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Abstract
Young immature granule cells (imGCs) appear via adult neurogenesis in the hippocampal dentate gyrus (DG). In com-

parison to mature GCs (mGCs) (born during development), the imGCs exhibit two competing distinct properties such as

high excitability (increasing activation degree) and low excitatory innervation (reducing activation degree). We develop a

spiking neural network for the DG, incorporating both the mGCs and the imGCs. The mGCs are well known to perform

‘‘pattern separation’’ (i.e., a process of transforming similar input patterns into less similar output patterns) to facilitate

pattern storage in the hippocampal CA3. In this paper, we investigate the effect of the young imGCs on pattern separation

of the mGCs. The pattern separation efficacy (PSE) of the mGCs is found to vary through competition between high

excitability and low excitatory innervation of the imGCs. Their PSE becomes enhanced (worsened) when the effect of high

excitability is higher (lower) than the effect of low excitatory innervation. In contrast to the mGCs, the imGCs are found to

perform ‘‘pattern integration’’ (i.e., making association between dissimilar patterns). Finally, we speculate that memory

resolution in the hippocampal CA3 might be optimally maximized via mixed cooperative encoding through pattern

separation and pattern integration.

Keywords Hippocampal dentate gyrus � Adult neurogenesis � Immature granule cells � High excitability �
Low excitatory innervation � Pattern separation efficacy

Introduction

The hippocampus, composed of the dentate gyrus (DG) and

the subregions CA3 and CA1, plays important roles in

memory formation, storage, and retrieval (e.g., episodic

and spatial memory) (Squire 1987; Gluck and Myers

2001). In particular, the subregion CA3 has been consid-

ered as an autoassociative network, because of extensive

recurrent collateral synapses between the pyramidal cells in

the CA3 (Marr 1971; McNaughton and Morris 1987; Rolls

1989a, 1989b, 1989c; Willshaw and Buckingham 1990;

Treves and Rolls 1991, 1992, 1994; O’Reilly and

McClelland 1994). This autoassociative network operates

in both the storage and the recall modes. Storage capacity

of the autoassociative network implies the number of dis-

tinct patterns that can be stored and accurately recalled.

Such storage capacity could be increased if the input pat-

terns into the CA3 are sparse (containing few active ele-

ments in each pattern) and orthogonalized

(nonoverlapping: active elements in one pattern are unli-

kely to be active in other patterns). This process of trans-

forming a set of input patterns into sparser and

orthogonalized patterns is called pattern separation (Marr

1971; McNaughton and Morris 1987; Rolls

1989a, 1989b, 1989c; Willshaw and Buckingham 1990;

Treves and Rolls 1991, 1992, 1994; O’Reilly and

McClelland 1994; Beck et al. 2000; Nitz and McNaughton

2004; Leutgeb et al. 2007; Bakker et al. 2008; Myers and

Scharfman 2009, 2011; Yassa and Stark 2011; Schmidt

et al. 2012; Myers et al. 2013; Santoro 2013; Yim et al.

2015; Rolls 2016; Knierim and Neunuebel 2016;
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Scharfman and Myers 2016; Chavlis et al. 2017; Kassab

and Alexandre 2018; Dijk and Fenton 2018).

Here, we are concerned about the DG which is the

gateway to the hippocampus. The excitatory granule cells

(GCs) in the DG receive excitatory inputs from the

entorhinal cortex (EC) via the perforant paths (PPs). As a

preprocessor for the CA3, the principal GCs perform pat-

tern separation on the input patterns from the EC by

sparsifying and orthogonalizing them, and provide the

pattern-separated outputs to the pyramidal cells in the CA3

through the mossy fibers (MFs) (Treves and Rolls 1994;

O’Reilly and McClelland 1994; Myers and Scharfman

2009, 2011; Schmidt et al. 2012; Myers et al. 2013; Yim

et al. 2015; Rolls 2016; Knierim and Neunuebel 2016;

Scharfman and Myers 2016; Chavlis et al. 2017; Kassab

and Alexandre 2018). Then, a new pattern may be stored in

modified collateral synapses between the pyramidal cells in

the hippocampal CA3. In this way, pattern separation in the

DG could facilitate pattern storage in the hippocampal

CA3.

The whole GCs are grouped into the lamellar clusters

(Andersen et al. 1971; Amaral and Witter 1989; Andersen

et al. 2000; Sloviter and Lømo 2012). In each cluster, there

exist one inhibitory basket cell (BC) and one inhibitory

HIPP (hilar perforant path-associated) cell, together with

excitatory GCs. During pattern separation, the GCs show

sparse firing activity via the winner-take-all competition

(Coultrip et al. 1992; Almeida et al. 2009; Petrantonakis

and Poirazi 2014, 2015; Houghton 2017; Espinoza et al.

2018; Su et al. 2019; Barranca et al. 2019; Bielczyk et al.

2019; Wang et al. 2020; Kim and Lim 2022a). Only

strongly active GCs survive under the feedback inhibitory

inputs from the BC and the HIPP cell. We note that,

sparsity (resulting from strong feedback inhibition) has

been considered to improve the pattern separation efficacy

(Treves and Rolls 1994; O’Reilly and McClelland 1994;

Myers and Scharfman 2009, 2011; Schmidt et al. 2012;

Myers et al. 2013; Rolls 2016; Knierim and Neunuebel

2016; Scharfman and Myers 2016; Chavlis et al. 2017;

Kassab and Alexandre 2018).

One of the most distinctive characteristics of the DG is

occurrence of adult neurogenesis which results in the

generation of new GCs during adulthood. Altman’s

pioneering studies in adult rat and cat brains for the adult

neurogenesis were done decades ago in the 1960 s (Altman

1962, 1963; Altman and Das 1965). Since then, adult

neurogenesis has been shown to be a robust phenomenon,

occurring in most mammals, mainly in the subgranular

zone of the DG and the subventricular zone of the lateral

ventricles (Bayer 2016; Ming and Song 2011; Christian

et al. 2020). The new GCs born in the subgranular zone

migrate into the granular layer of the DG. The whole

population of GCs is thus composed of mature GCs

(mGCs) born during the development and adult-born

immature GCs (imGCs). In contrast to the mGCs, the

young adult-born imGCs are known to have marked

properties such as high excitability, weak inhibition, and

low excitatory innervation (Aimone et al.

2009, 2010, 2011; Sahay et al. 2011a, 2011b; Finnegan and

Becker 2015).

The adult-born imGCs show gradual continuous matu-

ration process (Heigele et al. 2016; Jahn and Bergami

2018; Murray et al. 2020). For 0–2 weeks of age, the

imGCs undergo early survival competition and begin

axonal extension. Then, for 3–4 weeks of age, the synapses

and dendrites of the imGCs begin to gradually appear and

receive excitatory inputs. In this maturation stage of about

3–4 weeks, the imGCs exhibit highly excitability, less

inhibition, and low excitatory innervation. From the 5th

week of age, the imGCs become more matured, and

eventually, at about 8 weeks of age, the imGCs become

almost mature, which is essentially indistinguishable from

mGCs. Here, we consider young imGCs with 3–4 weeks of

age, showing two competing properties such as high

excitability and low excitatory innervation; for simplicity,

we approximately neglect inhibition of the imGCs in our

DG network.

In this paper, we develop a spiking neural network for

the DG, including both mGCs and imGCs. We choose the

fraction of imGCs (FðimÞ) in our DG network as

FðimÞ ¼ 10 %, based on quantitative previous studies

(Cameron and Mckay 2001; van Praag et al. 2002;

Laplagne et al. 2006, 2007; Toni et al. 2007, 2008;

Imayoshi et al. 2008; Gu et al. 2012; Nakashiba et al.

2012; Myers et al. 2013), showing that about 4–10 % of the

whole GCs are imGCs. In Sect. 4, we also consider another

case of FðimÞ ¼ 5 % to examine the effect of fraction of

imGCs on our main results. As shown in Fig. 6b, our main

conclusion is insensitive to the fraction of imGCs.

As is well known, sparsity (sparse coding) may improve

pattern separation (transforming similar input patterns into

less similar output patterns) (Myers and Scharfman 2009;

Chavlis et al. 2017). Based on this mechanism, we inves-

tigate the effect of young imGCs on pattern separation of

the mGCs in our DG network. Their pattern separation

efficacy is found to change via competition between high

excitability (increasing activation degree) and low excita-

tory innervation (reducing activation degree) of the imGCs.

When the effect of high excitability (low excitatory

innervation) is larger, the pattern separation efficacy of the

mGCs becomes enhanced (worsened) due to increased

(decreased) feedback inhibition to the mGCs [caused by

increased (decreased) activation of the imGCs]. We also

note that the imGCs perform pattern integration (i.e.,

making association between dissimilar patterns), in
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contrast to the mGCs (pattern separators). It is speculated

that memory resolution (corresponding to the extent of

information incorporated into memories) in the hip-

pocampal CA3 might be optimally maximized through

mixed cooperative encoding via pattern separation of the

mGCs and pattern integration of the imGCs.

This paper is organized as follows. In Sect. 2, we

describe a spiking neural network for the adult neurogen-

esis in the hippocampal DG. Then, in the main Sect. 3, we

investigate the effect of young imGCs on pattern separation

of the mGCs. Finally, we give summary and discussion in

Sect. 4.

Spiking neural network for the adult
neurogenesis in the dentate gyrus

In this section, we describe our spiking neural network for

the adult neurogenesis in the DG. Based on the anatomical

and the physiological properties described in Myers and

Scharfman (2009, 2011); Chavlis et al. (2017), we devel-

oped the DG spiking neural networks in the works for the

winner-take-all competition (Kim and Lim 2022a), the

sparsely synchronized rhythm (Kim and Lim 2022b), and

the pattern separation (Kim and Lim 2022c). Here, we first

refine our prior spiking neural networks to include more

synaptic connections with a high degree of anatomical and

physiological realism (Santhakumar et al. 2005; Morgan

et al. 2007), and then incorporate the young adult-born

imGCs to complete structure of our spiking neural network

for the adult neurogenesis.

Obviously, our spiking neural network will not capture

all the detailed anatomical and physiological complexity of

the DG. But, with a limited number of essential elements

and synaptic connections in our DG network, effect of the

imGCs on the pattern separation could be successfully

studied. Hence, our spiking neural network model would

build a foundation upon which additional complexity may

be added and guide further research.

Architecture of the spiking neural network
of The DG

Figure 1 shows (a) schematic representation of major cells

and synaptic connections in our DG network incorporating

adult-born imGCs and (b) the box diagram for the DG

network with 3 types of lamellar (blue), cross-lamellar

(red), and random (black) synaptic connections. In our DG

network, the fraction of imGCs is 10 % in the whole

population of GCs, high excitability of the imGCs is con-

sidered, there are no inhibitory inputs into the imGCs, and

their low excitatory innervation is also taken into

consideration (Aimone et al. 2009, 2010, 2011; Sahay

et al. 2011a, b; Finnegan and Becker 2015; Dieni et al.

2016).

In the DG, we consider the granular layer (GL), com-

posed of the excitatory mGCs and imGCs and the inhibi-

tory BCs, and the underlying hilus, consisting of the

excitatory MCs and the inhibitory HIPP cells, whose axons

project to the upper molecular layer (ML). We note that

there are two types of excitatory cells, GCs and MCs, in

contrast to the case of the CA3 and CA1 with only one type

of excitatory pyramidal cells.

Fig. 1 Spiking neural network for the hippocampal dentate gyrus

(DG). (a) Schematic representation of major cells and synaptic

connections in our DG network incorporating adult-born immature

GCs (imGCs). Fraction of the imGCs is 10 % in the whole population

of GCs. Note that there are no inhibitory inputs into the imGCs, in

contrast to the case of mGCs. Here, BC, MC, HIPP, PP, GL, and ML

represent the basket cell, the mossy cell, the hilar perforant path-

associated cell, perforant path, granular layer, and molecular layer,

respectively. (b) Box diagram for our DG network with 3 types of

synaptic connections. Blue, red, and black lines represent lamellar,

cross-lamellar, and random connections, respectively. (Color

figure online)
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From the outside of the DG, the EC provides the

external excitatory inputs randomly to the mGCs, the

imGCs, and the inhibitory BCs (with dendrites extending to

the outer ML) via PPs (Myers and Scharfman 2009, 2011;

Myers et al. 2013; Scharfman and Myers 2016; Chavlis

et al. 2017). Thus, both the mGCs and the imGCs receive

direct excitatory EC input via PPs (EC ! mGC and

imGCs) through random connections in Fig. 1b. The con-

nection probability pc for EC ! mGC and BC is 20 %,

while pc for EC ! imGC is decreased to 20 x % [x (sy-

naptic connectivity fraction); 0� x� 1] due to low exci-

tatory innervation. Moreover, only the mGCs receive

indirect feedforward inhibitory input, mediated by the BCs

(EC ! BC ! mGC).

In the GL, the whole GCs (i.e., both the mGCs and the

imGCs) are grouped into lamellar clusters (Andersen et al.

1971; Amaral and Witter 1989; Andersen et al. 2000;

Sloviter and Lømo 2012), and one inhibitory BC exists in

each cluster. Here, the BC (receiving excitation from the

whole GCs in the same cluster) provides the feedback

inhibition to only all the mGCs via lamellar connections in

Fig. 1b; a primary mGC-BC feedback loop is formed.

Thus, in each cluster the BC provides both the feedforward

and the feedback inhibition to all the mGCs in the same

cluster.

In the hilus, we also consider lamellar organization for

the MCs and HIPP cells (Myers and Scharfman 2011;

Myers et al. 2013; Scharfman and Myers 2016; Jinde et al.

2013) (i.e., all the MCs and the HIPP cells in the hilus also

are grouped into lamellar clusters). As in the case of BC,

the HIPP cell receives excitation from the whole GCs in the

same cluster, and projects the feedback inhibition to all the

mGCs in the same cluster through lamellar connections; a

secondary mGC-HIPP feedback loop is formed. Thus, there

appear two kinds of feedback loops of mGC-BC and mGC-

HIPP.

In our DG network, the MCs play the role of ‘‘con-

troller’’ for the activities of the two feedback loops of

mGC-BC and mGC-HIPP. Each MC in a cluster receives

excitation from the whole GCs in the same cluster (lamellar

connection), while it makes excitatory projection randomly

to the mGCs and the imGCs in other clusters via cross-

lamellar connections (Jinde et al. 2013). The connection

probability pc for MC ! mGC is 20 %, while pc for MC !
imGC is decreased to 20 x % (0� x� 1) because of low

excitatory innervation. Thus, the GC-MC driving loop for

determining the activities of the controller MCs is formed.

The MCs control the activities of the feedback loops of

mGC-BC and mGC-HIPP. Each MC in a cluster receives

inhibition from the BC and the HIPP cell in the same

cluster (lamellar connection). Then, the MCs in the cluster

project excitation to the BCs in other clusters through

cross-lamellar connections (the connection probability pc

for MC ! BC is 20 %) (Jinde et al. 2013), while they

provide excitation to the HIPP cell in the same cluster

(lamellar connection). Thus, two ‘‘control’’ loops of MC-

BC and MC-HIPP, controlling the activities of the two

feedback loops of mGC-BC and mGC-HIPP, are formed.

Finally, the HIPP cell inhibits the BC in the same cluster

(lamellar connection for HIPP ! BC); there are no reverse

synaptic connections for BC ! HIPP (Santhakumar et al.

2005; Morgan et al. 2007). Thus, the activity of the BC in a

cluster is controlled through excitation from the MCs in

other clusters (cross-lamellar connections) and inhibition

from the HIPP cell in the same cluster (lamellar

connection).

The mGCs in a cluster exhibit sparse firing activity via

the winner-take-all competition (Coultrip et al. 1992;

Almeida et al. 2009; Petrantonakis and Poirazi 2014, 2015;

Houghton 2017; Espinoza et al. 2018; Su et al. 2019;

Barranca et al. 2019; Bielczyk et al. 2019; Wang et al.

2020; Kim and Lim 2022a). Only strongly active mGCs

may survive under the feedback inhibition from the BC and

the HIPP cell in the same cluster. Here, the activities of the

BC and the HIPP cell are controlled by the controller MCs;

in the case of BC, the HIPP cell also inhibits it. On the

other hand, the imGCs receive no inhibition. Particularly,

due to their low firing threshold, they become highly

active, in contrast to the case of mGCs (Aimone et al.

2009, 2010, 2011; Sahay et al. 2011a, 2011b; Finnegan and

Becker 2015; Dieni et al. 2016). However, when consid-

ering their low excitatory innervation from the EC cells and

the MCs, their firing activity is reduced (Finnegan and

Becker 2015; Dieni et al. 2016).

Based on the anatomical information given in Myers and

Scharfman (2009, 2011); Myers et al. (2013); Scharfman

and Myers (2016); Chavlis et al. (2017), we choose the

numbers of the GCs, BCs, MCs, and HIPP cells in the DG

and the EC cells. As in our prior works (Kim and Lim

2022a, 2022b, 2022c), we develop a scaled-down spiking

neural network where the total number of excitatory GCs

(NGC) is 2,000, corresponding to 1
500

of the 106 GCs found

in rats (West et al. 1991). The fraction of imGCs in the

whole population of the GCs is 10 %, and hence the

number of the imGCs (mGCs) is 200 (1800). The whole

GCs (i.e., mGCs and imGCs) are grouped into the Nc ð¼
20Þ lamellar clusters (Andersen et al. 1971; Amaral and

Witter 1989; Andersen et al. 2000; Sloviter and Lømo

2012). Then, in each cluster, there are n
ðcÞ
GC ð¼ 100Þ GCs

(i.e., 90 mGC and 10 imGCs) and one inhibitory BC

(Myers and Scharfman 2011; Myers et al. 2013; Scharfman

and Myers 2016). As a result, the number of the BCs (NBC)

in the whole DG network becomes 20, corresponding to 1/

100 of NGC (Buckmaster et al. 1996; Nomura et al.
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1997a, 1997b; Buckmaster and Jongen-Rêlo 1999; Buck-

master et al. 2002; Morgan et al. 2007).

The EC layer II projects the excitatory inputs to the

mGCs, the imGCs, and the BCs via the PPs through ran-

dom connections (Myers and Scharfman 2009, 2011;

Myers et al. 2013; Scharfman and Myers 2016; Chavlis

et al. 2017). The estimated number of the EC layer II cells

(NEC) is about 200,000 in rats, which corresponds to 20 EC

cells per 100 GCs (Amaral et al. 1990). Hence, we choose

NEC ¼ 400 in our DG network. Also, the activation degree

of the EC cells is chosen as 10 % (McNaughton et al.

1991). Thus, we randomly choose 40 active ones among

the 400 EC cells. Each active EC cell is modeled in terms

of the Poisson spike train with frequency of 40 Hz (Hafting

et al. 2005).

Next, we consider the hilus, composed of the excitatory

MCs and the inhibitory HIPP cells (Scharfman and Myers

2013; Scharfman 2018; Lübke et al. 1998; Amaral et al.

2007; Jinde et al. 2012, 2013; Ratzliff et al. 2004). In rats,

the number of MCs (NMC) is known to change from 30,000

to 50,000, and the estimated number of HIPP cells (NHIPP)

is about 12,000 (Buckmaster and Jongen-Rêlo 1999). In

our scaled-down DG network, we choose NMC ¼ 60 and

NHIPP ¼ 20. All the MCs and the HIPP cells are also

grouped into the 20 lamellar clusters, as in the case of the

GCs and the BCs. Hence, in each cluster, there are n
ðcÞ
MC ð¼

3Þ MCs and one HIPP cell (Myers and Scharfman 2011;

Myers et al. 2013; Scharfman and Myers 2016).

With the above information on the numbers of the rel-

evant cells and the synaptic connections between them, we

develop a one-dimensional ring network for the adult

neurogenesis in the DG, as in our prior works (Kim and

Lim 2022a, 2022b, 2022c); e.g., refer to Fig. 1b1, b2, b3 in

Kim and Lim (2022c) for the schematic diagrams of the

ring networks. Due to the ring structure, our spiking neural

network has advantage for computational efficiency, and its

visual representation may also be easily made.

Single neuron models and synaptic currents
in the DG spiking neural network

As elements of our DG spiking neural network for the adult

neurogenesis, we choose leaky integrate-and-fire (LIF)

neuron models with additional afterhyperpolarization

(AHP) currents which determines refractory periods, as in

our prior DG networks (Kim and Lim

2022a, 2022b, 2022c). This LIF neuron model is one of the

simplest spiking neuron models (Gerstner and Kistler

2002). Due to its simplicity, it may be easily analyzed and

simulated. It has thus been very popularly used as a spiking

neuron model.

The governing equations for evolutions of dynamical

states of individual cells in the X population are as follows:

CX
dv

ðXÞ
i ðtÞ
dt

¼ �I
ðXÞ
L;i ðtÞ � I

ðXÞ
AHP;iðtÞ þ I

ðXÞ
ext � I

ðXÞ
syn;iðtÞ;

i ¼ 1; � � � ;NX;

ð1Þ

where NX is the total number of cells in the X population,

X ¼ mGC, imGC, and BC in the granular layer and X ¼
MC and HIPP in the hilus. In Eq. (1), CX (pF) represents

the membrane capacitance of the cells in the X population,

and the dynamical state of the ith cell in the X population at

a time t (ms) is characterized by its membrane potential

v
ðXÞ
i ðtÞ (mV). We note that the time-evolution of v

ðXÞ
i ðtÞ is

governed by 4 types of currents (pA) into the ith cell in the

X population; the leakage current I
ðXÞ
L;i ðtÞ, the AHP current

I
ðXÞ
AHP;iðtÞ, the external constant current I

ðXÞ
ext (independent of

i), and the synaptic current I
ðXÞ
syn;iðtÞ.

The equation for a single LIF neuron model (without the

AHP current and the synaptic current) describes a simple

parallel resistor-capacitor (RC) circuit. In this case, the 1st

type of leakage current is due to the resistor and the inte-

gration of the external current is due to the capacitor which

is in parallel to the resistor. When its membrane potential

reaches a threshold, a neuron fires a spike, and then the 2nd

type of AHP current follows. As the decay time of the AHP

current is increased, the refractory period becomes longer.

Here, we consider a subthreshold case where the 3rd type

of external constant current is zero (i.e., I
ðXÞ
ext ¼ 0) (Chavlis

et al. 2017).

The 1st type of leakage current I
ðXÞ
L;i ðtÞ for the ith cell in

the X population is given by:

I
ðXÞ
L;i ðtÞ ¼ g

ðXÞ
L ðvðXÞi ðtÞ � V

ðXÞ
L Þ; ð2Þ

where g
ðXÞ
L and V

ðXÞ
L denote conductance (nS) and reversal

potential for the leakage current, respectively. The ith cell

fires a spike when its membrane potential v
ðXÞ
i reaches a

threshold v
ðXÞ
th at a time t

ðXÞ
f ;i . Then, the 2nd type of AHP

current I
ðXÞ
AHP;iðtÞ follows after spiking (i.e., t� t

ðXÞ
f ;i ),:

I
ðXÞ
AHP;iðtÞ ¼ g

ðXÞ
AHPðtÞ ðv

ðXÞ
i ðtÞ � V

ðXÞ
AHPÞ for t� t

ðXÞ
f ;i : ð3Þ

Here, V
ðXÞ
AHP represents the reversal potential for the AHP

current, and the conductance g
ðXÞ
AHPðtÞ is given by an

exponential-decay function:

g
ðXÞ
AHPðtÞ ¼ �g

ðXÞ
AHP e�ðt�t

ðXÞ
f ;i

Þ=sðXÞ
AHP ; ð4Þ

where �g
ðXÞ
AHP and sðXÞAHP denote the maximum conductance

and the decay time constant for the AHP current,
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respectively. With increasing sðXÞAHP, the refractory period

becomes longer.

The parameter values of the capacitance CX , the leakage

current I
ðXÞ
L ðtÞ, and the AHP current I

ðXÞ
AHPðtÞ are the same as

those in our prior DG networks (Kim and Lim

2022a, 2022b, 2022c), and refer to Table 1 in Kim and Lim

(2022a). These parameter values are based on physiologi-

cal properties of the GC, BC, MC, and HIPP cell (Lübke

et al. 1998; Chavlis et al. 2017).

We note that, the GC in Table 1 in Kim and Lim

(2022a) corresponds to the mGC. The imGCs also have the

same parameter values as those of the mGC, except for the

leakage reversal potential VL. The mGC with VL ¼ �75

mV exhibits a spiking transition when passing a threshold

I� ¼ 80 mV. Here, we consider a case that the imGC has an

increased leakage reversal potential of VL ¼ �72 mV,

which could lead to intrinsic high excitability. Then, it

shows a firing transition when passing I� ¼ 69:7 pA. In this

way, the imGC may have a lower firing threshold (Sahay

et al. 2011a, 2011b; Aimone et al. 2011, 2009), which is

well shown in Fig. 2 for the f � I (i.e., firing rate-current)

curves of the mGC (red curve) and the imGC (blue curve).

Next, we consider the 4th type of synaptic current

I
ðXÞ
syn;iðtÞ into the ith cell in the X population, composed of

the following 3 types of synaptic currents:

I
ðXÞ
syn;iðtÞ ¼ I

ðX;YÞ
AMPA;iðtÞ þ I

ðX;YÞ
NMDA;iðtÞ þ I

ðX;ZÞ
GABA;iðtÞ: ð5Þ

Here, I
ðX;YÞ
AMPA;iðtÞ and I

ðX;YÞ
NMDA;iðtÞ are the excitatory AMPA

(a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)

receptor-mediated and NMDA (N-methyl-D-aspartate)

receptor-mediated currents from the presynaptic source Y

population to the postsynaptic ith neuron in the target X

population, respectively. In contrast, I
ðX;ZÞ
GABA;iðtÞ is the

inhibitory GABAA (c-aminobutyric acid type A) receptor-

mediated current from the presynaptic source Z population

to the postsynaptic ith neuron in the target X population.

Like the case of the AHP current, the R (= AMPA,

NMDA, or GABA) receptor-mediated synaptic current

I
ðT ;SÞ
R;i ðtÞ from the presynaptic source S population to the ith

postsynaptic cell in the target T population is given by:

I
ðT ;SÞ
R;i ðtÞ ¼ g

ðT ;SÞ
R;i ðtÞ ðvðTÞi ðtÞ � V

ðSÞ
R Þ: ð6Þ

Here, g
ðT ;SÞ
ðR;iÞ ðtÞ and V

ðSÞ
R represent synaptic conductance (nS)

and synaptic reversal potential (mV) (determined by the

type of the presynaptic source S population), respectively.

In the case of the R (=AMPA and GABA)-mediated

synaptic currents, we get the synaptic conductance g
ðT ;SÞ
R;i ðtÞ

from:

g
ðT ;SÞ
R;i ðtÞ ¼ K

ðT ;SÞ
R

XNS

j¼1

w
ðT ;SÞ
ij s

ðT ;SÞ
j ðtÞ; ð7Þ

where K
ðT ;SÞ
R is the synaptic strength per synapse for the R-

mediated synaptic current from the jth presynaptic neuron

Table 1 Parameters for the synaptic currents I
ðGC;SÞ
R ðtÞ into the GCs

(granule cells). The whole population of the GCs is composed of a

major subpopulation of mGCs (mature GCs) and a minor subpopu-

lation of imGCs (immature GCs). Both the mGCs and the imGCs

receive the excitatory inputs from the EC (entorhinal cortex) cells and

the hilar MCs (mossy cells); synaptic parameters for the excitatory

inputs are valid for both the mGCs and the imGCs. In addition, the

mGCs receive the feedforward and feedback inhibitory inputs from

the BCs (basket cells) and the feedback inhibitory input from the

HIPP (hilar perforant path-associated) cells, while there are no

inhibitory inputs into the imGCs

Target cells (T) GC

Source cells (S) EC BC HIPP MC

Receptor (R) AMPA NMDA GABA GABA AMPA NMDA

K
ðT;SÞ
R

0.89 0.15 15.0 3.0 0.07 0.01

sðT ;SÞR;r
0.1 0.33 0.9 0.5 0.1 0.33

sðT ;SÞR;d
2.5 50.0 6.8 6.0 2.5 50.0

sðT ;SÞR;l
3.0 3.0 0.85 1.6 3.0 3.0

V
ðSÞ
R

0.0 0.0 - 86.0 - 86.0 0.0 0.0

Fig. 2 Firing transitions of mature GCs (mGCs) and adult-born

immature GCs (imGCs). f � I (f : firing rate and I : current) curve

for the mGC (red line) and the imGC (blue line). (Color figure online)
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in the source S population to the ith postsynaptic cell in the

target T population. The inter-population synaptic con-

nection from the source S population (with Ns cells) to the

target T population is given by the connection weight

matrix W ðT ;SÞ (¼ fwðT ;SÞ
ij g) where w

ðT ;SÞ
ij ¼ 1 if the jth cell in

the source S population is presynaptic to the ith cell in the

target T population; otherwise w
ðT ;SÞ
ij ¼ 0. The fraction of

open ion channels at time t is also represented by sðT ;SÞðtÞ.
In contrast, in the NMDA-receptor case, some of the

postsynaptic NMDA channels are blocked by the positive

magnesium ion Mg2þ (Jahr and Stevens 1990). Hence, the

conductance in the case of NMDA receptor is given by

Chavlis et al. (2017):

g
ðT ;SÞ
R;i ðtÞ ¼ eK ðT ;SÞ

R f ðvðTÞðtÞÞ
XNS

j¼1

w
ðT ;SÞ
ij s

ðT ;SÞ
j ðtÞ: ð8Þ

Here, eK ðT ;SÞ
R is the synaptic strength per synapse, and the

fraction of NMDA channels that are not blocked by the

Mg2þ ion is given by a sigmoidal function f ðvðTÞðtÞÞ:

f ðvðTÞðtÞÞ ¼ 1

1 þ g � ½Mg2þ�o � expð�c � vðTÞðtÞÞ
: ð9Þ

Here, vðTÞðtÞ is the membrane potential of the target cell,

½Mg2þ�o is the outer Mg2þ concentration, g denotes the

sensitivity of Mg2þ unblock, c represents the steepness of

Mg2þ unblock, and the values of parameters change

depending on the target cell (Chavlis et al. 2017). For

simplicity, some approximation to replace f ðvðTÞðtÞÞ with

hf ðvðTÞðtÞÞi [i.e., time-averaged value of f ðvðTÞðtÞÞ in the

range of vðTÞðtÞ of the target cell] has been done in Kim and

Lim (2022b). Then, an effective synaptic strength

K
ðT ;SÞ
NMDAð¼ eK ðT ;SÞ

NMDAhf ðvðTÞðtÞÞi) was introduced by absorb-

ing hf ðvðTÞðtÞÞi into K
ðT ;SÞ
NMDA. Thus, with the scaled-down

effective synaptic strength K
ðT ;SÞ
NMDA (containing the blockage

effect of the Mg2þ ion), the conductance g for the NMDA

receptor may also be well approximated in the same form

of conductance as the other AMPA and GABA receptors in

Eq. (7). Thus, we get all the effective synaptic strengths

K
ðT ;SÞ
NMDA from the synaptic strengths eK ðT ;SÞ

NMDA in Chavlis et al.

(2017) by considering the average blockage effect of the

Mg2þ ion. Consequently, we can use the same form of

synaptic conductance of Eq. (7) in all the cases of R ¼
AMPA, NMDA, and GABA.

The postsynaptic ion channels are opened through

binding of neurotransmitters (emitted from the source S

population) to receptors in the target T population. The

fraction of open ion channels at time t is represented by

sðT ;SÞðtÞ. The time course of s
ðT ;SÞ
j ðtÞ of the jth cell in the

source S population is given by a sum of double expo-

nential functions E
ðT ;SÞ
R ðt � t

ðjÞ
f � sðT ;SÞR;l Þ:

s
ðT ;SÞ
j ðtÞ ¼

XF
ðsÞ
j

f¼1

E
ðT ;SÞ
R ðt � t

ðjÞ
f � sðT ;SÞR;l Þ: ð10Þ

Here, t
ðjÞ
f and F

ðsÞ
j are the fth spike time and the total

number of spikes of the jth cell in the source S population,

respectively, and sðT ;SÞR;l is the synaptic latency time constant

for R-mediated synaptic current. The double exponential-

decay function E
ðT ;SÞ
R ðtÞ (corresponding to contribution of a

presynaptic spike occurring at t ¼ 0 in the absence of

synaptic latency) is given by:

E
ðT ;SÞ
R ðtÞ ¼ 1

sðT ;SÞR;d � sðT ;SÞR;r

e�t=sðT ;SÞ
R;d � e�t=sðT ;SÞR;r

� �
�HðtÞ:

ð11Þ

Here, HðtÞ is the Heaviside step function: HðtÞ ¼ 1 for

t� 0 and 0 for t\0, and sðT ;SÞR;r and sðT ;SÞR;d are synaptic rising

and decay time constants of the R-mediated synaptic cur-

rent, respectively.

In comparison with our prior DG networks (Kim and

Lim 2022a, 2022b, 2022c), we include more synaptic

connections with a high degree of anatomical and physio-

logical realism (Santhakumar et al. 2005; Morgan et al.

2007), and incorporate the imGCs. Thus, a new feedfor-

ward inhibition, mediated by the BCs, is provided to the

mGCs, and there appear two feedback loops of mGC-BC

and mGC-HIPP, (projecting feedback inhibition to the

mGCs), the activities of which are controlled by the two

control loops of MC-BC and MC-HIPP (MCs: controllers).

Finally, we present the parameter values for the synaptic

strength per synapse K
ðT ;SÞ
R , the synaptic rising time constant

sðT ;SÞR;r , synaptic decay time constant sðT ;SÞR;d , synaptic latency

time constant sðT ;SÞR;l , and the synaptic reversal potential V
ðSÞ
R

for the synaptic currents into the GCs (i.e., both mGCs and

imGCs) and the BCs in the GL, in Tables 1 and 2, respec-

tively, and for the synaptic currents into the MCs and the

HIPP cells in Table 3. These parameter values are also based

on the physiological properties of the relevant cells (Kneisler

and Dingledine 1995; Geiger et al. 1997; Bartos et al. 2001;

Santhakumar et al. 2005; Morgan et al. 2007; Schmidt-

Hieber et al. 2007; Larimer and Strowbridge 2008; Schmidt-

Hieber and Bischofberger 2010; Krueppel et al. 2011; Chi-

ang et al. 2012; Chavlis et al. 2017).

All of our source codes for computational works were

written in C programming language. Numerical integration

of the governing equation for the time-evolution of states

Cognitive Neurodynamics (2024) 18:2077–2093 2083

123



of individual spiking neurons is done by employing the

2nd-order Runge–Kutta method with the time step 0.1 ms.

Effect of immature granule cells born
via adult neurogenesis on pattern
separation

In this section, we study the effect of young adult-born

imGCs on pattern separation of the mGCs in our spiking

neural network, developed in Sect. 2. Due to high

excitability, the imGCs become very active, while because

of low excitatory innervation, their activation degree is

decreased. We investigate the effects of the two competing

properties of the imGCs on the pattern separation efficacy

of the mGCs.

Characterization of pattern separation
in the presence of only the mGCs
without the imGCs

In this subsection, we first consider the case of presence of

only the mGCs (without the imGCs) to present the methods

characterizing the pattern separation. As explained in the

Sect 2.1, the EC provides external excitatory inputs to the

mGCs via PPs [see Fig. 1a] (Myers and Scharfman

2009, 2011; Myers et al. 2013; Scharfman and Myers

2016; Chavlis et al. 2017; Kim and Lim 2022a, 2022b). We

characterize pattern separation between the input patterns

of the EC cells and the output patterns of the mGCs via

integration of the governing equations (1). In each real-

ization, we have a break stage (0 � 300 ms) (for which the

network reaches a stable state), and then a stimulus stage

(300 � 1; 300 ms) follows; the stimulus period Ts (for

which network analysis is done) is 1,000 ms. During the

stimulus stage, we get the output firings of the mGCs. For

characterization of pattern separation between the input

and the output patterns, 30 realizations are made.

Table 2 Parameters for the

synaptic currents I
ðBC;SÞ
R ðtÞ into

the BCs (basket cells). The BCs

receive the excitatory inputs

from the EC (entorhinal cortex)

cells, the GCs (granulce cells;

both mGCs and imGCs) and the

MCs (mossy cells) and the

inhibitory input from the HIPP

(hilar perforant path-associated)

cells

Target cells (T) BC

Source cells (S) EC GC MC HIPP

Receptor (R) AMPA NMDA AMPA NMDA AMPA NMDA GABA

K
ðT;SÞ
R

0.75 0.13 0.38 0.02 6.14 0.36 9.22

sðT ;SÞR;r
2.0 6.6 2.5 10.0 2.5 10.0 0.4

sðT ;SÞR;d
6.3 126.0 3.5 130.0 3.5 130.0 5.8

sðT ;SÞR;l
3.0 3.0 0.8 0.8 3.0 3.0 1.6

V
ðSÞ
R

0.0 0.0 0 0 0.0 0.0 - 86.0

Table 3 Parameters for the synaptic currents I
ðT ;SÞ
R ðtÞ into the MCs

(mossy cells) and the HIPP (hilar perforant path-associated) cells. The

MCs receive the excitatory inputs from the GCs (granule cells; both

mGCs and imGCs) and the inhibitory inputs from the BCs (basket

cells) and the HIPP (hilar perforant-associated) cells. The HIPP cells

receive the excitatory inputs from the GCs (both mGCs and imGCs)

and the MCs

Target cells (T) MC HIPP cell

Source cells (S) GC BC HIPP cell GC MC

Receptor (R) AMPA NMDA GABA GABA AMPA NMDA AMPA NMDA

K
ðT;SÞ
R

9.58 1.71 3.08 2.05 0.08 0.004 4.09 0.25

sðT ;SÞR;r
0.5 4.0 0.3 0.5 0.3 1.2 0.9 3.6

sðT ;SÞR;d
6.2 100.0 3.3 6.0 0.6 22.2 3.6 133.7

sðT ;SÞR;l
1.5 1.5 1.5 1.0 1.5 1.5 3.0 3.0

V
ðSÞ
R

0.0 0.0 - 86.0 - 86.0 0.0 0.0 0.0 0.0
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The input patterns of the 400 EC cells and the output

patterns of the 2,000 mGCs are given in terms of binary

representations (Myers and Scharfman 2009; Chavlis et al.

2017); active and silent cells are denoted by 1 and 0,

respectively. Here, active cells exhibit at least one spike

during the stimulus stage. In each realization, we first make

a random choice of an input pattern AðinÞ for the EC cells,

and then construct another input patterns B
ðinÞ
i (i ¼ 1; . . .; 9)

from the base input pattern AðinÞ with the overlap per-

centage POL ¼ 90 %; . . .; and 10 %, respectively, as fol-

lows (Myers and Scharfman 2009; Chavlis et al. 2017).

Among the active EC cells in the pattern AðinÞ, we ran-

domly choose active cells for the pattern BðinÞ with the

probability POL % (e.g., in the case of POL ¼ 60 %, we

randomly choose 24 active EC cells among the 40 active

EC cells in the base pattern AðinÞ). The remaining active EC

cells in the pattern BðinÞ are randomly chosen in the sub-

group of silent EC cells in the pattern AðinÞ.
We characterize pattern separation between the input

and the output patterns by changing the overlap percentage

POL. For a pair of input (l ¼ inÞ or output (l ¼ out) pat-

terns, AðlÞ and BðlÞ, their pattern distance D
ðlÞ
p is given by

Chavlis et al. (2017); Kim and Lim (2022c):

DðlÞ
p ¼ OðlÞ

D
ðlÞ
a

: ð12Þ

Here, D
ðlÞ
a is the average activation degree of the two pat-

terns AðlÞ and BðlÞ:

DðlÞ
a ¼ ðDðAðlÞÞ

a þ D
ðBðlÞÞ
a Þ

2
: ð13Þ

The average activation degree D
ðlÞ
a is just the average one

of the activation degrees of the two patterns AðlÞ and BðlÞ,

D
ðAðlÞÞ
a and D

ðBðlÞÞ
a . For each pattern, its activation degree is

given by the percentage of active cells (represented by ‘‘1’’

in its binary representation). OðlÞ in Eq. (12) is the

orthogonalization degree between AðlÞ and BðlÞ, denoting

their ‘‘dissimilarity’’ degree. Then, as the average activa-

tion degree is lower and the orthogonalization degree is

higher, the pattern distance between the two patterns AðlÞ

and BðlÞ increases.

Let faðlÞi g and fbðlÞi g (i ¼ 1; . . .;Nl) be the binary rep-

resentations [1 (0) for the active (silent) cell] of the two

patterns AðlÞ and BðlÞ (l ¼ in or out), respectively; Nin ¼
NEC ¼ 400 and Nout ¼ NGC ¼ 2; 000. Then, the Pearson’s

correlation coefficient qðlÞ between the two patterns AðlÞ

and BðlÞ is given by

qðlÞ ¼
PNl

i¼1 Da
ðlÞ
i � DbðlÞiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNl

i¼1 Da
ðlÞ
i

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNl

i¼1 Db
ðlÞ
i

2
q : ð14Þ

Here, DaðlÞi ¼ a
ðlÞ
i � haðlÞi i, DbðlÞi ¼ b

ðlÞ
i � hbðlÞi i, and h� � �i

represents population average over all cells; the range of

qðlÞ is [-1, 1]. Then, the pattern correlation degree CðlÞ,
representing the ‘‘similarity’’ degree between the two pat-

terns, is given just by their Pearson’s correlation coefficient

qðlÞ:

CðlÞ ¼ qðlÞ: ð15Þ

Then, the orthogonalization degree OðlÞ; denoting the dis-

similarity degree between the two patterns, is given by Kim

and Lim (2022c):

OðlÞ ¼ ð1 � qðlÞÞ
2

; ð16Þ

where the range of OðlÞ is [0, 1].

With D
ðlÞ
a and OðlÞ, we can obtain the pattern distances of

Eq. (12), D
ðinÞ
p and D

ðoutÞ
p , for the input and the output

pattern pairs, respectively. Then, the pattern separation

degree Sd; representing the pattern separation efficacy, is

given by the ratio of D
ðoutÞ
p to D

ðinÞ
p :

Sd ¼
D

ðoutÞ
p

D
ðinÞ
p

: ð17Þ

If Sd [ 1, the output pattern pair of the mGCs is more

dissimilar than the input pattern pair of the EC cells, which

results in occurrence of pattern separation. Otherwise (i.e.,

Sd\1), no pattern separation occurs; instead, pattern

‘‘convergence’’ (i.e., D
ðoutÞ
p \D

ðinÞ
p ) takes place.

As a sample example, we consider the case of

POL ¼ 60 %. Figure 3a1 shows the raster plots of spikes of

400 EC cells (i.e. a collection of spike trains of individual

EC cells) for the input patterns AðinÞ and BðinÞ for

POL ¼ 60 %. In this case, the activation degree D
ðinÞ
a is

chosen as 10 %, independently of the input patterns. Fig-

ure 3a2 shows the raster plots of spikes of 2,000 mGCs for

the output patterns AðoutÞ and BðoutÞ. As shown well in the

raster plots of spikes, the mGCs show sparser firings than

the EC cells. In this case, the average activation degree of

Eq. (13), D
ðoutÞ
a , is 6 % (which is obtained via 30 realiza-

tions). Figure 3b shows the plot of the average activation

degree D
ðlÞ
a versus the overlap percentage POL; red circles

represent the case of input patterns (l ¼ in) and blue

crosses denote the case of output patterns (l ¼ out). We

note that D
ðoutÞ
a ¼ 0:06 (i.e., 6 %), independently of POL.

Then, the sparsity ratio, Rs (¼ D
ðinÞ
a =D

ðoutÞ
a ), becomes
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1.667; the firing activity in the output patterns are 1.667

times as sparse as that in the the input patterns.

Figure 3c1, c2 show plots of the diagonal elements (0, 0)

and (1, 1) and the anti-diagonal elements (1, 0) and (0, 1)

for the spiking activity (1: active; 0: silent) in the pair of

input (l ¼ in) and output (l ¼ out) patterns AðlÞ and BðlÞ for

POL ¼ 60%, respectively. In each plot, the sizes of solid

circles, located at (0,0), (1,1), (1,0), and (0,1), are given by

the integer obtained by rounding off the number of

5 log10ðnpÞ (np: number of data at each location), and a

dashed fitted line is also given. In this case, the Pearson’s

correlation coefficients of Eq. (14) (obtained via 30

realizations) for the pairs of the input and the output pat-

terns are qðinÞ ¼ 0:5556 and qðoutÞ ¼ 0:3550, which corre-

spond to the slopes of the dashed fitted lines. Then, from

Eqs. (15) and (16), we obtain the average pattern correla-

tion degree CðlÞ and the average orthogonalization degrees

OðlÞ for the pairs of the input and the output patterns;

CðinÞ ¼ 0:5556; CðoutÞ ¼ 0:3550, OðinÞ ¼ 0:2222 and

OðoutÞ ¼ 0:3225.

Figures 3d, e show plots of the average pattern corre-

lation degree CðlÞ and the average orthogonalization degree

OðlÞ versus POL in the case of the input (red circle) and the

output (blue cross) patterns, respectively. Obviously, CðlÞ

and OðlÞ show oppositely-changing tendencies. Hence, it is

enough to discuss only the change in OðlÞ. In the case of the

pairs of the input patterns, with decreasing POL from 90 to

10 % , OðinÞ increases linearly from 0.0556 to 0.5. On the

other hand, in the case of the pairs of the output patterns,

OðoutÞ begins from a much larger value (0.2543), but slowly

increases to 0.3507 for POL ¼ 10 % (which is lower than

OðinÞ). Thus, the two lines of OðinÞ and OðoutÞ cross for

POL ’ 40 %. Hence, for POL [ 40 %, OðoutÞ is larger than

OðinÞ (i.e., the pair of output patterns is more dissimilar than

the pair of input patterns). In contrast, for POL\40 %,

OðoutÞ is less than OðinÞ (i.e., the pair of output patterns

becomes less dissimilar than the pair of input patterns).

With the average activation degrees D
ðlÞ
a and the average

orthogonalization degrees OðlÞ, we can obtain the pattern

distances D
ðlÞ
p of Eq. (12) for the pairs of input and output

patterns. Figure 3f shows plots of the pattern distance D
ðlÞ
p

versus POL in the case of the input (red circle) and the

output (blue cross) patterns. We note that, for all values of

POL, D
ðoutÞ
p [D

ðinÞ
p (i.e., the pattern distance for the pair of

output patterns is larger than that for the pair of input

patterns). However, with decreasing the overlap percentage

POL, the difference between D
ðoutÞ
p and D

ðinÞ
p is found to

decrease.

Finally, we obtain the pattern separation degree Sd of

Eq. (17) via the ratio of D
ðoutÞ
p to D

ðinÞ
p . Figure 3g shows

plots of the pattern separation degree Sd (representing the

pattern separation efficacy) versus POL. As POL is

decreased from 90 % to 10 %, Sd is found to decrease from

7.6273 to 1.1691. Hence, for all values of POL, pattern

separation occurs because Sd [ 1. However, the smaller

POL is, the lower Sd becomes. That is, pattern separation

efficacy becomes better for similar input patterns, while for

dissimilar input patterns, their pattern separation efficacy

becomes worse.

Fig. 3 Characterization of pattern separation between the input and

the output patterns in the presence of only the mGCs without imGCs;

l ¼ in (red) and l ¼ out (blue). (a1) Raster plots of spikes of ECs for

the input patterns AðinÞ and BðinÞ in the case of overlap percentage

POL ¼ 60%. (a2) Raster plots of spikes of GCs for the output patterns

AðoutÞ and BðoutÞ. (b) Plots of average activation degree DðlÞ
a versus POL

for the input (l ¼ in; red circle) and the output (l ¼ out, blue cross)

patterns. Plots of the diagonal elements (0, 0) and (1, 1) and the anti-

diagonal elements (1, 0) and (0, 1) for the spiking activity (1: active;

0: silent) in the pair of (c1) input (l ¼ in) and (c2) output (l ¼ out)

patterns AðlÞ and BðlÞ for POL ¼ 60%; sizes of solid circles, located at

(0,0), (1,1), (1,0), and (0,1), are given by the integer obtained by

rounding off the number of 5 log10ðnpÞ (np: number of data at each

location), and a dashed linear least-squares fitted line is also given.

Plots of (d) average pattern correlation degree CðlÞ, (e) average

orthogonalization degree OðlÞ, and (f) pattern distance DðlÞ
p versus POL

in the case of the input (l ¼ in; red circle) and the output (l ¼ out,
blue cross) patterns. (g) Plot of pattern separation degree Sd versus

POL. (Color figure online)
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Effect of the adult-born imGCs on pattern
separation

In this subsection, we consider a population, composed of

imGCs and mGCs; the fraction of the imGCs in the whole

population is 10 %. As shown in Fig. 2, as a result of

increased leakage reversal potential VL, the imGC has

lower firing threshold than the mGC (i.e., high excitabil-

ity), which results in high activation of the imGCs (Sahay

et al. 2011a, b; Aimone et al. 2011, 2009, 2010; Dieni

et al. 2016; Finnegan and Becker 2015). We also note that,

the imGC has low excitatory innervation, counteracting the

high excitability (Dieni et al. 2016; Finnegan and Becker

2015). In the case of the mGCs, the connection probability

pc from the EC cells and the MCs to the mGCs is 20 %,

while in the case of the imGCs, pc is decreased to 20 x %

[x (synaptic connectivity fraction); 0� x� 1]. Due to low

excitatory drive from the EC cells and the MCs, the acti-

vation degree of the imGCs becomes reduced. With

decreasing x from 1 to 0, we investigate the effect of high

excitability and low excitatory innervation of the imGCs on

the pattern separation efficacy of the mGCs.

For a given x, we consider 9 pairs of input patterns

ðAðinÞ;B
ðinÞ
i Þ ði ¼ 1; . . .; 9) with the overlap percentage

POL ¼ 90 %; . . .; and 10 %, respectively. All quantities for

the input patterns are independent of x. The activation

degree D
ðinÞ
a is 0.1 (10 %), independently of the pairs. Next,

we get the average Pearson’s correlation coefficient qðinÞ

between the two input patterns in the following way. We

first obtain the realization-averaged Pearson’s correlation

coefficients fhqðinÞðiÞirg (i ¼ 1; . . .; 9 corresponds to

POL ¼ 90 %; . . .; 10 %, respectively) via 30 realizations;

h� � �ir represents the average over 30 realizations. With

decreasing POL from 90 % to 10 %, hqðinÞðiÞir decreases

from 0.8889 to 0.0, respectively. As a representative value,

we get the average Pearson’s correlation coefficient

qðinÞ ð¼ 0:4444Þ; corresponding to the mean of

fhqðinÞðiÞirg over all the 9 pairs. Then, from Eqs. (15) and

(16), we get the average pattern correlation degree CðinÞ (=

0.4444) and the average orthogonalization degree OðinÞ (=

0.2778). In this way, qðinÞ; CðinÞ, and OðinÞ are obtained via

double averaging (i.e., averaging over 30 realizations and 9

pairs). Then, the pattern distance D
ðinÞ
p of Eq. (12) between

the two input patterns (given by the ratio of the average

orthogonalization degree to the average activation degree)

becomes 2.778.

As in the above case of input patterns, through double

averaging over 30 realizations and 9 pairs, we get the

average activation degrees D
ðXÞ
a ; the average Pearson’s

correlation coefficient qðXÞ; the average pattern correlation

degree CðXÞ, and the average orthogonalization degrees

OðXÞ in the populations of the imGCs (X ¼ im) and the

mGCs (X ¼ m). Figures 4a, b, c show plots of D
ðXÞ
a , CðXÞ,

and OðXÞ versus x [X ¼ im (blue solid circles) and X ¼ m

(red open circles)], respectively. Then, we get the pattern

distances D
ðXÞ
p of Eq. (12) (given by the ratio of OðXÞ to

D
ðXÞ
a ), which is shown in Fig. 4d. Finally, we obtain the

pattern separation degree S
ðXÞ
d of Eq. (17) via the ratio of

D
ðoutÞ
p to D

ðinÞ
p . Figure 4e shows plots of S

ðXÞ
d versus x. As

reference lines, horizontal dashed lines, representing D
ðoutÞ
a

(= 6 %), CðoutÞ (= 0.3582), OðoutÞ (= 0.3209), D
ðoutÞ
p (=

5.3483), and S�d (=1.9252) in the presence of only the mGC

(without the imGCs) are given in Fig. 4a, b, c, d, e,

Fig. 4 Effect of adult-born immature GCs (imGCs) on the pattern

separation. (a) Plots of the average activation degree DðXÞ
a versus x

(synaptic connectivity fraction). For clear presentation, we choose

two different scales for the vertical axis around DðXÞ
a ¼ 10. (b) Plots

of the average pattern correlation degree CðXÞ versus x. (c) Plots of the

average orthogonalization degree OðXÞ versus x. (d) Plots of the

pattern distance DðXÞ
p versus x. For clear presentation, we choose two

different scales for the vertical axis around DðXÞ
p ¼ 5. (e) Plots of the

pattern separation degree S
ðXÞ
d versus x. For clear presentation, we

choose two different scales for the vertical axis around S
ðXÞ
d ¼ 2. In

(a)–(e), imGCs (X ¼ im), mGCs (X ¼ m), and whole GCs (X ¼ w)

are denoted by blue solid circles, red open circles, and green crosses,

respectively. Horizontal dashed lines in (a)–(e) represent DðoutÞ
a (= 6

%), CðoutÞ (= 0.3582), OðoutÞ (= 0.3209), DðoutÞ
p (= 5.3483), and S�d

(=1.9252) in the presence of only mGCs (without imGCs), respec-

tively. (f) Plots of the pattern integration degree Id of the imGCs

versus x. (Color figure online)
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respectively; these values are obtained via averaging over 9

pairs in Fig. 3.

We first consider the case of x ¼ 1 (where the connec-

tion probability pc from the EC cells and the MCs to the

imGCs and the mGCs are the same, 20 %), and discuss the

effect of the young adult-born imGCs with high excitability

on the pattern separation of the mGCs (Aimone et al.

2009, 2010, 2011; Sahay et al. 2011a, b; Finnegan and

Becker 2015; Dieni et al. 2016). The imGCs exhibit high

activation due to lower firing threshold [i.e., their average

activation degree D
ðimÞ
a (= 45 %) becomes very high]. As a

result, in the population of the imGCs, output patterns

become highly overlapped (i.e, their average Pearson’s

correlation coefficient is very high), which leads to very

high average pattern correlation degree CðimÞ ð¼ 0:8692Þ
and very low average orthogonalization degree

OðimÞ ð¼ 0:0654Þ. Then, their pattern distance D
ðimÞ
p (=

0.145), given by the ratio of OðimÞ to D
ðimÞ
a , also becomes

very low. Consequently, the pattern separation degree

S
ðimÞ
d , given by the ratio of D

ðimÞ
p to D

ðinÞ
p , is 0.052. Since

S
ðimÞ
d \1, no pattern separation occurs, due to their high

excitability. On the other hand, the efficacy of pattern

integration (i.e., making association between patterns) is

very high due to high pattern correlation degree CðimÞ. We

introduce the pattern integration degree Id of the imGCs,

given by the ratio of the average pattern correlation degree

CðimÞ to the average pattern correlation degree CðinÞ for the

input patterns:

I d ¼
CðimÞ

CðinÞ ;
ð18Þ

which is in contrast to the pattern separation degree Sd of

Eq. (17). For x ¼ 1 the pattern integration degree of the

imGCs is high (i.e., I d ¼ 1:9559). Figure 4f shows plots of

Id versus x for the imGCs. With decreasing x from 1 to 0,

Id is increased from 1.9559 to 2.2502, because CðimÞ

increases from 0.8692 to 1. In the whole range of 0� x� 1,

the imGCs are good pattern integrators with Id [ 1.

In contrast, for x ¼ 1 the mGCs exhibit very sparse

firing activity [i.e., their average activation degree D
ðmÞ
a (=

1.1 %) of the mGCs becomes very low] due to strong

feedback inhibition from the BCs and the HIPP cells

(caused by the high activation of the imGCs); imGC !
BC/HIPP ! mGC. In this case, the average Pearson’s

correlation coefficient between the output-pattern pair

becomes very low, which leads to high average orthogo-

nalization degree OðmÞ (= 0.4016). Then, their pattern

distance P
ðmÞ
d (= 36.509) becomes very high. Accordingly,

the pattern separation degree S
ðmÞ
d is 13.142. Thus, the

pattern separation efficacy of the mGCs becomes very high

(i.e., the mGCs become good pattern separators), due to

high sparsity arising from high excitability of the imGCs.

Next, with decreasing x from 1, we consider the effect of

low excitatory innervation for the imGCs, counteracting

the effect of high excitability (Dieni et al. 2016; Finnegan

and Becker 2015). In the case of mGCs, they receive

excitatory inputs from the EC cells and the hilar MCs with

the connection probability pc (= 20 %). On the other hand,

the imGCs receive low excitatory drive from the EC cells

and the MCs with lower connection probability pc ð¼
20 x %Þ (x : synaptic connectivity fraction; 0� x� 1). As

x is decreased from 1, D
ðimÞ
a of the imGCs decreases so

rapidly, and their effect becomes weaker. Then, the feed-

back inhibition to the mGCs is also decreased, and hence

D
ðmÞ
a of the mGCs becomes increased. In the whole range

of 0� x� 1, the average pattern correlation degree CðimÞ of

the imGCs are very high, and hence they become good

pattern integrators with the pattern integration degree

Id [ 1 [see Fig. 4f]. On the other hand, due to increase in

D
ðmÞ
a with decreasing x from 1, the pattern separation effi-

cacy of the mGCs decreases from the high value (S
ðmÞ
d ¼

13.142) for x ¼ 1 to a limit value (S
ðmÞ
d ¼ 1.495) for x ¼ 0.

In the above way, pattern separation efficacy of the

mGCs varies through competition between high excitabil-

ity and low excitatory innervation of the imGCs. In the

case that the effect of high excitability is larger than that of

low excitatory effect for 1� x[ x� ð’ 0:4Þ, the pattern

separation of the mGCs becomes enhanced because their

pattern separation degree S
ðmÞ
d is larger than S�

d ð¼ 1:9253Þ
[i.e., pattern separation degree in the presence of only the

mGCs without imGCs, represented by the horizontal

dashed line in Fig. 4e]. On the other hand, for x� [ x� 0,

the effect of low excitatory innervation becomes larger

than that of high excitability, and hence the pattern sepa-

ration efficacy of the mGCs becomes worsened because

S
ðmÞ
d \S�

d.

Fig. 5 Pattern integration in the presence of only imGCs. (a) Plots of

pattern correlation degrees CðlÞ versus POL; l ¼ in (red) and l ¼ out
(blue). (b) Plots of integration degree I d versus POL; for POL ¼ 10 %

Id becomes infinity (not shown) because CðinÞ ¼ 0. In (a) and (b), the

solid, dashed, and dotted lines correspond to the cases of x ¼ 1, 0.6,

and 0.1, respectively. (Color figure online)
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Finally, to more clearly understand the role of the

imGCs, we consider a homogeneous population of only the

imGCs (without the mGCs), which is in contrast to the case

of Sect. 3.1 where population of only mGCs without

imGCs is considered. Figure 5a shows the plots of the

pattern correlation degree CðlÞ versus POL for the pair of

input patterns [l ¼ in (red)] and output patterns [l ¼ out

(blue)]; in the case of l ¼ out, the solid, dashed, and dotted

lines correspond to the cases of x ¼ 1, 0.6, and 0.1,

respectively. Then, the pattern integration degree I d is

given by the ratio of CðoutÞ to CðinÞ. Figure 5b shows I d

versus POL. [We note that in the case of POL ¼ 10 %,

CðinÞ ¼ 0; and hence I d becomes infinity (not shown).] We

note that, as POL is decreased, Id becomes increased, in

contrast to the case of Sd in Fig. 3. Thus, the pattern

integration efficacy of the imGCs becomes better for dis-

similar input patterns, while it becomes worse for similar

input patterns. Hence, the case of pattern integration of the

imGCs is in contrast to the case of pattern separation of the

mGCs where their pattern separation efficacy becomes

better for similar input patterns. We also note that, as x is

decreased from 1, the effect of imGCs becomes weaker,

leading to decrease in I d.

Summary and discussion

We developed a spiking neural network of the DG, com-

posed of mGCs (born during development) and imGCs

(born via adult neurogenesis), and investigated the effect of

the young adult-born imGCs on the pattern separation of

the mGCs. In contrast to the mGCs, the imGCs exhibit two

competing distinct properties of high excitability (causing

high activation) and low excitatory innervation (reducing

activation degree). Due to low excitatory innervation, the

connection probability pc from the excitatory source cells

(EC cells and MCs) to the target imGCs is given by 20 x

%; 0� x� 1 (x : synaptic connectivity fraction). Here we

are considering imGCs with 3–4 weeks of age. The case of

x ¼ 0 may be thought to correspond to � 21 days of age.

Since then (i.e., with increasing x). the degree of synaptic

maturity begins to increase.

The pattern separation degree S
ðmÞ
d of the mGCs was

found to vary via competition between high excitability

and low excitatory innervation of the imGCs, which is well

shown in Fig. 6a. There exist two states I and II, divided at

the threshold x�ð’ 0:4Þ. The state I corresponds to

0� x\x�, while the state II corresponds to x�\x� 1. In

the state I with lower synaptic maturity, the effect of low

excitatory innervation to the imGCs is larger than the effect

of high excitability. Thus, activation degree D
ðimÞ
a of the

imGCs becomes lower. Then, inhibition to the mGCs

(imGC ! BC/HPP ! mGC) becomes reduced, leading to

increase in the activation degree D
ðmÞ
a of the mGCs. Due to

such increase in D
ðmÞ
a , pattern separation degree S

ðmÞ
d of the

mGCs becomes lower than S�
d (=1.9252) in the presence of

only mGCs without imGCs. In this way, in the state I

(where the effect of low excitatory innervation is domi-

nant), pattern separation of the mGCs becomes worsened.

On the other hand, in the state II with higher synaptic

maturity, the effect of high excitability becomes larger than

the effect of low excitatory innervation. Hence, the acti-

vation degree D
ðimÞ
a of the imGCs becomes higher, causing

strong feedback inhibition to the mGCs. Consequently, the

activation degree D
ðmÞ
a of the mGCs becomes lower. Due to

such sparsity of the mGCs, their pattern separation efficacy

becomes enhanced, which seems to be in consistent with

experimental results in previous studies (Sahay et al.

2011a, 2011b; Nakashiba et al. 2012).

We also examine the effect of fraction of the imGCs

(FðimÞ) on the pattern separation of the mGCs. For com-

parison, we consider another case of FðimÞ ¼ 5 %. Fig-

ure 6b shows plots of the pattern separation degree S
ðmÞ
d

versus x (synaptic connectivity fraction) for FðimÞ ¼ 10 %

(red) and 5 % (black). We note that these two cases provide

similar quantitative results; in the case of 10 % (5 %), the

threshold x� (dividing the two states I and II) is about 0.4

(0.27). Thus, the pattern separation efficacy of the mGCs

seems to be insensitive to the fraction of the imGCs (FðimÞÞ.
In contrast to the mGCs (pattern separators), the young

imGCs play the role of good pattern integrators. We also

note that the pattern separation efficacy of the mGCs

becomes better for similar input patterns, while the pattern

integration efficacy of the imGCs becomes better for

Fig. 6 (a): Diagram for states with lower (I) and higher (II) synaptic

maturity. The threshold value, dividing the states I and II, is

x� ’ 0:4. (b) Pattern separation degree S
ðmÞ
d of the mGCs for FðimÞ

(fraction of imGCs) = 10 % (red) and 5 % (black). Threshold values

x� ’ 0:4 and 0.27 for FðimÞ = 10 % and 5 %, respectively. (Color

figure online)
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dissimilar input patterns. In the homogeneous population of

only the mGCs (without the imGCs), memory storage

capacity (representing the number of distinct patterns

which may be stored and accurately recalled) could be

increased with pattern separation efficacy (facilitating the

pattern storage and retrieval) (Myers and Scharfman 2009;

Chavlis et al. 2017). In contrast, in a heterogeneous pop-

ulation of mGCs (pattern separators) and imGCs (pattern

integrators), the memory storage capacity might be opti-

mally maximized via mixed cooperative encoding through

pattern separation of the mGCs on similar input patterns

and pattern integration of the imGCs on dissimilar input

patterns (Aimone et al. 2009, 2010, 2011; Finnegan and

Becker 2015; Dieni et al. 2016). Thus, through mixed

encoding, memory resolution (corresponding to the extent

of information incorporated into memories) could be

increased, which would result in reduction in memory

interference. This speculation on increase in memory res-

olution via mixed encoding (through cooperation of pattern

separation and pattern integration) must be examined in

future works.

Finally, we discuss future works. During pattern sepa-

ration and pattern integration, sparsely synchronized

rhythms appear in the population of the mGCs and the

imGCs, respectively. Hence, it would be worthwhile to

investigate their population and individual firing behaviors

and to discuss their quantitative relationship with the pat-

tern separation and integration efficacy. As in Kim and Lim

(2022b, 2022c), population and individual firing behaviors

in the sparsely synchronized rhythms in the populations of

the mGCs (X ¼ m) and the imGCs (X ¼ im) may be

characterized in terms of the amplitude measure MðXÞ
a

(representing the population synchronization degree) and

the random phase-locking degree L
ðXÞ
d (characterizing the

regularity of individual single-cell discharges), respec-

tively. Then, we could investigate the quantitative rela-

tionship between MðXÞ
a and L

ðXÞ
d of the sparsely

synchronized rhythms of the mGCs and the imGCs and the

pattern separation degree S
ðmÞ
d of the mGCs and the pattern

integration degree I d of the imGCs, respectively. Next, we

also note that the pyramidal cells in the CA3 provide

backprojections to the mGCs via polysynaptic connections

(Myers and Scharfman 2011; Myers et al. 2013; Scharfman

and Myers 2016). For example, the pyramidal cells send

disynaptic inhibition to the mGCs, mediated by the BCs

and the HIPP cells in the DG, and they provide trisynaptic

inputs to the mGCs, mediated by the MCs (pyramidal cells

! MC ! BC or HIPP ! mGC). These inhibitory back-

projections may decrease the activation degree of the

mGCs, leading to improvement of pattern separation in the

population of the mGCs. Hence, in future work, it would be

meaningful to take into consideration the backprojection

for the study of pattern separation in the combined DG-

CA3 network. Moreover, in the DG-CA3 network, we

could examine the memory storage capacity by getting

correct response percentage for a partial or noisy version of

cue input patterns in the homogeneous population of only

the mGCs and in a heterogeneous population of the mGCs

and the imGCs (Myers and Scharfman 2011). Then, we

could determine which one of the purely sparse encoding

(homogeneous case) and the mixed encoding (heteroge-

neous case) would be superior.
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Buckmaster PS, Jongen-Rêlo AL (1999) Highly specific neuron loss

preserves lateral inhibitory circuits in the dentate gyrus of

kainite-induced epileptic rats. J Neurosci 19:9519–9529

Buckmaster PS, Wenzel HJ, Kunkel DD, Schwartzkroin PA (1996)

Axon arbors and synaptic connections of hippocampal mossy

cells in the rat in vivo. J Comp Neurol 366:271–292

Buckmaster PS, Yamawaki R, Zhang GF (2002) Axon arbors and

synaptic connections of a vulnerable population of interneurons

in the dentate gyrus in vivo. J Comp Neurol 445:360–373

Cameron HA, Mckay RDG (2001) Adult neurogenesis produces a

large pool of new granule cells in the dentate gyrus. J Comp

Neurol 435:406–417

Chavlis S, Petrantonakis PC, Poirazi P (2017) Dendrites of dentate

gyrus granule cells contribute to pattern separation by control-

ling sparsity. Hippocampus 27:89–110

Chiang PH, Wu PY, Kuo TW, Liu YC, Chan CF, Chien TC, Cheng

JK, Huang YY, Chiu CD, Lien CC (2012) GABA is depolarizing

in hippocampal dentate granule cells of the adolescent and adult

rats. J Neurosci 32:62–67

Christian KM, Ming GI, Song H (2020) Adult neurogenesis and the

dentate gyrus: predicting function from form. Behav Brain Res

379:112346

Coultrip R, Granger R, Lynch G (1992) A cortical model of winner-

take-all competition via lateral inhibition. Neural Netw 5:47–54

Dieni CV, Panichi R, Aimone JB, Kuo CT, Wadiche JI, Overstreet-

Wadiche L (2016) Low excitatory innervation balances high

intrinsic excitability of immature dentate neurons. Nat Commun

7:11313

Dijk van MT, Fenton AA (2018) On how the dentate gyrus

contributes to memory discrimination. Neuron 98:832–845

Espinoza C, Guzman SJ, Zhang X, Jonas P (2018) Parvalbumin?

interneurons obey unique connectivity rules and establish a

powerful lateral inhibition microcircuit in dentate gyrus. Nat

Commun 9:4605

Finnegan R, Becker S (2015) Neurogenesis paradoxically decreases

both pattern separation and memory interference. Front Syst

Neurosci 9:136
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