s
(T,S)
j (t) =

F
(s)
j∑
f=1

E
(T,S)
R (t− t(j)f − τ

(T,S)
R,l ). (10)
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TABLE III: Parameters for the synaptic currents I
(T,S)
R (t) into the MCs (mossy cells) and the HIPP (hilar perforant-associated)

cells. The MCs receive the excitatory inputs from the GCs (granule cells; both mGCs and imGCs) and the inhibitory inputs
from the BCs (basket cells) and the HIPP (hilar perforant-associated) cells. The HIPP cells receive the excitatory inputs from
the GCs (both mGCs and imGCs) and the MCs.

Target Cells (T ) MC HIPP cell

Source Cells (S) GC BC HIPP cell GC MC

Receptor (R) AMPA NMDA GABA GABA AMPA NMDA AMPA NMDA

K
(T,S)
R 9.58 1.71 3.08 2.05 0.08 0.004 4.09 0.25

τ
(T,S)
R,r 0.5 4.0 0.3 0.5 0.3 1.2 0.9 3.6

τ
(T,S)
R,d 6.2 100.0 3.3 6.0 0.6 22.2 3.6 133.7

τ
(T,S)
R,l 1.5 1.5 1.5 1.0 1.5 1.5 3.0 3.0

V
(S)
R 0.0 0.0 -86.0 -86.0 0.0 0.0 0.0 0.0

Here, t
(j)
f and F

(s)
j are the fth spike time and the total

number of spikes of the jth cell in the source S popula-

tion, respectively, and τ
(T,S)
R,l is the synaptic latency time

constant for R-mediated synaptic current. The double

exponential-decay function E
(T,S)
R (t) (corresponding to

contribution of a presynaptic spike occurring at t = 0 in
the absence of synaptic latency) is given by:

E
(T,S)
R (t) =

1

τ
(T,S)
R,d − τ (T,S)R,r

(
e−t/τ

(T,S)
R,d − e−t/τ

(T,S)
R,r

)
·Θ(t).

(11)
Here, Θ(t) is the Heaviside step function: Θ(t) = 1 for

t ≥ 0 and 0 for t < 0, and τ
(T,S)
R,r and τ

(T,S)
R,d are synap-

tic rising and decay time constants of the R-mediated
synaptic current, respectively.

In comparison with our prior DG networks [44, 56, 57],
we include more synaptic connections with a high degree
of anatomical and physiological realism [58, 59], and in-
corporate the imGCs. Thus, a new feedforward inhibi-
tion, mediated by the BCs, is provided to the mGCs, and
there appear two feedback loops of mGC-BC and mGC-
HIPP, (projecting feedback inhibition to the mGCs), the
activities of which are controlled by the two control loops
of MC-BC and MC-HIPP (MCs: controllers).

Finally, we present the parameter values for the synap-

tic strength per synapse K
(T,S)
R , the synaptic rising time

constant τ
(T,S)
R,r , synaptic decay time constant τ

(T,S)
R,d ,

synaptic latency time constant τ
(T,S)
R,l , and the synaptic

reversal potential V
(S)
R for the synaptic currents into the

GCs (i.e., both mGCs and imGCs) and the BCs in the
GL, in Tables I and II, respectively, and for the synaptic
currents into the MCs and the HIPP cells in Table III.
These parameter values are also based on the physiolog-
ical properties of the relevant cells [21, 58, 59, 79–86].

All of our source codes for computational works were
written in C programming language. Numerical integra-
tion of the governing equation for the time-evolution of
states of individual spiking neurons is done by employing
the 2nd-order Runge-Kutta method with the time step
0.1 msec.

III. EFFECT OF IMMATURE GRANULE
CELLS BORN VIA ADULT NEUROGENESIS ON

PATTERN SEPARATION

In this section, we study the effect of adult-born imGCs
on pattern separation in our spiking neural network, de-
veloped in Sec. II. Due to high excitability, the imGCs
become very active, while because of low excitatory in-
nervation, their activation degree is decreased. We inves-
tigate the effects of the two competing properties of the
imGCs on the activation degrees and the pattern sepa-
ration efficacy of the imGCs, the mGCs, and the whole
GCs.

A. Characterization of Pattern Separation in The
Presence of Only The mGCs without The imGCs

In this subsection, we first consider the case of pres-
ence of only the mGCs (without the imGCs) to present
the methods characterizing the pattern separation. As
explained in the subsection II A, the EC provides exter-
nal excitatory inputs to the mGCs via PPs [see Fig. 1(a)]
[16–19, 21, 44, 56]. We characterize pattern separation
between the input patterns of the EC cells and the out-
put patterns of the mGCs via integration of the governing
equations (1). In each realization, we have a break stage
(0 − 300 msec) (for which the network reaches a stable
state), and then a stimulus stage (300− 1, 300 msec) fol-
lows; the stimulus period Ts (for which network analysis
is done) is 1,000 msec. During the stimulus stage, we
get the output firings of the mGCs. For characterization
of pattern separation between the input and the output
patterns, 30 realizations are made.

The input patterns of the 400 EC cells and the output
patterns of the 2,000 mGCs are given in terms of binary
representations [16, 21]; active and silent cells are de-
noted by 1 and 0, respectively. Here, active cells exhibit
at least one spike during the stimulus stage. In each real-
ization, we first make a random choice of an input pattern
A(in) for the EC cells, and then construct another input

patterns B
(in)
i (i = 1, . . . , 9) from the base input pattern
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A(in) with the overlap percentage POL = 90 %, . . . , and
10 %, respectively, as follows [16, 21]. Among the active
EC cells in the pattern A(in), we randomly choose active
cells for the pattern B(in) with the probability POL %
(e.g., in the case of POL = 60 %, we randomly choose
24 active EC cells among the 40 active EC cells in the
base pattern A(in)). The remaining active EC cells in
the pattern B(in) are randomly chosen in the subgroup
of silent EC cells in the pattern A(in).

We characterize pattern separation between the input
and the output patterns by changing the overlap per-
centage POL. For a pair of input (l = in) or output
(l = out) patterns, A(l) and B(l), their pattern distance

D
(l)
p is given by [21, 57]:

D(l)
p =

O(l)

D
(l)
a

. (12)

Here, D
(l)
a is the average activation degree of the two

patterns A(l) and B(l):

D(l)
a =

(D
(A(l))
a +D

(B(l))
a )

2
, (13)

and O(l) is the orthogonalization degree between A(l) and
B(l), denoting their “dissimilarity” degree. Then, as the
average activation degree is lower and the orthogonaliza-
tion degree is higher, the pattern distance between the
two patterns A(l) and B(l) increases.

Let {a(l)i } and {b(l)i } (i = 1, . . . , Nl) be the binary
representations [1 (0) for the active (silent) cell] of the
two patterns A(l) and B(l) (l = in or out), respectively;
Nin = NEC = 400 and Nout = NGC = 2, 000. Then,
the Pearson’s correlation coefficient ρ(l) between the two
patterns A(l) and B(l) is given by

ρ(l) =

∑Nl

i=1 ∆a
(l)
i ·∆b

(l)
i√∑Nl

i=1 ∆a
(l)
i

2
√∑Nl

i=1 ∆b
(l)
i

2
. (14)

Here, ∆a
(l)
i = a

(l)
i − 〈a

(l)
i 〉, ∆b

(l)
i = b

(l)
i − 〈b

(l)
i 〉, and 〈· · · 〉

represents population average over all cells; the range of
ρ(l) is [-1, 1]. Then, the pattern correlation degree C(l),
representing the “similarity” degree between the two pat-
terns, is given just by their Pearson’s correlation coeffi-
cient ρ(l):

C(l) = ρ(l). (15)

Then, the orthogonalization degree O(l), denoting the
dissimilarity degree between the two patterns, is given
by [57]:

O(l) =
(1− ρ(l))

2
, (16)

where the range of O(l) is [0, 1].

With D
(l)
a and O(l), we can obtain the pattern dis-

tances of Eq. (12), D
(in)
p and D

(out)
p , for the input and
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FIG. 3: Characterization of pattern separation between the
input and the output patterns in the presence of only the
mGCs without imGCs. (a1) Raster plots of spikes of ECs for

the input patterns A(in) and B(in) in the case of overlap per-
centage POL = 60%. (a2) Raster plots of spikes of GCs for

the output patterns A(out) and B(out). (b) Plots of average

activation degree D
(l)
a versus POL for the input (l = in; red

circle) and the output (l = out, blue cross) patterns. Plots of
the diagonal elements (0, 0) and (1, 1) and the anti-diagonal
elements (1, 0) and (0, 1) for the spiking activity (1: active;
0: silent) in the pair of (c1) input (l = in) and (c2) output

(l = out) patterns A(l) and B(l) for POL = 60%; sizes of solid
circles, located at (0,0), (1,1), (1,0), and (0,1), are given by the
integer obtained by rounding off the number of 5 log10(np)
(np: number of data at each location), and a dashed linear
least-squares fitted line is also given. Plots of (d) average

pattern correlation degree C(l), (e) average orthogonalization

degree O(l), (f) pattern distance D
(l)
p , and (g) pattern sepa-

ration degrees Sd versus POL in the case of the input (l = in;
red circle) and the output (l = out, blue cross) patterns.

the output pattern pairs, respectively. Then, the pattern
separation degree Sd, representing the pattern separation

efficacy, is given by the ratio of D
(out)
p to D

(in)
p :

Sd =
D

(out)
p

D
(in)
p

. (17)

If Sd > 1, the output pattern pair of the mGCs is more
dissimilar than the input pattern pair of the EC cells,
which results in occurrence of pattern separation. Other-
wise (i.e., Sd < 1), no pattern separation occurs; instead,
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pattern “convergence” (i.e., D
(out)
p < D

(in)
p ) takes place.

As a sample example, we consider the case of POL =
60 %. Figure 3(a1) shows the raster plots of spikes of
400 EC cells (i.e. a collection of spike trains of individ-
ual EC cells) for the input patterns A(in) and B(in) for

POL = 60 %. In this case, the activation degree D
(in)
a

is chosen as 10 %, independently of the input patterns.
Figure 3(a2) shows the raster plots of spikes of 2,000
mGCs for the output patterns A(out) and B(out). As
shown well in the raster plots of spikes, the mGCs show
sparser firings than the EC cells. In this case, the aver-

age activation degree of Eq. (13), D
(out)
a , is 6 % (which is

obtained via 30 realizations). Figure 3(b) shows the plot

of the average activation degree D
(l)
a versus the overlap

percentage POL; red circles represent the case of input
patterns (l = in) and blue crosses denote the case of out-

put patterns (l = out). We note that D
(out)
a = 0.06 (i.e.,

6 %), independently of POL. Then, the sparsity ratio,

Rs (= D
(in)
a /D

(out)
a ), becomes 1.667; the firing activity

in the output patterns are 1.667 times as sparse as that
in the the input patterns.

Figures 3(c1) and (c2) show plots of the diagonal el-
ements (0, 0) and (1, 1) and the anti-diagonal elements
(1, 0) and (0, 1) for the spiking activity (1: active; 0:
silent) in the pair of input (l = in) and output (l = out)
patterns A(l) and B(l) for POL = 60%, respectively. In
each plot, the sizes of solid circles, located at (0,0), (1,1),
(1,0), and (0,1), are given by the integer obtained by
rounding off the number of 5 log10(np) (np: number of
data at each location), and a dashed fitted line is also
given. In this case, the Pearson’s correlation coefficients
of Eq. (14) (obtained via 30 realizations) for the pairs of
the input and the output patterns are ρ(in) = 0.5556 and
ρ(out) = 0.3550, which correspond to the slopes of the
dashed fitted lines. Then, from Eqs. (15) and (16), we
obtain the average pattern correlation degree C(l) and
the average orthogonalization degrees O(l) for the pairs
of the input and the output patterns; C(in) = 0.5556,
C(out) = 0.3550, O(in) = 0.2222 and O(out) = 0.3225.

Figures 3(d) and 3(e) show plots of the average pattern
correlation degree C(l) and the average orthogonalization
degree O(l) versus POL in the case of the input (red cir-
cle) and the output (blue cross) patterns, respectively.
Obviously, C(l) and O(l) show oppositely-changing ten-
dencies. Hence, it is enough to discuss only the change
in O(l). In the case of the pairs of the input patterns,
with decreasing POL from 90 % to 10 %, O(in) increases
linearly from 0.0556 to 0.5. On the other hand, in the
case of the pairs of the output patterns, O(out) begins
from a much larger value (0.2543), but slowly increases
to 0.3507 for POL = 10 % (which is lower than O(in)).
Thus, the two lines of O(in) and O(out) cross for POL ' 40
%. Hence, for POL > 40 %, O(out) is larger than O(in)

(i.e., the pair of output patterns is more dissimilar than
the pair of input patterns). In contrast, for POL < 40 %,
O(out) is less than O(in) (i.e., the pair of output patterns
becomes less dissimilar than the pair of input patterns).

With the average activation degrees D
(l)
a and the av-

erage orthogonalization degrees O(l), we can obtain the

pattern distances D
(l)
p of Eq. (12) for the pairs of input

and output patterns. Figure 3(f) shows plots of the pat-

tern distance D
(l)
p versus POL in the case of the input

(red circle) and the output (blue cross) patterns. We

note that, for all values of POL, D
(out)
p > D

(in)
p (i.e., the

pattern distance for the pair of output patterns is larger
than that for the pair of input patterns). However, with
decreasing the overlap percentage POL, the difference be-

tween D
(out)
p and D

(in)
p is found to decrease.

Finally, we obtain the pattern separation degree Sd of

Eq. (17) via the ratio of D
(out)
p to D

(in)
p . Figure 3(g)

shows plots of the pattern separation degree Sd (repre-
senting the pattern separation efficacy) versus POL. As
POL is decreased from 90 % to 10 %, Sd is found to de-
crease from 7.6273 to 1.1691. Hence, for all values of POL,
pattern separation occurs because Sd > 1. However, the
smaller POL is, the lower Sd becomes.

B. Effect of The Adult-Born imGCs on Pattern
Separation

In this subsection, we consider a population, composed
of imGCs and mGCs; the fraction of the imGCs in the
whole population is 10 %. As shown in Fig. 2, as a re-
sult of increased leakage reversal potential VL, the imGC
has lower firing threshold than the mGC (i.e., high ex-
citability), which results in high activation of the imGCs
[51–54]. We also note that, the imGC has low excita-
tory innervation, counteracting the high excitability. In
the case of the mGCs, the connection probability pc from
the EC cells and the MCs to the mGCs is 20 %, while
in the case of the imGCs, pc is decreased to 20 x % [x
(synaptic connectivity fraction); 0 ≤ x ≤ 1]. Due to
low excitatory drive from the EC cells and the MCs, the
activation degree of the imGCs becomes reduced. With
decreasing x from 1 to 0, we investigate the effect of high
excitability and low excitatory innervation of the imGCs
on the pattern separation efficacy.

For a given x, we consider 9 pairs of input patterns

(A(in), B
(in)
i ) (i = 1, . . . , 9) with the overlap percentage

POL = 90 %, . . . , and 10 %, respectively. All quanti-
ties for the input patterns are independent of x. The

activation degree D
(in)
a is 0.1 (10 %), independently of

the pairs. Next, we get the average Pearson’s corre-
lation coefficient ρ(in) between the two input patterns
in the following way. We first obtain the realization-
averaged Pearson’s correlation coefficients {〈ρ(in)(i)〉r}
(i = 1, . . . , 9 corresponds to POL = 90 %, . . . , 10 %, re-
spectively) via 30 realizations; 〈· · · 〉r represents the av-
erage over 30 realizations. With decreasing POL from
90 % to 10 %, 〈ρ(in)(i)〉r decreases from 0.8889 to 0.0,
respectively. As a representative value, we get the av-
erage Pearson’s correlation coefficient ρ(in) (= 0.4444),
corresponding to the mean of {〈ρ(in)(i)〉r} over all the 9
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FIG. 4: Effect of adult-born immature GCs (imGCs) on the
pattern separation. (a) Plots of the average activation degree

D
(X)
a versus x (synaptic connectivity fraction). For clear pre-

sentation, we choose two different scales for the vertical axis

around D
(X)
a = 10. (b) Plots of the average pattern correla-

tion degree C(X) versus x. (c) Plots of the average orthog-

onalization degree O(X) versus x. (d) Plots of the pattern

distance D
(X)
p versus x. For clear presentation, we choose

two different scales for the vertical axis around D
(X)
p = 5.

(e) Plots of the pattern separation degree S(X)
d versus x. For

clear presentation, we choose two different scales for the ver-

tical axis around S(X)
d = 2. In (a)-(e), imGCs (X = im),

mGCs (X = m), and whole GCs (X = w) are denoted by blue
solid circles, red open circles, and green crosses, respectively.

Horizontal dashed lines in (a)-(e) represent D
(out)
a (= 6 %),

C(out) (= 0.3582), O(out) (= 0.3209), D
(out)
p (= 5.3483), and

Sd (=1.9252) in the presence of only mGCs (without imGCs),
respectively. (f) Plots of the pattern integration degree Id of
the imGCs versus x.

pairs. Then, from Eqs. (15) and (16), we get the average
pattern correlation degree C(in) (= 0.4444) and the av-
erage orthogonalization degree O(in) (= 0.2778). In this
way, ρ(in), C(in), and O(in) are obtained via double av-
eraging (i.e., averaging over 30 realizations and 9 pairs).

Then, the pattern distance D
(in)
p of Eq. (12) between the

two input patterns (given by the ratio of the average or-
thogonalization degree to the average activation degree)
becomes 2.778.

As in the above case of input patterns, through double
averaging over 30 realizations and 9 pairs, we get the av-

erage activation degrees D
(X)
a , the average Pearson’s cor-

relation coefficient ρ(X), the average pattern correlation
degree C(X), and the average orthogonalization degrees
O(X) in each subpopulation of the imGCs (X = im)
and the mGCs (X = m) and in the whole population

(X = w). Figures 4(a), 4(b), and 4(c) show plots ofD
(X)
a ,

C(X), and O(X) versus x [X = im (blue solid circles),
X = m (red open circles), and X = w (green crosses)],

respectively. Then, we get the pattern distances D
(X)
p of

Eq. (12) (given by the ratio of O(X) to D
(X)
a ), which is

shown in Fig. 4(d). Finally, we obtain the pattern sep-

aration degree S(X)
d of Eq. (17) via the ratio of D

(X)
p to

D
(in)
p . Figure 4(e) shows plots of S(X)

d versus x. As ref-

erence lines, horizontal dashed lines, representing D
(out)
a

(= 6 %), C(out) (= 0.3582), O(out) (= 0.3209), D
(out)
p (=

5.3483), and Sd (=1.9252) in the presence of only the
mGC (without the imGCs) are given in Figs. 4(a)-4(e),
respectively; these values are obtained via averaging over
9 pairs in Fig. 3.

We first consider the case of x = 1 (where the connec-
tion probability pc from the EC cells and the MCs to the
imGCs and the mGCs are the same, 20 %), and discuss
the effect of adult-born imGCs with high excitability on
pattern separation [51–54]. The imGCs exhibit high ac-
tivation due to lower firing threshold [i.e., their average

activation degree D
(im)
a (= 45 %) becomes very high].

As a result, in the subpopulation of the imGCs, out-
put patterns become highly overlapped (i.e, their aver-
age Pearson’s correlation coefficient is very high), which
leads to very high average pattern correlation degree
C(im) (= 0.8692) and very low average orthogonalization
degree O(im) (= 0.0654). Then, their pattern distance

D
(im)
p (= 0.145), given by the ratio of O(im) to D

(im)
a ,

also becomes very low. Consequently, the pattern sepa-

ration degree S(im)
d , given by the ratio of D

(im)
p to D

(in)
p ,

is 0.052. Since S(im)
d < 1, no pattern separation occurs,

due to their high excitability. On the other hand, the
efficacy of pattern integration (i.e., making association
between events) is very high due to high pattern correla-
tion degree C(im). We introduce the pattern integration
degree Id of the imGCs, given by the ratio of the average
pattern correlation degree C(im) to the average pattern
correlation degree C(in) for the input patterns:

Id =
C(im)

C(in)
, (18)

which is in contrast to the pattern separation degree Sd
of Eq. (17). For x = 1 the pattern integration degree of
the imGCs is high (i.e., Id = 1.9559). Figure 4(f) shows
plots of Id versus x for the imGCs. With decreasing x
from 1 to 0, Id is increased from 1.9559 to 2.2502, because
C(im) increases from 0.8692 to 1. In the whole range of
0 ≤ x ≤ 1, the imGCs are good pattern integrators with
Id > 1.

In contrast, for x = 1 the mGCs exhibit very sparse fir-

ing activity (i.e., their average activation degree D
(m)
a (=

1.1 %) of the mGCs becomes very low) due to strong feed-
back inhibition from the BCs and the HIPP cells (caused
by the high activation of the imGCs). As a result of high
sparsity, the average Pearson’s correlation coefficient be-
tween the output-pattern pairs becomes very low, which
leads to high average orthogonalization degree O(m) (=
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0.4016). Then, their pattern distance P
(m)
d (=36.509)

becomes very high. Accordingly, the pattern separation

degree S(m)
d is 13.142. Thus, the pattern separation ef-

ficacy of the mGCs becomes very high (i.e., the mGCs
become good pattern separators), due to high sparsity.

In the above way, the whole population of all the GCs
for x = 1 is a heterogeneous one, composed of a (major)
subpopulation of sparsely active mGCs (good pattern

separators) with very low D
(m)
a and a (minor) subpopu-

lation of highly active imGCs (good pattern integrators)

with very high D
(im)
a ; most of active cells congregate in

the subpopulation of the imGCs. In the whole heteroge-

neous population, the overall activation degree D
(w)
a of

all the GCs is 0.055 (5.5 %) which is a little less than

D
(out)
a (= 6 %) in the presence of only mGCs (without

imGCs). Although D
(w)
a is a little decreased (i.e., sparser

firing activity), the average Pearson’s correlation coeffi-
cient between the output-pattern pairs becomes high, due
to presence of strongly-correlated imGCs, which leads
to low orthogonalization degree O(w) (=0.1004); O(w)

is also much less than the average orthogonalization de-
gree O(out) (= 0.3209) in the presence of only mGCs.

Then, we get the pattern distance D
(w)
p (= 1.825) which

is also less than D
(in)
p (= 2.778). Consequently, the

pattern separation degree S(w)
d becomes 0.657. Since

S(w)
d < 1, no pattern separation occurs in the whole het-

erogeneous population for x = 1, due to heterogeneous
sparsity, in contrast to the usual intuitive thought that
sparsity could improve pattern separation efficacy; such
intuitive thought might be applied only to homogeneous
sparsity. Instead of pattern separation, pattern “conver-

gence” with D
(w)
p < D

(in)
p occurs for x = 1 in the whole

heterogeneous population of all the GCs.

Next, with decreasing x from 1, we consider the effect
of low excitatory innervation for the imGCs, counteract-
ing the effect of high excitability [55]. In the case of
mGCs, they receive excitatory inputs from the EC via
PPs and from the hilar MCs with the connection proba-
bility pc (= 20 %). On the other hand, the imGCs receive
low excitatory drive via the PPs and from the MCs with
lower connection probability pc (= 20 x %) (x : synaptic
connectivity fraction; 0 ≤ x ≤ 1). As x is decreased from

1, D
(im)
a of the imGCs decreases so rapidly, and their

effect becomes weaker. Then, the feedback inhibition to

the mGCs is also decreased, and hence D
(m)
a of the mGCs

becomes increased. Accordingly, D
(w)
a of the whole GCs

also increases. In the whole range of 0 ≤ x ≤ 1, the
average pattern correlation degree C(im) of the imGCs
are very high, and hence they become good pattern in-
tegrators with the pattern integration degree Id > 1 [see
Fig. 4(f)]. On the other hand, due to increase in D(m),
the pattern separation efficacy of the mGCs decreases

from the high value (S(m)
d = 13.142) for x = 1 to a limit

value (S(m)
d = 1.495) for x = 0. In the whole population

of all the GCs, due to decreased effect of the imGCs,

when x decreases through a threshold x∗ (= 0.92), pat-

tern separation (with S(w)
d > 1) starts, and then the

overall pattern separation degree S(w)
d increases and ap-

proaches a limit value (S(w)
d = 1.577) for x = 0 which is a

little larger than the limit value of the mGCs. In the limit
case of x = 0 where all imGCs are silent, the limit pattern

separation degree (S(w)
d = 1.577) in the whole popula-

tion is lower than that (Sd = 1.9252) in the presence of

only mGCs (without imGCs), mainly because D
(w)
a (=

7.3 %) is larger than D
(out)
a (= 6 %) in the absence of

imGCs. In this way, due to heterogeneity caused by the
imGCs (performing pattern integration), the overall ef-
ficacy of pattern separation in the whole heterogeneous
population of all the GCs becomes deteriorated.

IV. SUMMARY AND DISCUSSION

We investigated the effect of the adult-born imGCs
on the pattern separation in a spiking neural network,
composed of both mGCs (born during development) and
imGCs. In contrast to the mGCs, the imGCs exhibit two
competing distinct properties of high excitability (caus-
ing high activation) and low excitatory innervation (re-
ducing activation degree). We first considered the ef-

fect of high excitability. The activation degree D
(im)
a (=

45 %) of the imGCs was found to be very high due to
lower firing threshold. In this case, the pattern correla-
tion degree C(im) (= 0.8692) also became high, because
the outputs were highly overlapped. Consequently, the
imGCs were found to become good pattern integrators
(i.e., making association between events) with the pat-
tern integration degree Id (= 1.9559). In contrast, the

activation degree D
(m)
a (= 1.1 %) of the mGCs was found

to be very low due to strong feedback inhibition from the
inhibitory BCs and HIPP cells (caused by high activa-
tion of the imGCs). Due to high sparsity, the efficacy of
pattern separation of the mGCs became very high. Thus,
the mGCs were found to become good pattern separators
with the pattern separation degree Sd (= 13.142).

In the above way, the whole population of all the GCs
became a heterogeneous one, composed of a (major) sub-
population of mGCs (good pattern separators) with very

low D
(m)
a and a (minor) subpopulation of imGCs (good

pattern integrators) with very high D
(im)
a ; most of active

cells congregated in the subpopulation of imGCs. In the
whole heterogeneous population, the overall activation

degree D
(w)
a (= 5.5 %) of all the GCs was found to be

a little less than D
(out)
a (= 6 %) in the presence of only

mGCs (without imGCs). However, in spite of sparser fir-
ing activity, no pattern separation occurred, because of
heterogeneous sparsity, in contrast to the usual intuitive
thought that sparsity could improve pattern separation
efficacy; such intuitive thought might be applied only to
the case of homogeneous sparsity. Instead, pattern con-
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FIG. 5: Pattern integration in the presence of only imGCs.
(a) Plots of pattern correlation degrees C(l) versus POL; l = in
(red) and l = out (blue). (b) Plots of integration degree Id
versus POL; for POL = 10 % Id becomes infinity (not shown)

because C(in) = 0. In (a) and (b), the solid, dashed , and
dotted lines correspond to the cases of x = 1, 0.6, and 0.1,
respectively.

vergence with Sd (= 0.657) was found to occur because

D
(w)
p < D

(in)
p .

Next, we studied the effect of low excitatory innerva-
tion of the imGCs, counteracting the effect of their high
excitability; the connection probability pc from the EC
cells and the MCs to the imGCs is 20 x % [x (synaptic
connectivity fraction); 0 ≤ x ≤ 1]. As x was decreased

from 1 to 0, D
(im)
a of the imGCs was found to decrease

so rapidly, and hence their effect became weaker. In con-

trast to the case of the imGCs, D
(m)
a of the mGCs be-

came increased due to decrease in the feedback inhibition
from the BCs and the HIPP cells. Consequently, D

(w)
a

of the whole GCs also increased. In the whole range of
0 ≤ x ≤ 1, the imGCs were found to have high pattern
correlation degree (0.8692 ≤ C(im) ≤ 1.0), and hence
they became good pattern integrators with the pattern
integration degree (1.9559 ≤ Id ≤ 2.2502).

On the other hand, due to increase in D
(m)
a , the pat-

tern separation degree S(m)
d of the mGCs was found to

decrease from the high value (13.142) for x = 1 to a
limit value (1.495) at x = 0. Thus, in the whole range
of 0 ≤ x ≤ 1, the mGCs performed pattern separation

with S(m)
d > 1. In the whole population of all the GCs,

when x decreases through a threshold x∗ (= 0.92), pat-

tern separation (with S(w)
d > 1) was found to start, and

then the overall pattern separation degree S(w)
d increased

and approached a limit (1.577) which was a little larger

than the limit (1.495) of the mGCs. However, S(w)
d was

found to be less than Sd (= 1.9252) in the presence of
only mGCs (without imGCs). Thus, due to heterogene-
ity caused by the imGCs, the pattern separation efficacy
in the heterogeneous population became deteriorated, in
comparison with that in the presence of only mGCs.

In Fig. 3, we characterized pattern separation by vary-
ing the overlap percentage POL in the homogeneous pop-
ulation of only the mGCs (without the imGCs). Thus,
the mGCs were found to perform pattern separation. It
was also found that, the smaller POL is, the lower the
pattern separation degree Sd becomes (i.e., the pattern
separation efficacy becomes better for similar input pat-

terns, while in the case of dissimilar input patterns, the
pattern separation efficacy becomes worse). For compari-
son, we consider another homogeneous population of only
the imGCs (without the mGCs) to more clearly under-
stand the role of the imGCs. Figure 5(a) shows the plots
of the pattern correlation degree C(l) versus POL for the
pair of input patterns [l = in (red)] and output patterns
[l = out (blue)]; in the case of l = out, the solid, dashed,
and dotted lines correspond to the cases of x = 1, 0.6,
and 0.1, respectively. Then, the pattern integration de-
gree Id is given by the ratio of C(out) to C(in). Figure
5(b) shows Id versus POL. [We note that in the case of
POL = 10 %, C(in) = 0, and hence Id becomes infinity
(not shown).] We note that, as POL is decreased, Id be-
comes increased, in contrast to the case of Sd in Fig. 3.
Thus, the pattern integration efficacy becomes better for
dissimilar input patterns. Also, as x is decreased from 1,
the effect of imGCs becomes weaker, leading to decrease
in Id.

As discussed above, the pattern separation efficacy in
the heterogeneous population of all the GCs (composed
of both mGCs and imGCs) was found to get deterio-
rated, due to presence of the imGCs (good pattern in-
tegrators). However, we note that the pattern separa-
tion may not always be a strict requirement for accu-
rate neural encoding. In the homogeneous population
of only the mGCs (without the imGCs), memory stor-
age capacity (representing the number of distinct pat-
terns which may be stored and accurately recalled) could
be increased with pattern separation efficacy (facilitating
the pattern storage and retrieval) [16]. In contrast, in a
heterogeneous population of mGCs (pattern separators)
and imGCs (pattern integrators), the memory storage ca-
pacity might be optimally maximized via mixed encod-
ing through pattern separation on similar input patterns
and pattern integration on very dissimilar input patterns
[53, 87]. Thus, through mixed encoding, memory reso-
lution (corresponding to the extent of information incor-
porated into memories) could be increased, which would
result in reduction in memory interference. In this way,
the imGCs (good integrators for very dissimilar input
patterns) could make contribution to increase in memory
storage capacity, although they have tendency to reduce
the pattern separation efficacy. Through cooperation of
pattern separation for similar input patterns and pattern
integration for very dissimilar input patterns, the hetero-
geneous population of the mGCs and the imGCs might
achieve superior pattern encoding than the homogeneous
population of only the mGCs (performing purely sparse
coding). This speculation on increase in memory resolu-
tion via mixed encoding (through cooperation of pattern
separation and pattern integration) must be examined in
future works.

Finally, we discuss future works. During the pattern
separation, sparsely synchronized rhythms appear in the
whole population of all the GCs and in each subpopu-
lation of the imGCs and the mGCs. Hence, it would
be worthwhile to investigate their population and indi-
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vidual firing behaviors and to discuss their quantitative
relationship with the pattern separation efficacy. As in
[56, 57], population and individual firing behaviors in the
sparsely synchronized rhythms in the subpopulations of
the imGCs (X = im), the mGCs (X = m) and in the
whole population (X = w) may be characterized in terms

of the amplitude measure M(X)
a (representing the pop-

upation synchronization degree) [88] and the coefficient
of variation CV (X) (characterizing the irregularity de-
gree of individual single-cell discharges) [89], respectively.
Then, we could investigate the quantitative relationship

between M(X)
a and CV (X) of the sparsely synchronized

rhythms and the pattern separation degree S(X)
d (rep-

resenting the pattern separation efficacy). Next, we also
note that the pyramidal cells in the CA3 provide backpro-
jections to the GCs via polysynaptic connections [17–19].
For example, the pyramidal cells send disynaptic inhibi-
tion to the mGCs, mediated by the BCs and the HIPP
cells in the DG, and they provide trisynaptic inputs to the
mGCs, mediated by the MCs (pyramidal cells → MC →
BC or HIPP → mGC). These inhibitory backprojections
may decrease the activation degree of the mGCs, leading

to improvement of pattern separation in the subpopula-
tion of the mGCs. Hence, in future work, it would be
meaningful to take into consideration the backprojection
for the study of pattern separation in the combined DG-
CA3 network. Moreover, in the DG-CA3 network, we
could examine the memory storage capacity by getting
correct response percentage for a partial or noisy version
of cue input patterns in the homogeneous population of
only the mGCs and in a heterogeneous population of the
mGCs and the imGCs [17]. Then, we could determine
which one of the purely sparse encoding (homogeneous
case) and the mixed encoding (heterogeneous case) would
be superior.
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(1999).

[77] W. Gerstner and W. Kistler, Spiking Neuron Models,
(Cambridge University Press, New York, 2002).

[78] C. E. Jahr and C. F. Stevens, J. Neurosci. 10, 3178
(1990).

[79] T. B. Kneisler and R. Dingledine, Hippocampus 5, 151
(1995).
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