
RESEARCH ARTICLE

Influence of various temporal recoding on pavlovian eyeblink
conditioning in the cerebellum

Sang-Yoon Kim1
• Woochang Lim1

Received: 13 July 2020 / Revised: 8 February 2021 / Accepted: 10 March 2021 / Published online: 27 March 2021
� The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
We consider the Pavlovian eyeblink conditioning (EBC) via repeated presentation of paired conditioned stimulus (tone)

and unconditioned stimulus (US; airpuff). In an effective cerebellar ring network, we change the connection probability pc
from Golgi to granule (GR) cells, and make a dynamical classification of various firing patterns of the GR cells. Individual

GR cells are thus found to show various well- and ill-matched firing patterns relative to the US timing signal. Then, these

variously-recoded signals are fed into the Purkinje cells (PCs) through the parallel-fibers (PFs). Based on such unique

dynamical classification of various firing patterns, we make intensive investigations on the influence of various temporal

recoding (i.e., firing patterns) of the GR cells on the synaptic plasticity of the PF-PC synapses and the subsequent learning

process for the EBC. We first note that the variously-recoded PF signals are effectively depressed by the (error-teaching)

instructor climbing-fiber (CF) signals from the inferior olive neuron. In the case of well-matched PF signals, they are

strongly depressed through strong long-term depression (LTD) by the instructor CF signals due to good association

between the in-phase PF and the instructor CF signals. On the other hand, practically no LTD occurs for the ill-matched PF

signals because most of them have no association with the instructor CF signals. This kind of ‘‘effective’’ depression at the

PF-PC synapses coordinates firings of PCs effectively, which then makes effective inhibitory coordination on the cerebellar

nucleus neuron [which elicits conditioned response (CR; eyeblink)]. When the learning trial passes a threshold, acquisition

of CR begins. In this case, the timing degree T d of CR becomes good due to presence of the ill-matched firing group which

plays a role of protection barrier for the timing. With further increase in the number of trials, strength S of CR (corre-

sponding to the amplitude of eyelid closure) increases due to strong LTD in the well-matched firing group, while its timing

degree T d decreases. In this way, the well- and the ill-matched firing groups play their own roles for the strength and the

timing of CR, respectively. Thus, with increasing the number of learning trials, the (overall) learning efficiency degree Le

(taking into consideration both timing and strength of CR) for the CR is increased, and eventually it becomes saturated.

Finally, we also discuss dependence of the variety degree for firing patterns of the GR cells and the saturated learning

efficiency degree Le of the CR on pc and their relations.
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Introduction

The cerebellum plays a crucial role in precise temporal and

spatial motor control for coordination of voluntary move-

ments (e.g., locomotion, balance, and posture), leading to

smooth and balanced body movement (Ito

1984, 2002a, 2012). In addition, it also participates in

higher cognitive functions (e.g., attention, language, and

speech) (Ito 2002a, 2012). The purpose of cerebellar motor

learning is to carry out precise timing (associated with

temporal information of movement) and gain (related to

& Woochang Lim

wclim@icn.re.kr

Sang-Yoon Kim

sykim@icn.re.kr

1 Institute for Computational Neuroscience and Department of

Science Education, Daegu National University of Education,

Daegu 42411, Korea

123

Cognitive Neurodynamics (2021) 15:1067–1099
https://doi.org/10.1007/s11571-021-09673-2(0123456789().,-volV)(0123456789().,- volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11571-021-09673-2&amp;domain=pdf
https://doi.org/10.1007/s11571-021-09673-2


spatial information of movement) control for movements

(Yamazaki and Nagao 2012). Experimental studies on

timing and gain control for eye movements have been done

in the two kinds of paradigms; (1) timing control for the

Pavlovian eyeblink conditioning (EBC) (Gormezano et al.

1983; Ivry 1996; Mauk and Donegan 1997; Medina et al.

2000b; Christian and Thompson 2003; Ivry and Spencer

2004; Ohyama et al. 2003)and (2) gain control for the

vestibulo-ocular reflex and the optokinetic response (Ito

1984, 1998).

Here, we are interested in the Pavlovian EBC [see

Fig. 1a] which is a representative example for the classical

conditioning (Wagner and Brandon 1989). An animal (e.g.,

rabbit, rat, or mouse) receives repeated presentations of

paired conditioned stimulus (CS; tone) and (eyeblink-

eliciting) unconditioned stimulus (US; airpuff). When the

training trial passes a threshold, the animal acquires the

ability to elicit eyelid conditioned response (CR; acquisi-

tion of learned eyeblink) via learning representation of the

time passage between the onsets of CS and US (i.e., the

animal becomes conditioned to close its eye in response to

the tone CS with a time delay equal to the inter-stimulus

interval (ISI) between the CS and the US onsets). The CRs

exhibit two distinct features: (1) gradual acquisition of CR

(i.e., CRs are acquired gradually over many training trials

of repeated CS-US pairings) (Hilgard and Marquis

1935, 1936; Schneiderman et al. 1962; Skelton 1988;

Ivarsson and Svesson 2000) and (2) adaptive timing of CR

(i.e., CRs are well timed such that the time of peak eyelid

closure matches well the ISI between the onsets of CS and

US) (Boneau 1958; Mauk and Ruiz 1992; Domingo et al.

1997; Freeman et al. 2003; Koekkoek et al. 2003).

Experimental works on EBC have been done in several

animal species such as humans (Hilgard and Campbell

1936), monkeys (Hilgard and Marquis 1936), dogs (Hil-

gard and Marquis 1935), ferrets (Ivarsson and Svesson

2000), rabbits (Schneiderman et al. 1962), rats (Skelton

1988), and mice (Heiney et al. 2014). Particularly, since a

series of groundbreaking experiments in rabbits (McCor-

mick et al. 1982; McCormick and Thomson 1984), EBC in

restrained rabbits has served as a good model for motor

learning.

Marr (1969) and, later, Albus (1971) formulated their

seminal theory for cerebellar motor learning on the basis of

its structure. Particularly, they paid attention to the recur-

rent network between the granule (GR) and the Golgi (GO)

cells as a device of representation of spatial information

(i.e., spatial coding). The input spatial patterns, conveyed

via the mossy fibers (MFs), become more sparse and dis-

similar to each other (i.e., pattern separation occurs)

through recoding procedure in the granular layer composed

of GR and GO cells. These recoded inputs are conveyed

into the Purkinje cells (PCs) through the parallel fibers

(PFs) (corresponding to the axons of GR cells). In addition

to the PF recoded signals, the PCs also receive the error-

teaching signals through the climbing-fiber (CF) from the

inferior olive (IO) neuron. We assume that the PF-PC

synapses are the only synapses where motor learning takes

place. Thus, synaptic plasticity (i.e., potentiation or

depression of synaptic strengths) may occur at the PF-PC

synapses. It is assumed by Marr (1969)that a Hebbian type

of long-term potentiation (LTP) occurs at the PF-PC

synapses when both the PF and the CF signals are con-

junctively excited (Hebb 1949; Brindley 1964). In oppo-

sition to Marr’s learning via LTP, it is assumed by Albus

(1971)that an anti-Hebbian type of long-term depression

(LTD) takes place in the case of conjunctive excitations of

both the PF and the CF signals. In the case of Albus’

learning via LTD, PCs learn when to stop their inhibition

(i.e. when to disinhibit) rather than when to fire, because

their firing activities become reduced. Several later

experimental works have provided the support for the

Albus’ learning via LTD (Ito et al. 1982; Ito and Kano

1982; Sakurai 1987). Thus, LTD became established as a

(a)

(b1) (b2)

(c)

Fig. 1 Pavlovian eyeblink conditioning (EBC). a Eyelid conditioned

response (CR) (i.e., learned eyeblink) via repeated presentation of

paired CS (conditioned stimulus) and US (unconditioned stimulus).

Firing rates of b1 transient conditioned stimulus (TCS) for resetting

and b2 sustained conditioned stimulus (SCS) (EBC signal). c Firing

rate of transient unconditioned stimulus (US) for timing (eliciting

unconditioned response)
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kind of synaptic plasticity for motor learning in the cere-

bellum (Ito 1989, 2000, 2001, 2002b).

A number of computational works for the EBC have

been done. Several artificial models have been proposed for

the time-passage representation (i.e., time coding) in the

cerebellum (Desmond and Moore 1988; Moore et al. 1989;

Gluck et al. 1990; Chapeau-Blondeau and Chauvet 1991;

Bullock et al. 1994; Fiala et al. 1996). However, these

artificial models lacked biological plausibility. A realistic

cerebellar model, based on many biological properties, has

been built by focusing on the recurrent loop between the

GR and the GO cells in the granular layer as a time-coding

device (Buonomano and Mauk 1994). Then, the realistic

model generated a temporal code based on the population

of active GR cells, and also, it was extended to reproduce

the experimental results of the Pavlovian EBC (Medina

et al. 2000a; Medina and Mauk 2000). However, the

computational mechanism to generate such a temporal

code was unclear mainly due to complexity of the realistic

model. To understand the computational mechanism for the

time coding, a rate-coding model was developed in a

simple recurrent inhibitory network, and its dynamics was

analyzed in both the numerical and analytical way (Ya-

mazaki and Tanaka 2005). This rate-coding model gener-

ated a non-recurrent sequence of active neurons,

corresponding to representation of a time-passage. Due to

randomness in the recurrent connections, individual neu-

rons exhibited random repetition of transitions between the

active (bursting) and the inactive (silent) states which were

persistent long-lasting ones. However, this rate-coding

model is free of actual time scales. A spiking neural net-

work model (with actual time scales) was built to examine

representation of time passage in the cerebellum (Ya-

mazaki and Tanaka 2007), and a large-scale computational

simulation was also performed to reproduce some features

of the EBC in the experiments.

In this work, as an effective spiking neural network for

study of the Pavlovian EBC, we employ a cerebellar ring

network, the basic framework of which was first developed

in our previous work for optokinetic response (OKR) (Kim

and Lim 2021). Our cerebellar ring network is essentially

the same as the square-lattice network in the previous

works used for both EBC (Yamazaki and Tanaka 2007)and

OKR (Yamazaki and Nagao 2012). The authors in (Ya-

mazaki and Tanaka 2007; Yamazaki and Nagao 2012)

explained that the structural parameters of their square-

lattice network model were selected on the basis of the

anatomical observations for the cat (Palkovits et al.

1971a, b, 1972). The parameters for the single neuron

models and the synaptic currents were also adopted from

the known physiological data. Hence, the square-lattice

network may be considered as a biological neural network,

based on the anatomical and the physiological data. For the

effective study of EBC, we use the one-dimensional ring

network. In comparison with the two-dimensional square-

lattice network, our ring network with simple architecture

has advantage for computational and analytical efficiency,

and its visual representation may be easily made. We note

that most of the parameters for the architecture, the single

LIF neuron models, and the synaptic currents in our ring

network are the same as those in the biological square-

lattice network (Yamazaki and Tanaka 2007; Yamazaki

and Nagao 2012). Furthermore, we also employ a refined

rule for the synaptic plasticity, based on the experimental

results (Safo and Regehr 2008). Thus, our (one-dimen-

sional) ring network becomes more effective for the study

of EBC than the (two-dimensional) square-lattice network.

In such an effective ring network, we vary the connec-

tion probability pc from GO to GR cells and make a

dynamical classification of various firing patterns of GR

cells. GR cells in the whole population are divided into GR

clusters. Then, the GR clusters show various well- and ill-

matched firing patterns with respect to the US (i.e., airpuff

unconditioned stimulus) timing signal (which is strongly

localized in the middle of each trial). Each firing pattern is

characterized in terms of its ‘‘matching’’ index, represent-

ing the similarity (or resemblance) degree between the

firing pattern and the US timing signal. To the best of our

knowledge, this kind of dynamical classification of firing

patterns of the GR cells is unique in the study of EBC.

Dynamical origin of these various firing patterns of the GR

cells is also investigated. It is thus found that, various total

synaptic inputs (including both the excitatory inputs via

MFs and the inhibitory inputs from the pre-synaptic GO

cells) into the GR clusters lead to generation of various

firing patterns (i.e. outputs) in the GR clusters.

Based on our unique dynamical classification of various

firing patterns in the GR clusters, we employ a refined rule

for synaptic plasticity (developed from the experimental

result in (Safo and Regehr 2008)), and investigate inten-

sively the influence of various temporal recoding (i.e.,

firing patterns) of the GR cells on synaptic plasticity at PF-

PC synapses and subsequent learning process. PCs (cor-

responding to the cerebellar output) receive both the vari-

ously-recoded PF signals from the GR cells and the error-

teaching CF signals from the IO neuron. The CF signals are

also well-matched with the US timing signal (supplied to

the IO neuron). In this case, CF and PF signals may be

considered as ‘‘instructors’’ and ‘‘students,’’ respectively.

Then, the well-matched PF student signals are strongly

depressed via strong LTD by the instructor CF signals due

to good association between the well-matched PF and CF

signals. On the other hand, practically no LTD occurs for

the ill-matched PF student signals because most of them

have no associations with the (well-matched) instructor CF
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signals. In this way, the student PF signals are effectively

depressed by the instructor CF signals.

During learning trials with repeated presentation of CS-

US pairs, the ‘‘effective’’ depression at PF-PC synapses

coordinates activations of PCs effectively, which then

makes effective inhibitory coordination on the cerebellar

nucleus (CN) neuron [which elicits CR (i.e., learned eye-

blink)]. When the learning trial passes a threshold, acqui-

sition of CR begins. In this case, the timing degree T d of

CR becomes good because of presence of the ill-matched

firing group which plays a role of protection barrier for the

timing. As the number of trials is further increased,

strength S of CR [denoting the amplitude of eyelid closure

(measured by the electromyography (EMG))] increases due

to strong LTD in the well-matched firing group, while its

timing degree T d decreases. In this way, the well- and the

ill-matched firing groups play their own roles for the

strength and the timing of CR, respectively. Thus, the

(overall) learning efficiency degree Le (considering both

timing and strength of CR) for the CR increases with the

training trial, and eventually it gets saturated.

In the above way, our dynamical classification of vari-

ous firing patterns of GR cells leads to clear understanding

of effective synaptic plasticity at the PF-PC synapses [de-

pending on the type (well- or ill-matched) of the PF sig-

nals] and the following learning procedure [including the

effective inhibitory coordination of PCs on the CN neuron

(evoking the CR)]. Consequently, understanding on the rate

of acquisition and the timing and strength of CR is

expected to be much enhanced via our approach for the

study of EBC.

This paper is organized as follows. In Sect. 2, an

effective cerebellar ring network for the Pavlovian EBC is

introduced. The governing equations for the population

dynamics in the ring network are also given, together with

a refined rule for the synaptic plasticity at the PF-PC

synapses. Then, in the main Sect. 3, we first consider a case

of pc ¼ 0:029 where the firing patterns of the GR cells are

the most various and the Pavlovian EBC learning is also

the most efficient, and make a detailed investigation of the

influence of various temporal recoding of GR cells on

learning for the Pavlovian EBC. Then, by varying pc, we

also investigate the effect of various temporal recoding of

the GR cells on the EBC, and discuss dependence of the

variety degree for firing patterns of the GR cells and the

timing degree T d; the strength S; and the learning effi-

ciency degree Le of the CR on pc. Finally, summary and

discussion are given in Sect. 4. In Appendix C, list of

abbreviations is given to help readers keep track of them.

Cerebellar ring network for the pavlovian
eyeblink conditioning

In this section, we describe our cerebellar ring network for

the Pavlovian EBC. The basic framework of such a ring

network was first developed in our previous work for OKR

(Kim and Lim 2021). Our cerebellar ring network is

essentially the same as the biological square-lattice net-

work (used for both EBC (Yamazaki and Tanaka 2007) and

OKR (Yamazaki and Nagao 2012)), based on the

anatomical and the physiological data (Palkovits et al.

1971a, b, 1972); most of the system parameters for the

structure, the single LIF neuron models, and the synaptic

currents in our ring network are the same as those in the

biological square-lattice network. We note advantages of

the ring network with simple architecture for computa-

tional and analytical efficiency and easy visual represen-

tation, in comparison with the square-lattice network.

Furthermore, we use a rule for the synaptic plasticity, based

on the experimental results (Safo and Regehr 2008). This

rule is a refined one for the LTD in comparison to the

square-lattice network. Thus, our (one-dimensional) ring

network becomes more effective for the study of EBC than

the (two-dimensional) square-lattice network. For the sake

of completeness, we also include a detailed explanation on

the cerebellar ring network within this paper.

Conditioned stimulus and unconditioned
stimulus

Figure 1a shows the Pavlovian EBC. During the training

trials, repeated presentations of paired tone CS and delayed

airpuff US are made to an animal (e.g., rabbit, rat, or

mouse). As the training trial passes a threshold, the animal

acquires the ability to elicit eyelid CR (i.e., acquisition of

learned eyeblink) through learning representation of the

time passage between the CS and the US onsets. Accord-

ingly, the animal gets conditioned to closes its eye in

response to the tone CS with a time delay equal to the ISI

between the onsets of CS and US.

In this subsection, we give explanations on the two

external input signals. We first consider the CS for the EBC

signal. When the CS is a tone, the pontine nucleus in the

pons receives the auditory information, and then it sends

the ‘‘context’’ signal for the EBC via MFs to both the GR

cells and the CN neuron. There are a transient CS for

resetting and a sustained CS (representing the tone) (Ya-

mazaki and Tanaka 2007). Each step (0\t\2000 msec)

for EBC learning consists of the trial stage

(0\t\1000 msec) and the break stage

(1000\t\2000 msec); t denotes the time. In the trial
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stage, the transient CS is modeled in terms of strong and

brief Poisson spike trains of 200 Hz for 0\t\5 msec and

the subsequent background Poisson spike trains of 5 Hz for

5\t\1000 msec. On the other hand, the sustained CS is

modeled in terms of Poisson spike trains of 30 Hz for

0\t\1000 msec. In the following break stage, the CS is

modeled in terms of the background Poisson spike trains of

5 Hz for 1000\t\2000 msec. The firing rates fTCSðtÞ and
fSCSðtÞ of the transient CS and the sustained CS are shown

in Figs. 1b1 and b2, respectively. These figures also show

the preparatory step for �500\t\0 msec where the CS is

modeled in terms of the background Poisson spike trains of

5 Hz; this preparatory step precedes just the 1st step for the

EBC learning.

Next, we consider the US for the desired timing signal.

When an airpuff US is delivered to the cornea of an eye,

sensory information is carried to the sensory trigeminal

nucleus (which extends through the whole of midbrain,

pons, and medulla and into the high cervical spinal cord).

Then, the trigeminal nucleus also sends the desired timing

signal to the IO. In the trial stage (0\t\1000 msec), the

US (eliciting unconditioned response) is modeled in terms

of the strong and brief Poisson spike trains of 25 Hz for a

short interval in the middle of the trial stage, t� �
Dt\t\t� þ Dt (t� ¼ 500 msec and Dt ¼ 5 msec) (Ya-

mazaki and Tanaka 2007). The firing rate fUSðtÞ of the US

is shown in Fig. 1c.

Framework of the cerebellar ring network
for the pavlovian EBC

A cerebellar ring network was first introduced in our pre-

vious work for OKR (Kim and Lim 2021). We note that our

cerebellar ring network is essentially the same as the bio-

logical square-lattice network whose parameters were

selected on the basis of the anatomical and the physio-

logical data (Palkovits et al. 1971a, b, 1972; Yamazaki and

Tanaka 2007; Yamazaki and Nagao 2012). The parameters

for the architecture, the the single LIF neuron models, and

the synaptic currents in the ring network are shown in

Tables 1, 2, 3, and 4 in Appendix A, most of which are the

same as those (see Tables 1, 2 and 3 in (Yamazaki and

Nagao 2012)) in the biological square-lattice network. As

in the famous small-world ring network (Watts and Stro-

gatz 1998; Strogatz 2001), a one-dimensional simple ring

architecture was developed, which is in contrast to the two-

dimensional square-lattice structure. As a result of such

simple architecture, this kind of ring network has advan-

tage for computational and analytical efficiency, and its

visual representation may also be easily made, in com-

parison to the square-lattice network.

Here, we employ such an efficient cerebellar ring net-

work for the Pavlovian EBC. Figure 2a shows the box

diagram for the cerebellar network. The granular layer,

corresponding to the input layer of the cerebellar cortex, is

composed of the excitatory GR cells and the inhibitory GO

cells. On the other hand, the Purkinje-molecular layer,

corresponding to the output layer of the cerebellar cortex,

consist of the inhibitory PCs and the inhibitory BCs (basket

cells). (The BCs were not considered in the original square-

lattice network model for the EBC (Yamazaki and Tanaka

2007), while they were included in the later improved

square-lattice network model for the OKR (Yamazaki and

Nagao 2012).) The MF context signals for the EBC are fed

from the pontine nucleus in the pons to the GR cells; each

GR cell receives two transient and two sustained CS sig-

nals via four MFs (i.e., two pairs of transient and sustained

CS signals are fed into each GR cell). Various temporal

recoding is made in the granular layer via inhibitory

coordination of GO cells on GR cells. Then, these various-

recoded outputs are fed via PFs to the PCs and the BCs in

the Purkinje-molecular layer.

The PCs receive another excitatory error-teaching CF

signals from the IO, along with the inhibitory inputs from

the BCs. Then, depending on the type of PF signals (i.e.,

well- or ill-matched PF signals), various PF (student) sig-

nals are effectively depressed by the error-teaching (in-

structor) CF signals. Such ‘‘effective’’ depression at the PF-

PC synapses coordinates firings of PCs effectively, which

then exert effective inhibitory coordination on the CN

neuron. The CN neuron also receives two excitatory sig-

nals; one transient and one sustained CS signals via MFs.

In the earlier trials, the CN neuron can not fire, due to

strong inhibition from the PCs. As the learning trial passes

a threshold, the CN neuron starts firing, and then it exerts

excitatory projections onto the eyeblink pre-motoneurons

in the midbrain which then supply motor commands to

eyeblink motoneurons. Thus, acquisition of CR begins (i.e.,

acquisition of learned eyeblink starts). This CN neuron also

provides inhibitory inputs to the IO neuron which also

receives the excitatory signals for the desired timing from

the trigeminal nucleus. Then, the IO neuron supplies

excitatory error-teaching CF signals to the PCs.

Figure 2b shows a schematic diagram for the granular-

layer ring network with concentric inner GR and outer GO

rings. Numbers represent granular-layer zones (bounded by

dotted lines); the numbers 1, 2, � � �, and NC represent the

1st, the 2nd, � � �, and the NCth granular-layer zones,

respectively. Thus, the total number of granular-layer

zones is NC; Fig. 2b shows an example for NC ¼ 32. In

each Ith zone (I ¼ 1; � � � ;NC), there exists the Ith GR

cluster on the inner GR ring. Each GR cluster consists of

NGR excitatory GR cells (solid circles). Then, location of

each GR cell may be denoted by the two indices (I, i)

which represent the ith GR cell in the Ith GR cluster, where
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i ¼ 1; � � � ;NGR. Here, we consider the case of NC ¼ 210

and NGR ¼ 50, and thus the total number of GR cells is

51,200. (For computational efficiency, NGR is decreased

from 100 in the square-lattice network (Yamazaki and

Tanaka 2007; Yamazaki and Nagao 2012) to 50. Then, to

keep the firing activity in the overall network, the con-

nection probability from the GR to the GO cells is

increased from 0.05 (Yamazaki and Nagao 2012)to 0.1,

and the synaptic weights from the GR cells to the PCs and

the BCs are increased from 0.003 to 0.006.) In this gran-

ular-layer ring network, the Ith zone covers the angular

range of ðI � 1Þh�GR\h\Ih�GR (h�GR ¼ 0:35�). On the outer

Table 1 Parameter values for

LIF neuron models with AHP

currents for the granule (GR)

cell and the Golgi (GO) cell in

the granular layer, the Purkinje

cell (PC) and the basket cell

(BC) in the Purkinje-molecular

layer, and the cerebellar nucleus

(CN) and the inferior olive (IO)

neurons

X-population Granular layer Purkinje-molecular layer CN neuron IO neuron

GR cell GO cell PC BC

CX 3.1 28.0 107.0 107.0 122.3 10.0

I
ðXÞ
L g

ðXÞ
L

0.43 2.3 2.32 2.32 1.63 0.67

V
ðXÞ
L

� 58.0 � 55.0 � 68.0 � 68.0 � 56.0 � 60.0

I
ðXÞ
AHP �g

ðXÞ
AHP

1.0 20.0 100.0 100.0 50.0 1.0

sðXÞAHP
5.0 5.0 5.0 2.5 2.5 10.0

V
ðXÞ
AHP

� 82.0 � 72.7 � 70.0 � 70.0 � 70.0 � 75.0

v
ðXÞ
th

� 35.0 � 52.0 � 55.0 � 55.0 � 38.8 � 50.0

I
ðXÞ
ext

0.0 0.0 250.0 0.0 0.0 0.0

Table 2 Parameter values for

synaptic currents I
ðT ;SÞ
R ðtÞ into

the granule (GR) and the Golgi

(GO) cells in the granular layer.

The GR cells receive excitatory

inputs via mossy fibers (MFs)

and inhibitory inputs from GO

cells. The GO cells receive

excitatory inputs via parallel

fibers (PFs) from GR cells

Target cells (T) GR GO

Source cells (S) MF MF GO PF PF

Receptor (R) AMPA NMDA GABA AMPA NMDA

�g
ðTÞ
R

0.18 0.025 0.028 45.5 30.0

J
ðT;SÞ
ij

4.0 4.0 10.0 0.00004 0.00004

V
ðSÞ
R

0.0 0.0 � 82.0 0.0 0.0

sðTÞR
1.2 52.0 7.0, 59.0 1.5 31.0, 170.0

A1, A2 0.43, 0.57 0.33, 0.67

Table 3 Parameter values for synaptic currents I
ðT;SÞ
R ðtÞ into the

Purkinje cells (PCs) and the basket cells (BCs) in the Purkinje-

molecular layer. The PCs receive two types of excitatory inputs via

parallel fibers (PFs) from granular (GR) cells and through climbing

fibers (CFs) from the inferior olive (IO) and one type of inhibitory

inputs from the BCs. The BCs receive excitatory inputs via PFs from

GR cells

Target cells (T) PC BC

Source cells (S) PF CF BC PF

Receptor (R) AMPA AMPA GABA AMPA

�g
ðTÞ
R

0.7 0.7 1.0 0.7

J
ðT;SÞ
ij

0.006 1.0 5.3 0.006

V
ðSÞ
R

0.0 0.0 � 75.0 0.0

sðTÞR
8.3 8.3 10.0 8.3

Table 4 Parameter values for the synaptic currents I
ðT;SÞ
R ðtÞ into the

cerebellar nucleus (CN) and the inferior olive (IO) neurons. The CN

neuron receives excitatory inputs via MFs and inhibitory inputs from

PCs. The IO neuron receives excitatory input via the US signal and

inhibitory input from the CN neuron

Target cells (T) CN IO

Source Cells (S) MF MF PC US CN

Receptor (R) AMPA NMDA GABA AMPA GABA

�g
ðTÞ
R

50.0 25.8 30.0 1.0 0.18

J
ðT;SÞ
ij

0.002 0.002 0.008 1.0 5.0

V
ðSÞ
R

0.0 0.0 -88.0 0.0 � 75.0

sðTÞR
9.9 30.6 42.3 10.0 10.0
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GO ring in each Ith zone, there exists the Ith inhibitory GO

cell (diamond), and thus the total number of GO cells is

NC.

We note that each GR cluster is bounded by 4 glomeruli

(corresponding to the axon terminals of the MFs) (stars) at

both boundaries of the GR cluster; at each boundary, a pair

of glomeruli (upper and lower ones) exist. (We note that the

number of glomeruli (=4), associated with each GR cluster,

is the same as that in the square-lattice network where each

GR cluster is bounded by 4 glomeruli located at 4 vertices of

the square lattice for the GR cluster.) GR cells within each

GR cluster share the same inhibitory and excitatory synaptic

inputs through their dendrites which contact the four glo-

meruli at both ends of the GR cluster. Each glomerulus

receives inhibitory inputs from nearby 81 (clockwise side:

41 and counter-clockwise side: 40) GO cells with a random

connection probability pcð¼ 0:029Þ. Hence, on average,

about 2 GO cell axons innervate each glomerulus. Thus,

each GR cell receives about 9 inhibitory inputs through 4

dendrites which synaptically contact the glomeruli at both

boundaries. In this way, each GR cell in the GR cluster

shares the same inhibitory synaptic inputs from nearby GO

cells through the intermediate glomeruli at both ends.

In addition, each GR cell shares the same four excitatory

inputs via the four glomeruli at both boundaries, because a

glomerulus receives an excitatory MF input. We note that

transient CS signals are supplied via the two upper glo-

meruli, while sustained CS signals are fed through the two

lower glomeruli. Here, we take into consideration

stochastic variability of synaptic transmission from a

glomerulus to GR cells, and supply independent Poisson

spike trains with the same firing rate to each GR cell for the

excitatory MF signals. In this GR-GO feedback system,

each GO cell receives excitatory synaptic inputs through

(a)

(b)

(c)

Fig. 2 Cerebellar ring network for the EBC. a Box diagram for the

cerebellar network. Lines with triangles and circles represent

excitatory and inhibitory synapses, respectively. GR (granule cell),

GO (Golgi cell), and PF (parallel fiber) in the granular layer, PC

(Purkinje cell) and BC (basket cell) in the Purkinje-molecular layer,

and other parts for CN (cerebellar nuclei), IO(inferior olive), MF

(mossy fiber), and CF (climbing fiber). b Schematic diagram for

granular-layer ring network with concentric inner GR and outer GO

rings. Numbers represent granular layer zones (bounded by dotted

lines) for NC ¼ 32. In each Ith zone (I ¼ 1; � � � ;NC), there exists the

Ith GR cluster on the inner GR ring. Each GR cluster consists of GR

cells (solid circles), and it is bounded by 4 glomeruli (stars). On the

outer GO ring in the Ith zone, there exists the Ith GO cell (diamonds).

c Schematic diagram for Purkinje-molecular-layer ring network with

concentric inner PC and outer BC rings. Numbers represent the

Purkinje-molecular-layer zones (bounded by dotted lines) for

NPC ¼ 16. In each Jth zone, there exist the Jth PC (solid circle) on

the inner PC ring and the Jth BC (solid triangle) on the outer BC ring
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PFs from GR cells in the nearby 49 (central side: 1,

clockwise side: 24 and counter-clockwise side: 24) GR

clusters with a random connection probability 0.1. Hence,

245 PFs (i.e. GR cell axons) innervate a GO cell.

Figure 2c shows a schematic diagram for the Purkinje-

molecular-layer ring network with concentric inner PC and

outer BC rings. Numbers represent the Purkinje-molecular-

layer zones (bounded by dotted lines). In each Jth zone

(J ¼ 1; � � � ;NPC), there exist the Jth PC (solid circles) on

the inner PC ring and the Jth BC (solid triangles) on the

outer BC ring. Here, we consider the case of NPC ¼ 16; and

thus the total numbers of PC and BC are 16, respectively.

In this case, each Jth (J ¼ 1; � � � ;NPC) zone covers the

angular range of ðJ � 1Þh�PC\h\Jh�PC; where h
�
PC ’ 22:5�

(corresponding to about 64 zones in the granular-layer ring

network). We note that variously-recoded PFs innervate

PCs and BCs. Each PC (BC) in the Jth Purkinje-molecular-

layer zone receives excitatory synaptic inputs via PFs from

all the GR cells in the 288 GR clusters (clockwise side: 144

and counter-clockwise side: 144 when starting from the

angle h ¼ ðJ � 1Þh�PC in the granular-layer ring network).

Thus, each PC (BC) is synaptically connected via PFs to

the 14,400 GR cells (which corresponds to about 28 % of

the total GR cells). In addition to the PF signals, each PC

also receives inhibitory inputs from nearby 3 BCs (central

side: 1, clockwise side: 1 and counter-clockwise side: 1)

and excitatory error-teaching CF signal from the IO.

Here, for simplicity, we consider just one CN neuron

and one IO neuron. Both excitatory inputs (corresponding

to one transient and one sustained CS signals) via 2 MFs

and inhibitory inputs from all the 16 PCs are fed into the

CN neuron. Then, the CN neuron provides excitatory input

to the eyeblink pre-motoneurons in the midbrain and also

supplies inhibitory input to the IO neuron. One additional

excitatory desired timing signal from the trigeminal

nucleus is also fed into the IO neuron. Then, through

integration of both excitatory and inhibitory inputs, the IO

neuron provides excitatory error-teaching CF signals to the

PCs.

Elements of the cerebellar ring network

As elements of the cerebellar ring network, we choose

leaky integrate-and-fire (LIF) neuron models (Gerstner and

Kistler 2002). Here, the LIF neuron models incorporate

additional afterhyperpolarization (AHP) currents that

determine refractory periods. This LIF neuron model is one

of the simplest spiking neuron models. Because of its

simplicity, it may be easily analyzed and simulated. Hence,

it has been very popularly employed as a neuron model.

Dynamics of states of individual neurons in the X pop-

ulation are governed by the following equations:

CX
dv

ðXÞ
i

dt
¼ �I

ðXÞ
L;i � I

ðXÞ
AHP;i þ I

ðXÞ
ext � I

ðXÞ
syn;i; i ¼ 1; � � � ;NX;

ð1Þ

where NX is the total number of neurons in the X popula-

tion, X ¼ GR and GO in the granular layer, X ¼ PC and

BC in the Purkinje-molecular layer, and in the other parts

X ¼ CN and IO. The state of the ith neuron in the X

population at a time t (msec) is characterized by its

membrane potential v
ðXÞ
i (mV), and CX (pF) denotes the

membrane capacitance of the cells in the X population. The

time-evolution of v
ðXÞ
i ðtÞ is governed by 4 types of currents

(pA) into the ith neuron in the X population; the leakage

current I
ðXÞ
L;i , the AHP current I

ðXÞ
AHP;i, the external constant

current I
ðXÞ
ext (independent of i), and the synaptic current

I
ðXÞ
syn;i.

We consider a single LIF neuron model [without the

AHP current and the synaptic current in Eq. (1)] which

describes a simple parallel resistor-capacitor circuit. Here,

the leakage term is due to the resistor and the integration of

the external current is due to the capacitor which is in

parallel to the resistor. Thus, in Eq. (1), the 1st type of

leakage current I
ðXÞ
L;i for the ith neuron in the X population is

given by:

I
ðXÞ
L;i ¼ g

ðXÞ
L ðvðXÞi � V

ðXÞ
L Þ; ð2Þ

where g
ðXÞ
L and V

ðXÞ
L are conductance (nS) and reversal

potential for the leakage current, respectively.

The ith neuron fires a spike when its membrane potential

v
ðXÞ
i reaches a threshold v

ðXÞ
th at a time t

ðXÞ
f ;i . Then,the 2nd

type of AHP current I
ðXÞ
AHP;i follows after firing (i.e., t� t

ðXÞ
f ;i ):

I
ðXÞ
AHP;i ¼ g

ðXÞ
AHPðtÞðv

ðXÞ
i � V

ðXÞ
AHPÞfor t� t

ðXÞ
f ;i ; ð3Þ

where V
ðXÞ
AHP is the reversal potential for the AHP current.

The conductance g
ðXÞ
AHPðtÞ is given by an exponential-decay

function:

g
ðXÞ
AHPðtÞ ¼ �g

ðXÞ
AHPe

�ðt�t
ðXÞ
f ;i

Þ=sðXÞ
AHP ; ð4Þ

where �g
ðXÞ
AHP and sðXÞAHP are the maximum conductance and

the decay time constant for the AHP current. As sðXÞAHP

increases, the refractory period becomes longer.

The 3rd type of external constant current I
ðXÞ
ext for spon-

taneous firing is provided to only PCs because of their high

spontaneous firing rate (Thach 1968; Häusser and Clark

1997). In Appendix A, Table 1 shows the parameter values

for the capacitance CX , the leakage current I
ðXÞ
L , the AHP

current I
ðXÞ
AHP, and the external constant current I

ðXÞ
ext . These
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values were adopted from physiological data (Yamazaki

and Tanaka 2007; Yamazaki and Nagao 2012).

Three kinds of synaptic currents

Here, we are concerned about the 4th type of synaptic

current I
ðXÞ
syn;i into the ith neuron in the X population in

Eq. (1). It is composed of the following 3 kinds of synaptic

currents:

I
ðXÞ
syn;i ¼ I

ðX;YÞ
AMPA;i þ I

ðX;YÞ
NMDA;i þ I

ðX;ZÞ
GABA;i: ð5Þ

Here, I
ðX;YÞ
AMPA;i and I

ðX;YÞ
NMDA;i are the excitatory AMPA (a-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid)

receptor-mediated and NMDA (N-methyl-D-aspartate)

receptor-mediated currents from the pre-synaptic source Y

population to the post-synaptic ith neuron in the target X

population. In contrast, I
ðX;ZÞ
GABA;i is the inhibitory GABAA (c-

aminobutyric acid type A) receptor-mediated current from

the pre-synaptic source Z population to the post-synaptic

ith neuron in the target X population.

As in the case of the AHP current, the R (= AMPA,

NMDA, or GABA) receptor-mediated synaptic current

I
ðT ;SÞ
R;i from the pre-synaptic source S population to the ith

post-synaptic neuron in the target T population is given by:

I
ðT ;SÞ
R;i ¼ g

ðT ;SÞ
R;i ðtÞðvðTÞi � V

ðSÞ
R Þ; ð6Þ

where g
ðT ;SÞ
ðR;iÞ ðtÞ and V

ðSÞ
R are synaptic conductance and

synaptic reversal potential (determined by the type of the

pre-synaptic source S population), respectively. We obtain

the synaptic conductance g
ðT ;SÞ
R;i ðtÞ from:

g
ðT ;SÞ
R;i ðtÞ ¼ �g

ðTÞ
R

XNS

j¼1

J
ðT ;SÞ
ij w

ðT ;SÞ
ij s

ðT ;SÞ
j ðtÞ; ð7Þ

where �g
ðTÞ
R and J

ðT ;SÞ
ij are the maximum conductance and the

synaptic weight of the synapse from the jth pre-synaptic

neuron in the source S population to the ith post-synaptic

neuron in the target T population, respectively. The inter-

population synaptic connection from the source S popula-

tion (with Ns neurons) to the target T population is given in

terms of the connection weight matrix W ðT ;SÞ

¼ w
ðT ;SÞ
ij

n o� �
where w

ðT ;SÞ
ij ¼ 1 if the jth neuron in the

source S population is pre-synaptic to the ith neuron in the

target T population; otherwise w
ðT ;SÞ
ij ¼ 0.

The post-synaptic ion channels are opened because of

the binding of neurotransmitters (emitted from the source S

population) to receptors in the target T population. The

fraction of open ion channels at time t is represented by

sðT ;SÞ. The time course of s
ðT ;SÞ
j ðtÞ of the jth neuron in the

source S population is given by a sum of exponential-decay

functions E
ðT ;SÞ
R t � t

ðjÞ
f

� �
:

s
ðT ;SÞ
j ðtÞ ¼

XF
ðSÞ
j

f¼1

E
ðT ;SÞ
R t � t

ðjÞ
f

� �
; ð8Þ

where t
ðjÞ
f and F

ðSÞ
j are the fth spike time and the total

number of spikes of the jth neuron in the source S popu-

lation, respectively. The exponential-decay function

E
ðT ;SÞ
R ðtÞ (which corresponds to contribution of a pre-sy-

naptic spike occurring at t ¼ 0 in the absence of synaptic

delay) is given by:

E
ðT ;SÞ
R ðtÞ ¼ e�t=sðTÞR HðtÞ or ð9Þ

¼ðA1e
�t=sðTÞ

R;1 þ A2e
�t=sðTÞ

R;2ÞHðtÞ; ð10Þ

where HðtÞ is the Heaviside step function: HðtÞ ¼ 1 for

t� 0 and 0 for t\0. Depending on the source and the target

populations, E
ðT ;SÞ
R ðtÞ may be a type-1 single exponential-

decay function of Eq. (9) or a type-2 dual exponential-

decay function of Eq. (10). In the type-1 case, there exists

one synaptic decay time constant sðTÞR (determined by the

receptor on the post-synaptic target T population), while in

the type-2 case, two synaptic decay time constants, sðTÞR;1 and

sðTÞR;2 appear. In most cases, the type-1 single exponential-

decay function of Eq. (9) appears, except for the two

synaptic currents I
ðGR;GOÞ
GABA and I

ðGO;GRÞ
NMDA .

In Appendix A, Tables 2, 3, and 4 show the parameter

values for the maximum conductance �g
ðTÞ
R , the synaptic

weight J
ðT ;SÞ
ij , the synaptic reversal potential V

ðSÞ
R , the

synaptic decay time constant sðTÞR , and the amplitudes A1

and A2 for the type-2 exponential-decay function in the

granular layer, the Purkinje-molecular layer, and the other

parts for the CN and IO, respectively. These values were

adopted from physiological data (Yamazaki and Tanaka

2007; Yamazaki and Nagao 2012).

We also employ a rule for synaptic plasticity, based on

the experimental result in (Safo and Regehr 2008). This

rule is a refined one for the LTD in comparison with the

rule used in (Yamazaki and Tanaka 2007; Yamazaki and

Nagao 2012), the details of which will be explained in the

Appendix B. Numerical integration of the governing

Eq. (1) for the time-evolution of states of individual neu-

rons, together with the update rule for synaptic plasticity of

Eq. (34), is made by using the 2nd-order Runge-Kutta

method with the time step 1 msec. In each realization, we

choose random initial points v
ðXÞ
i ð0Þ for the ith neuron in

the X population with uniform probability in the range of
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v
ðXÞ
i ð0Þ 2 ðV ðXÞ

L � 5:0;V
ðXÞ
L þ 5:0Þ; the values of V

ðXÞ
L are

given in Table 1.

Influence of various temporal recoding in gr
clusters on learning for the pavlovian
eyeblink conditioning

In this section, we investigate the influence of various

temporal recoding of GR cells on learning for the EBC by

changing the connection probability pc from the GO to the

GR cells. First, we consider a case of pc ¼ 0:029 where the

firing patterns of the GR cells are the most various and the

Pavlovian EBC learning is also the most efficient, which

will be clearly shown in Figs. 14b and c3, respectively. In

this case, we make a detailed dynamical classification of

various firing patterns of the GR cells, and then make an

intensive investigation on the influence of various firing

patterns on the synaptic plasticity at the PF-PC synapses

and the subsequent learning process in the PC-CN-IO

system. Next, by changing pc we also investigate the effect

of various temporal recoding of the GR cells on the EBC,

and discuss dependence of the variety degree for firing

patterns of the GR cells and the timing degree, the strength,

and the (overall) learning efficiency degree of CR (i.e.,

learned eyeblink) on pc.

Collective firing activity in the whole population
of GR cells

Temporal recoding process is performed in the granular

layer (corresponding to the input layer of the cerebellar

cortex), composed of GR and GO cells (see Fig. 2). GR

cells (principal output cells in the granular layer) receive

excitatory context signals for the EBC via the MFs [see

Figs. 1b1 and 1b2] and make various recoding of context

signals through receiving effective inhibitory coordination

of GO cells. Thus, variously recoded signals are fed into

the PCs (principal output cells in the cerebellar cortex) via

PFs.

We first consider the firing activity in the whole popu-

lation of GR cells for pc ¼ 0:029. Collective firing activity

may be well visualized in the raster plot of spikes which is

a collection of spike trains of individual neurons. As a

collective quantity showing whole-population firing

behaviors, we use an instantaneous whole-population spike

rate RGRðtÞ which may be got from the raster plots of

spikes (Brunel and Hakim 1999; Brunel 2000; Brunel and

Wang 2003; Geisler et al. 2005; Brunel and Hansel 2006;

Brunel and Hakim 2008; Wang 2010; Kim and Lim 2014).

To get a smooth instantaneous whole-population spike rate,

we employ the kernel density estimation (kernel smoother)

(Shimazaki and Shinomoto 2010). Each spike in the raster

plot is convoluted (or blurred) with a kernel function KhðtÞ,
and then a smooth estimate of instantaneous whole-popu-

lation spike rate RGRðtÞ is got by averaging the convoluted

kernel function over all spikes of GR cells in the whole

population:

RGRðtÞ ¼
1

N

XN

i¼1

Xni

s¼1

Kh t � tðiÞs

� �
; ð11Þ

where t
ðiÞ
s is the sth spiking time of the ith GR cell, ni is the

total number of spikes for the ith GR cell, and N is the total

number of GR cells (i.e., N ¼ Nc � NGR ¼ 51; 200). As a

kernel function KhðtÞ, we use a Gaussian kernel function of

band width h:

KhðtÞ ¼
1ffiffiffiffiffiffi
2p

p
h
e�t2=2h2 ;�1\t\1: ð12Þ

Throughout the paper, the band width h of KhðtÞ is 10

msec.

Figure 3a shows a raster plot of spikes of 103 randomly

chosen GR cells. At the beginning of trial stage (0\t\7

msec), all GR cells fire spikes due to the effect of strong

transient CS signal of 200 Hz. In the remaining part of the

trial stage (7\t\1000 msec), GR cells make random

repetition of transitions between active and inactive states

because of sustained CS signal of 30 Hz, and thus they

seem to exhibit various spiking trains. Time passage from

the CS onsets may be represented by the various firing

patterns of GR cells, which will be explained in details in

Figs. 4 and 5. In the break stage (1000\t\2000 msec),

GR cells fire very sparse spikes. For simplicity, only the

raster plot in the range of 1000\t\1100 msec is shown;

the raster plot in a part of the preparatory stage (essentially

the same as the break stage) (�100\t\0 msec), just

before the 1st trial stage, is also shown. Figure 3b shows

the instantaneous whole-population spike rate RGRðtÞ in the

whole population of GR cells. RGRðtÞ is basically in pro-

portion to the transient and sustained CS inputs via MFs

[see Figs. 1b1–1b2]. Thus, RGRðtÞ is sharply peaked in the

beginning of the trial stage due to the strong transient CS,

and then it becomes nearly flat in the remaining part of the

trial stage where the sustained CS is present. However, due

to the inhibitory effect of GO cells, the overall firing rates

are uniformly lowered as follows. The time-averaged

whole-population spike rates RGRðtÞ in the time intervals of

0\t\5 msec, 5\t\1000 msec, and 1000\t\2000 msec

are 155.4 Hz, 32.5 Hz, and 3.4 Hz, respectively.

We next consider the activation degree of GR cells. To

examine it, we divide the whole learning step into bins. In

the beginning of the trial stage (0\t\10 msec), we divide

the time interval into small bins (bin size: 1 msec) to

properly take into consideration the effect of strong
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transient CS; the effect of transient CS seems to persist

until the 7th bin. Then, in the remaining trial stage

(10\t\1000 msec), to use wide bins (bin size: 10 msec)

seems to be sufficient for considering the effect of sus-

tained CS. Thus, we obtain the activation degree Ai for the

active GR cells in the ith bin:

Ai ¼
Na;i

N
: ð13Þ

here, Na;i and Nð¼ 51; 200Þ are the number of active GR

cells in the ith bin and the total number of GR cells,

respectively. Figure 3c1 shows a plot of the activation

degree A(t) in the whole population of GR cells. In the

initial 7 bins (0\t\7 msec), A ¼ 1 due to the effect of

strong transient CS. In the presence of sustained CS for

7\t\1000 msec, the activation degree A decreases

monotonically from 0.189 to 0.131. In this case, the time-

averaged activation degree AðtÞ is 0.161. On the other

hand, in the break stage (1000\t\2000 msec), the time-

averaged activation degree AðtÞ is 0.011 and small varia-

tions occur, which may be regarded as nearly ‘‘silent’’

stage, in comparison with the trial stage.

The whole population of GR cells may be decomposed

into two types of well-matched and ill-matched firing

groups; details will be given in Figs. 4 and 5. Firing pat-

terns in the well-matched (ill-matched) firing group are

well (ill) matched with the airpuff US timing signal. In this

case, the activation degree A
ðGÞ
i of active GR cells in the ith

bin in the G firing group is given by:

A
ðGÞ
i ¼

N
ðGÞ
a;i

NðGÞ :
ð14Þ

here, N
ðGÞ
a;i and NðGÞ are the number of active GR cells in

the ith bin and the total number of GR cells in the G firing

group, respectively (G ¼ w and i for the well-matched and

the ill-matched firing groups, respectively). The number of

clusters, belonging to the well- and the ill-matched firing

groups are 841 and 183, respectively, and hence NðwÞ ¼
42; 050 and NðiÞ ¼ 9; 150 because NGR ¼ 50 (number of

GR cells in each cluster).

Figure 3c2 shows plots of activation degree AðGÞðtÞ in

the well-matched (solid line) and the ill-matched (dotted

curve) firing groups. In the beginning of the trial stage [i.e.,

in the initial 7 bins (0\t\7 msec)], AðGÞ ¼ 1, indepen-

dently of the firing groups, due to the effect of strong

transient CS. On the other hand, in the remaining trial stage

(7\t\1000 msec) where the sustained CS is present,

AðGÞðtÞ varies, strongly depending on the type of firing

groups. In the case of well-matched firing group, AðwÞðtÞ
decreases monotonically from 0.2 to 0.133, which is a little

higher than A(t) in the whole population. In contrast, in the

case of ill-matched firing group, AðiÞðtÞ forms a well-

shaped curve with a central ‘‘zero-bottom’’ with the time-

(a)

(b)

(c1) (c2)

(d1)

(d2)

Fig. 3 Firing activity of GR cells in the case of pc (connection

probability from GO to GR cells) = 0.029. a Raster plots of spikes of

103 randomly chosen GR cells and b instantaneous whole-population

spike rate RGRðtÞ in the whole population of GR cells for the 1st step

in the learning process for the EBC. Plots of the activation degrees c1

A(t) in the whole population of GR cells and c2 AðGÞðtÞ in the G firing

group [Gð¼ wÞ : well-matched (solid curve) and Gð¼ iÞ : ill- matched

(dotted curve)]. Plots of d1 instantaneous individual firing rate f
ðiÞ
GRðtÞ

for the active GR cells and d2 instantaneous population spike rate

f
ðpÞ
GR ðtÞ in the whole population of GR cells
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averaged activation degree AðiÞðtÞ ¼ 5:32 � 10�4 for

330\t\580 msec. Due to appearance of the central zero-

bottom, contribution of the ill-matched firing group to A(t)

in the whole population may be negligible in the range of

330\t\580 msec. In the break stage (1000\t\2000

msec), the time-averaged activation degree AðGÞðtÞ ¼ 0:011

(G ¼ w or i) with small variations, independently of the

firing groups, which is the same as AðtÞ in the whole

population.

In each ith bin, the contribution C
ðGÞ
i of each firing group

to the activation degree Ai in the whole population is given

by the product of the fraction FðGÞ and the activation

degree A
ðGÞ
i of the firing group:

C
ðGÞ
i ¼ FðGÞ � AðGÞ

i ¼
N

ðGÞ
a;i

N
; ð15Þ

where FðGÞ ¼ NðGÞ=N; FðwÞ ¼ 0:821 (82:1%) and FðiÞ ¼
0:179 (17:9%) [see Fig. 5b]. Hence, we can easily get the

contribution C
ðGÞ
i of each firing group by just multiplying

(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3)

Fig. 4 Various firing patterns in the GR clusters in the case of

pc ¼ 0:029. Raster plots of spikes and instantaneous cluster spike

rates R
ðIÞ
GRðtÞ for various firing patterns. Six well-matched firing

patterns in the Ith GR clusters; I ¼ a1 245, a2 174, a3 505, a4 722, a5
154, and a6 458. Four ill-matched firing patterns in the Ith GR cluster;

I ¼ b1 288, b2 654, b3 411, and b4 1001. MðIÞ represents the

matching index of the firing pattern in the Ith GR cluster. Distribution

of the reproducibility degree RðIÞ in the c1 whole population and the

c2 well- and c3 ill-matched firing groups. Bin size for the histograms

in c1–c3 is 0.01

(a) (b)

(c1) (c2) (d)

Fig. 5 Characterization of various firing patterns in the GR clusters in

the case of pc ¼ 0:029. a Distribution of matching indices fMðIÞg in

the whole population. b Fraction of well-matched and ill-matched

firing groups. Distribution of matching indices fMðIÞg for the (c1)
well- and (c2) the ill-matched firing groups. Bin size for the

histograms in (a) and in (c1)–(c3) is 0.1. d Plots of reproducibility

degree RðIÞ versus MðIÞ in the well-matched (MðIÞ [ 0) and the ill-

matched (MðIÞ\0Þ firing groups
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A
ðGÞ
i in Fig. 3c2 with the fraction FðGÞ. The sum of C

ðGÞ
i ðtÞ

over the well- and the ill-matched firing groups is just the

activation degree AiðtÞ in the whole population (i.e.,

Ai ¼ C
ðwÞ
i þ C

ðiÞ
i ). In this case, contribution C

ðiÞ
i of the ill-

matched firing group becomes small due to both low

activation degree A
ðiÞ
i and small fraction FðiÞ. Particularly,

because of existence of the central zero-bottom, contribu-

tion C
ðiÞ
i is negligibly small in the middle (330\t\580

msec) of the trial stage.

In the whole population, the activation degree A(t)

showing decreasing tendency is in contrast to the instan-

taneous whole-population spike rate RGRðtÞ which is flat in

the trial stage. To understand this discrepancy, we consider

the bin-averaged instantaneous individual firing rate f
ðiÞ
GR of

active GR cells:

f
ðiÞ
GR ¼ Ns;i

Na;iDt
: ð16Þ

here, Ns;i is the number of spikes of GR cells in the ith bin,

Na;i is the number of active GR cells in the ith bin, and Dt is

the bin size. Figure 3d1 shows a plot of f
ðiÞ
GRðtÞ for the active

GR cells. In the initial 7 bins (0\t\7 msec) of the trial

stage where AðtÞ ¼ 1, f
ðiÞ
GRðtÞ decreases very slowly from

155.6 to 155.3 Hz with the time t (i.e., the values of f
ðiÞ
GRðtÞ

are nearly the same). In the remaining part

(7\t\1000 msec) of the trial stage, f
ðiÞ
GRðtÞ increases

monotonically from 173 to 258 Hz. In this case, the bin-

averaged instantaneous population spike rate f
ðpÞ
GR is given

by the product of the activation degree Ai of Eq. (13) and

the instantaneous individual firing rate f
ðiÞ
GR of Eq. (16):

f
ðpÞ
GR ¼ Aif

ðiÞ
GR ¼ Ns;i

NDt
: ð17Þ

Figure 3d2 shows a plot of the instantaneous population

spike rate f
ðpÞ
GR ðtÞ. It is flat except for the sharp peak in the

beginning of the trial stage, as in the case of RGRðtÞ. We

note that both f
ðpÞ
GR ðtÞ and RGRðtÞ correspond to bin-based

estimate and kernel-based smooth estimate for the instan-

taneous whole-population spike rate of the GR cells,

respectively (Kim and Lim 2014). Although the activation

degree A(t) of GR cells decreases with t, their population

spike rate keeps the flatness (i.e., f
ðpÞ
GR ðtÞ becomes flat),

because of the increase in the individual firing rate f
ðiÞ
GRðtÞ.

As a result, the bin-averaged instantaneous population

spike rate f
ðpÞ
GR ðtÞ in Fig. 3d2 becomes essentially equal to

the instantaneous whole-population spike rate RGRðtÞ in

Fig. 3b.

Dynamical classification and dynamical origin
of various firing patterns in the GR clusters

There exist NCð¼ 210Þ GR clusters in the whole population.

NGRð¼ 50Þ GR cells in each GR cluster share the same

inhibitory and excitatory inputs via their dendrites which

synaptically contact the four glomeruli (i.e., terminals of

MFs) at both ends of the GR cluster [see Fig. 2b]. Nearby

inhibitory GO cell axons innervate the four glomeruli. Due

to the shared inputs, GR cells in each GR cluster exhibit

similar firing behaviors.

As in the case of RGRðtÞ in Eq. (11), the firing activity of
the Ith GR cluster is described in terms of its instantaneous

cluster spike rate R
ðIÞ
GRðtÞ (I ¼ 1; � � � ;NC):

R
ðIÞ
GRðtÞ ¼

1

NGR

XNGR

i¼1

Xn
ðIÞ
i

s¼1

Kh t � tðI;iÞs

� �
; ð18Þ

where t
ðI;iÞ
s is the sth firing time of the ith GR cell in the Ith

GR cluster and n
ðIÞ
i is the total number of spikes for the ith

GR cell in the Ith GR cluster.

We introduce the matching index MðIÞ of each GR

cluster between the firing behavior R
ðIÞ
GRðtÞ

h i
of each Ith GR

cluster and the airpuff US signal fUSðtÞ for the desired

timing [see Fig.1c]. The matching index MðIÞ is given by

the cross-correlation at the zero-time lag [i.e., Corr
ðIÞ
GRð0Þ]

between R
ðIÞ
GRðtÞ and fUSðtÞ:

Corr
ðIÞ
GRðsÞ ¼

DfUSðt þ sÞDRðIÞ
GRðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Df 2USðtÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DRðIÞ
GR

2
ðtÞ

r ; ð19Þ

where DfUSðtÞ ¼ fUSðtÞ � fUSðtÞ, DRðIÞ
GRðtÞ ¼ R

ðIÞ
GRðtÞ�

R
ðIÞ
GRðtÞ, and the overline denotes the time average. We note

that MðIÞ represents well the phase difference between the

firing patterns R
ðIÞ
GRðtÞ

h i
of GR clusters and the US signal

[fUSðtÞ].
Figure 4 shows various firing patterns of GR clusters.

This type of variety results from inhibitory coordination of

GO cells on the firing activity of GR cells in the GR-GO

feedback loop in the granular layer. Time passage from the

CS onsets may be well represented by the various firing

patterns of GR clusters because MF inputs become less

similar (i.e., more orthogonal) to each other through

recoding in the granular layer.

Six examples for the well-matched firing patterns in the

Ith (I ¼ 245, 174, 505, 722, 154, and 458) GR clusters are

given in Figs. 4a1–a6, respectively. Raster plot of spikes of

NGRð¼ 50Þ GR cells and the corresponding instantaneous

cluster spike rate R
ðIÞ
GRðtÞ are shown, along with the value of
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the matching index MðIÞ in each case of the Ith GR cluster.

In all these cases, the instantaneous cluster spike rates

R
ðIÞ
GRðtÞ are well-matched with the US signal fUSðtÞ, and

hence these well-matched GR clusters have positive

matching indices (i.e., MðIÞ [ 0).

In the 1st case of I ¼ 245 with the highest MðIÞ

ð¼ 0:79Þ, Rð245Þ
GR ðtÞ is strongly localized around the middle

of the trial stage (i.e. a central band of spikes is formed

around t ¼ 500 msec), and hence it is the most well-mat-

ched with the US signal fUSðtÞ. In the 2nd case of I ¼ 174

with MðIÞ ¼ 0:73; R
ð174Þ
GR ðtÞ is also localized around t ¼

500 msec, but its central firing band spreads a little more to

the left side, in comparison with the case of I ¼ 245.

Hence, its matching index relative to fUSðtÞ is a little

decreased.

We note that LTD at the PF-PC synapses occurs within

an effective range of Dt�l ð’ �117:5Þ\Dt\Dt�r ð’ 277:5Þ
(see Fig. 3 in Ref. (Kim and Lim 2021)). Here, Dt [= tCF
(CF activation time) - tPF (PF activation time)] is the rel-

ative time difference between the firing times of the error-

teaching instructor CF and the variously-recoded student

PF. The CF activation occurs approximately at tCF ¼ 500

msec due to the strong brief US (strongly localized at t ¼
500 msec). Then, LTD may occur when the PF activation

time tPF lies in an effective LTD range of 222.5 msec

\tPF\ 617.5 msec. In the above two cases of GR clusters

(I ¼ 245 and 174) with higher MðIÞ, their PF signals

(corresponding to axons of the GR cells) are strongly

depressed by the instructor CF signal because most parts of

their firing bands are well localized in the effective LTD

range.

We next consider the 3rd and the 4th cases of the Ith GR

cluster (I ¼ 505 and 722) with intermediate MðIÞ. In the

cases of I ¼ 505 (722), the firing band in the raster plot

extends to the left (right) until t ’ 0ð1000Þ msec. Thus, big

left- and right-extended firing bands appear for I ¼ 505 and

722, respectively. Some part of this big firing band lies

inside the effective LTD range where LTD occurs in

conjunction with the CF firing. On the other hand, its

remaining part lies outside the effective LTD range, and

hence LTP occurs for the PF firings alone without associ-

ation with the CF signal.

We also consider the case of lowerMðIÞ for I ¼ 154 and

458 (i.e., the 5th and the 6th cases). In both cases, they

have tendency to fill the raster plots with more spikes via

appearance of two or more firing bands. Thus, some central

part of these bands lies inside the effective LTD range

where LTD occurs. In contrast, LTP occurs in the other left

and right parts of the firing bands because they lie outside

the effective LTD range; in comparison with the case of

intermediate MðIÞ, LTP region is extended. In this way, as

MðIÞ is decreased toward the zero, the raster plot tends to

be filled with more spikes (constituting firing bands), and

hence the region where LTP occurs is extended.

In addition to the well-matched firing patterns, ill-mat-

ched firing patterns with negative matching indices (i.e.,

MðIÞ\0) also appear. Four examples for the ill-matched

firing patterns in the Ith (I ¼ 288, 654, 411, and 1001) GR

clusters are given in Figs. 4b1–b4, respectively. We first

consider the case of I ¼ 288 with the lowest MðIÞð¼
�0:49Þ (i.e., its magnitude jMðIÞj: largest). This lowest

case corresponds to the ‘‘opposite’’ case of the highest one

for I ¼ 245 with MðIÞ ¼ 0:79 in the following sense. A

central gap with negligibly small number of spikes (i.e.,

practically no spikes) appears around t ¼ 500 msec, in

contrast to the highest case where a central firing band

exists. Hence, in this lowest case, occurrence of LTD in the

central gap may be practically negligible. On the other

hand, mainly LTP occurs in the left and right firing bands,

most of which lie outside the effective LTD range. The

right firing band lies completely outside the effective LTD

range, and hence no LTD occurs. The width of the central

gap is larger than the width of the effective LTD range.

However, since the gap is shifted a little to the right, a

small part near the right boundary (t ’ 261 msec) of the

left firing band overlaps with a small region near the left

boundary (t ’ 222:5 msec) of the effective LTD region. In

this small overlapped region of 239\Dt\277:5 msec, the

values of the synaptic modification DJLTD (i.e., the average

synaptic modification hDJLTDi ’ 0:031) are very small,

and hence very weak LTD may occur.

As the magnitude jMðIÞj is decreased, the central gaps

becomes widened, and the widths of the left and the right

firing bands also get decreased, as shown in the cases of

I ¼ 654, 411, and 1001. In these cases, the two left and

right firing bands lie completely outside the effective LTD

range, and hence only LTP occurs for the PF signals alone

without conjunction with the CF signal. In this way, as

jMðIÞj approaches the zero from the negative side, spikes

become more and more sparse, which is in contrast to the

well-matched case where more and more spikes fill the

raster plot as MðIÞ goes to the zero from the positive side.

The above firing patterns are shown in the 1st learning

step [consisting of the 1st trial stage (0\t\1000 msec)

and the 1st break stage (1000\t\2000 msec)]. For sim-

plicity, they are shown in the range of

1000\t\1100 msec in the break stage, and a part of the

preliminary stage (�100\t\0 msec), preceding the 1st

learning step, is also shown. We examine the repro-

ducibility of the firing patterns across the learning steps. To

this end, we consider the cross-correlation between the

instantaneous cluster spike rates R
ðI;lÞ
GR ðtÞ in the Ith GR
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cluster for the kth (l ¼ k) and the ðk þ 1Þth (l ¼ k þ 1)

learning steps;

Corr
ðI;kÞ
GR ðsÞ ¼ DRðI;kÞ

GR ðt þ sÞDRðI;kþ1Þ
GR ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DRðI;kÞ
GR

2
ðtÞ

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DRðI;kþ1Þ
GR

2
ðtÞ

r ; ð20Þ

where DRðI;lÞ
GR ðtÞ ¼ R

ðI;lÞ
GR ðtÞ � R

ðI;lÞ
GR ðtÞ (l ¼ k and k þ 1) and

the overline represents the time average. Then, the repro-

ducibility degree RðIÞ of the Ith GR cluster is given by the

average value of the cross-correlations at the zero-time lag

between the instantaneous cluster spike rates R
ðI;lÞ
GR ðtÞ for

the successive learning steps:

RðIÞ ¼ 1

Nstep � 1

XNstep�1

k¼1

Corr
ðI;kÞ
GR ð0Þ; ð21Þ

where Nstep is the total number of learning steps. Here, we

consider the case of Nstep ¼ 100.

Figure 4c1 shows the distribution of the reproducibility

degrees RðIÞ for the whole GR clusters. Double peaks

appear; large broad peak and small sharp peaks at RðIÞ ¼
0:925 and 0.815, respectively. The range of RðIÞ is (0.812,
0.997). Hence, the firing patterns are highly reproducible

across the learning steps. Figure 4c2 and c3 also show the

distributions of RðIÞ of the GR clusters in the well- and the

ill-matched firing groups, respectively. In the case of well-

matched firing group, the distribution of RðIÞ has a broad

peak and its range is (0.842, 0.997). On the other hand, in

the ill-matched case, the distribution decreases from its

maximum at RðIÞ ¼ 0:815, and its range is (0.812, 0.879).

We note that the average values of fRðIÞg in the well- and

the ill-matched firing group are 0.927 and 0.828, respec-

tively. Hence, on average, the firing patterns of the GR

clusters in the well-matched firing group may be more

reproducible than those in the ill-matched firing group,

because the average individual firing rate in the well-

matched firing group is higher than that in the ill-matched

firing group.

Results on characterization of the various well- and ill-

matched firing patterns are given in Fig. 5. Figure 5a

shows the plot of the fraction of matching indices MðIÞ in

the whole GR clusters. MðIÞ increases slowly from the

negative value to the peak at 0.35, and then it decreases

rapidly. For this distribution of fMðIÞg, the range is (-0.49,
0.79), the mean is 0.3331, and the standard deviation is

0.6135. Then, we obtain the variety degree V for the firing

patterns [R
ðIÞ
GRðtÞ] of all the GR clusters:

V ¼ RelativeStandardDeviationfortheDistributionoffMðIÞg;
ð22Þ

where the relative standard deviation is just the standard

deviation divided by the mean. In the case of pc ¼ 0:029,

V ’ 1:842, which is just a quantitative measure for the

various recoding made through feedback cooperation

between the GR and the GO cells in the granular layer. It

will be seen that the value of Vð’ 1:842Þ for pc ¼ 0:029 is

just the maximum in Fig. 14b for the plot of V versus pc.

Hence, firing patterns of the GR clusters for pc ¼ 0:029 is

the most various.

We decompose the whole GR clusters into the well-

matched (fMðIÞg[ 0) and the ill-matched (fMðIÞg\0)

firing groups. Figure 5b shows the fraction of firing groups.

The well-matched firing group is a major one with fraction

82.1%, while the ill-matched firing group is a minor one

with fraction 17.9%. In this case, the firing-group ratio Rsp,

given by the ratio of the fraction of the well-matched firing

group to that of the ill-matched firing group is 4.59. For this

firing-group ratio, firing patterns of the GR clusters are the

most various.

Figures 5c1–c2 also show the plots of matching indices

MðIÞ of the GR clusters in the well- and the ill-matched

firing groups, respectively. In the case of well-matched

firing group, the distribution of MðIÞ with a peak at 0.35

has only positive values in the range of (0.0, 0.79), and its

mean and standard deviations are 0.428 and 0.372,

respectively. On the other hand, in the case of the ill-

matched firing group, the distribution of MðIÞ with a

maximum at -0.05 has only negative values in the range of

ð�0:49; 0:0Þ, and its mean and standard deviations are �
0.104 and 0.129, respectively. In this case, MðIÞ increases
slowly to the maximum. As will be seen in the next sub-

section, these well- and the ill-matched firing groups play

their own roles in the synaptic plasticity at PF-PC synapses

and the subsequent learning process for the EBC,

respectively.

We also examine the correlation between the matching

index MðIÞ and the reproducibility degree RðIÞ. Figure 5d

show the plots of MðIÞ versus RðIÞ in the well- and the ill-

matched firing groups. In both cases, there appear strong

negative correlations between MðIÞ and RðIÞ; for the well-

matched (ill-matched) firing group, the Pearson’s correla-

tion coefficient is r ¼ �0:9999ð�0:9978Þ. When left-right

reflections are made on Figs. 5c1–c2, shapes of the

reflected ones are similar to the shapes of Figs. 4c2–c3,

respectively, which implies the negative correlation

between MðIÞ and RðIÞ in each firing group. As shown in

Figs. 4a1–a6, as MðIÞ decreases to the zero from the pos-

itive side, the raster plot tends to be filled with more spikes

due to increased individual firing rates, which leads to

increase in RðIÞ. On the other hand, as MðIÞ increases to
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the zero from the negative side, the raster plot of spikes

tends to be more sparse because of decreased individual

firing rates [see Figs. 4b1–b4], which results in decrease in

RðIÞ. Consequently, there appears a gap at the limit

MðIÞ ¼ 0.

Finally, we study the dynamical origin of various firing

patterns in the Ith GR clusters. As examples, we consider

two well-matched firing patterns for I ¼ 245 and 722 [see

the firing patterns in Figs. 4a1 and a4] and two ill-matched

firing patterns for I ¼ 288 and 654 [see the firing patterns

Figs. 4b1 and b2]. In Fig. 6a1–a4 correspond to the cases

of I ¼245, 722, 288, and 654, respectively.

Various recodings for the MF signals are made in the

GR layer, consisting of excitatory GR and inhibitory GO

cells (i.e., in the GR-GO cell feedback loop). Thus, firing

activities of GR cells are determined by two types of

synaptic input currents (i.e., excitatory synaptic inputs via

MF signals and inhibitory synaptic inputs from randomly

connected GO cells). Then, investigations on the dynami-

cal origin of various firing patterns of the GR clusters are

made via analysis of total synaptic inputs into the GR

clusters. As in Eq. (6), synaptic current is given by the

product of synaptic conductance g and potential difference.

In this case, synaptic conductance determines the time-

course of synaptic current. Hence, it is sufficient to con-

sider the time-course of synaptic conductance. The

synaptic conductance g is given by the product of synaptic

strength per synapse, the number of synapses Msyn, and the

fraction s of open (post-synaptic) ion channels [see

Eq. (7)]. Here, the synaptic strength per synapse is given

by the product of maximum synaptic conductance �g and

synaptic weight J, and the time-course of s(t) is given by a

summation for exponential-decay functions over pre-sy-

naptic spikes, as shown in Eqs. (7) and (8).

Here, we make an approximation of the fraction s(t) of

open ion channels (i.e., contributions of summed effects of

pre-synaptic spikes) by the bin-averaged spike rate f
ðIÞ
X ðtÞ

of pre-synaptic neurons (X ¼ MF and GO); f
ðIÞ
MFðtÞ is the

bin-averaged spike rate of the MF signals into the Ith GR

cluster and f
ðIÞ
GOðtÞ is the bin-averaged spike rate of the pre-

synaptic GO cells innervating the Ith GR cluster. In the

case of MF signal, we get:

f
ðIÞ
MFðtÞ ¼ f

ðIÞ
TCSðtÞ þ f

ðIÞ
SCSðtÞ; ð23Þ

(a1) (a2) (a3) (a4)

(b)

Fig. 6 Dynamical origin of various firing patterns in the GR clusters

in the case of pc ¼ 0:029. Well-matched firing patterns for I= (a1)
245 and (a2) 722 and ill-matched firing patterns for I= (a3) 288 and

(a4) 654. In a1–a4, top panel: raster plots of spikes in the sub-

population of pre-synaptic GO cells innervating the Ith GR cluster,

2nd panel: plots of f
ðIÞ
X ðtÞ : bin-averaged instantaneous spike rates of

the MF signals (X ¼ MF) into the Ith GR cluster (gray line) and bin-

averaged instantaneous spike rates of the sub-population of pre-

synaptic GO cells (X ¼ GO) innervating the Ith GR cluster (black

line); h� � �ir represents the realization average (number of realizations

is 100), 3rd panel: time course of hgðIÞtot ðtÞir : conductance of total

synaptic inputs (including both the excitatory and inhibitory inputs)

into the Ith GR cluster, and bottom panel: plots of R
ðIÞ
GRðtÞ :

instantaneous cluster spike rate in the Ith GR cluster. (b) Distribution

of matching indices fMðIÞ
in g for the conductances of total synaptic

inputs into the GR clusters
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where f
ðIÞ
TCSðtÞ and f

ðIÞ
SCSðtÞ are the bin-averaged spike rates

of the transient and the sustained CS signals, respectively.

Then, the conductance g
ðIÞ
X ðtÞ of synaptic input from X

(=MF or GO) into the Ith GR cluster (I ¼ 1; � � � ;NC) is

given by:

g
ðIÞ
X ðtÞ ’ M

ðRÞ
f � f ðIÞX ðtÞ: ð24Þ

here, the multiplication factor M
ðRÞ
f [= maximum synaptic

conductance �gR � synaptic weight JðGR;XÞ � number of

synapsesM
ðGR;XÞ
syn ] varies depending on X and the receptor R

on the post-synaptic GR cells. In the case of excitatory

synaptic currents into the Ith GR cluster with AMPA

receptors via TCS or SCS MF signal, M
ðAMPAÞ
f ¼ 2:88;

�gAMPA ¼ 0:18; JðGR;MFÞ ¼ 8:0; and M
ðGR;XÞ
syn ¼ 2 (X=TCS,

SCS). On the other hand, in the case of the Ith GR cluster

with NMDA receptors, �gNMDA ¼ 0:025; and hence

M
ðNMDAÞ¼0:4;
f which is much less than M

ðAMPAÞ
f . For the

inhibitory synaptic current from pre-synaptic GO cells to

the Ith GR cluster with GABA receptors, M
ðGABAÞ¼2:63
f ;

�gGABA ¼ 0:028; JðGR;GOÞ ¼ 10; and M
ðGR;GOÞ
syn ¼ 9:4: Then,

the conductance g
ðIÞ
tot of total synaptic inputs (including both

the excitatory and the inhibitory inputs) into the Ith GR

cluster is given by:

g
ðIÞ
tot ðtÞ ¼g

ðIÞ
MF � g

ðIÞ
GO ¼ g

ðIÞ
AMPA þ g

ðIÞ
NMDA � g

ðIÞ
GO

¼3:28f
ðIÞ
MFðtÞ � 2:63f

ðIÞ
GOðtÞ:

ð25Þ

In Figs. 6a1–a4, the top panels show the raster plots of

spikes in the sub-populations of pre-synaptic GO cells

innervating the Ith GR clusters. From these raster plots,

bin-averaged (sub-population) spike rates f
ðIÞ
GOðtÞ may be

obtained. The bin-averaged spike rate of pre-synaptic GO

cells in the ith bin is given by
n
ðsÞ
i

NpreDt
, where n

ðsÞ
i is the

number of spikes in the ith bin, Dt is the bin size, and Npre

(=10) is the number of pre-synaptic GO cells. As in Fig. 3,

in the beginning of the trial stage (0\t\10 msec), we

employ the small bin-size of Dt ¼ 1 msec to properly take

into consideration the effect of strong transient CS, and in

the remaining trial stage (10\t\1000 msec), we use the

wide bin-size of Dt ¼ 10 msec for considering the effect of

sustained CS. Through an average over 100 realizations,

we obtain the realization-averaged (bin-averaged) spike

rate of pre-synaptic GO cells f
ðIÞ
GOðtÞ

D E

r
because Npreð¼ 10Þ

is small; h� � �ir represent a realization-average. The 2nd

panels show f
ðIÞ
GOðtÞ

D E

r
(black line) and f

ðIÞ
MFðtÞ

D E

r
(gray

line). We note that f
ðIÞ
GOðtÞ

D E
varies depending on I, while

f
ðIÞ
MFðtÞ

D E
is independent of I. Then, we obtain the realiza-

tion-averaged conductance g
ðIÞ
tot ðtÞ

D E

r
of total synaptic

inputs in Eq. (25), which is shown in the 3rd panels.

We note that the shapes of g
ðIÞ
tot ðtÞ

D E

r
(corresponding to

the total input into the Ith GR cluster) in the 3rd panels are

nearly the same as those of R
ðIÞ
GRðtÞ (corresponding to the

output of the Ith GR cluster) in the bottom panels. It is thus

expected that well-matched (ill-matched) inputs into the

GR clusters may lead to generation of well-matched (ill-

matched) outputs (i.e., responses) in the GR clusters. To

confirm this point clearly, as in case of the firing patterns

R
ðIÞ
GRðtÞ

h i
in the GR clusters, we introduce the matching

index for the total synaptic input of the Ith GR cluster

between g
ðIÞ
tot ðtÞ

D E

r
(conductance of total synaptic input

into the Ith GR cluster) and the (airpuff) US signal fUSðtÞ
for the desired timing. Similar to the matching index MðIÞ

for the firing patterns (i.e. outputs) in the Ith GR cluster

[see Eq. (19)], the matching index MðIÞ
in for the total

synaptic input is given by the cross-correlation at the zero-

time lag (i.e., Corr
ðIÞ
in ð0Þ) between g

ðIÞ
tot ðtÞ

D E

r
and fUSðtÞ:

Corr
ðIÞ
in ðsÞ ¼

DfUSðt þ sÞDhgðIÞtot ðtÞir
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Df 2USðtÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DhgðIÞtot ðtÞir
2

r ; ð26Þ

where DfUSðtÞ ¼ fUSðtÞ � fUSðtÞ, DhgðIÞtot ðtÞir ¼ hgðIÞtot ðtÞir�
hgðIÞtot ðtÞir, and the overline represents the time average.

Thus, we have two types of matching indices, MðIÞ [output

matching index: given by Corr
ðIÞ
GRð0Þ] and MðIÞ

in [input

matching index: given by Corr
ðIÞ
in ð0Þ] for the output and the

input in the Ith GR cluster, respectively.

Figure 6b shows the plot of fraction of input matching

indices MðIÞ
in

n o
in the whole GR clusters. We note that the

distribution of input matching indices in Fig. 6b is nearly

the same as that of output matching indices in Fig. 5a.

MðIÞ
in increases slowly from the negative value to the peak

at 0.35, and then it decreases rapidly. In this distribution of

MðIÞ
in

n o
, the range is (� 0.49, 0.79), the mean is 0.3332,

and the standard deviation is 0.6137. Then, we get the

variety degree V in for the total synaptic inputs

g
ðIÞ
tot ðtÞ

D E

r

n o
of all the GR clusters:

V in ¼ RelativeStandardDeviationfortheDistributionoffMðIÞ
in g:

ð27Þ
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hence, V in ’ 1:842 for the synaptic inputs, which is nearly

the same as Vð’ 1:842Þ for the firing patterns of GR cells.

Consequently, various synaptic inputs into the GR clusters

results in generation of various outputs (i.e., firing patterns)

of the GR cells.

Influence of various temporal recoding
on synaptic plasticity at PF-PC synapses

Based on dynamical classification of firing patterns of GR

clusters, we study the influence of various temporal

recoding in the GR clusters on synaptic plasticity at PF-PC

synapses. As shown in the preceding subsection, MF con-

text input signals for the EBC are variously recoded in the

granular layer (corresponding to the input layer of the

cerebellar cortex). The variously-recoded well- and ill-

matched PF (student) signals (coming from the GR cells)

are fed into the PCs (i.e., principal cells of the cerebellar

cortex) and the BCs in the Purkinje-molecular layer. The

PCs also receive well-matched error-teaching (instructor)

CF signals from the IO, together with the inhibitory inputs

from the BCs. Then, the synaptic weights at the PF-PC

synapses vary depending on the matching degree between

the PF and the CF signals.

We first consider the change in normalized synaptic

weights ~J of active PF-PC synapses during the learning

trials in the case of pc ¼ 0:029;

~JijðtÞ ¼
J
ðPC;PFÞ
ij ðtÞ
J
ðPC;PFÞ
0

: ð28Þ

here, the initial synaptic strength (J
ðPC;PFÞ
0 ¼ 0:006) is the

same for all PF-PC synapses. Figures 7a1–a9 show trial-

evolution of distribution of ~J of active PF-PC synapses. As

the learning trial is increased, normalized synaptic weights
~J change due to synaptic plasticity at PF-PC synapses. We

note that the distribution of ~J in each trial is composed of

two markedly separated structures (i.e., a combination of

separate top horizontal line with a central gap and lower

band). Here, the top horizontal line with a central gap has

no essential change with the trials, while the lower bands

come down with the trials and their vertical widths

increase. This kind of distribution of ~J becomes saturated

at about the 250th trial.

The top horizontal line with a central gap arises from the

ill-matched firing group (with negative matching indices).

In the case of ill-matched PF signals, practically no LTD

occurs because most of them have no associations with the

error-teaching CF signals which are strongly localized in

the middle of trial (i.e., near t ¼ 500 msec). As shown in

Fig. 3c2, the activation degree AðiÞðtÞ (denoted by the

dotted line) of GR cells in the ill-matched firing group has a

central ‘‘zero-bottom’’ where AðiÞðtÞ ’ 0 (i.e., negligibly

small number of spikes in the middle part of trial). In the

initial and the final parts of the trial (outside the middle

part), practically no LTD takes place due to no practical

conjunctions with the strongly-localized CF signals. Thus,

the normalized synaptic weights ~J of the active GR cells in

the ill-matched firing group forms the top horizontal line

with a central gap which is nearly invariant with the trial.

On the other hand, lower bands arise from the well-

matched firing group (with positive matching indices). In

the case of well-matched PF signals, they are strongly

depressed by the error-teaching CF signals (i.e., strong

LTD occurs) in each trial due to good association between

the well-matched PF and CF signals. As a result, a lower

band is formed, it comes down with the trial, and eventu-

ally becomes saturated.

To more clearly examine the above trial evolutions, we

obtain the bin-averaged (normalized) synaptic weight in

each ith bin (bin size: Dt ¼ 50 msec):

~JðtÞ
� �

i
¼ 1

Ns;i

XNs;i

f¼1

~Ji;f ðtÞ; ð29Þ

where ~Ji;f is the normalized synaptic weight of the fth

active PF signal in the ith bin, and Ns;i is the total number

of active PF signals in the ith bin. Figures 7b1–b9 show

trial-evolution of bin-averaged (normalized) synaptic

weights ~JðtÞ
� �

of active PF signals. In each trial, ~JðtÞ
� �

forms a step-well-shaped curve. As the trial is increased,

the step-well curve comes down, its width and depth

increase, and saturation seems to occur at about the 250th

cycle.

We also obtain the trial-averaged mean ~JðtÞ
� �

via time

average of h ~JðtÞi over a trial:

~J
� �

¼ 1

Nb

XNb

i¼1

~JðtÞ
� �

i
: ð30Þ

here, Nb is the number of bins for trial averaging, and the

overbar represents the time average. Figures 7c and d show

plots of the trial-averaged mean ~JðtÞ
� �

and the modulation

[=(maximum - minimum)/2] MJ for ~JðtÞ
� �

versus trial.

The trial-averaged mean ~JðtÞ
� �

decreases monotonically

from 1.0 due to LTD at PF-PC synapses, and it becomes

saturated at 0.367 at about the 250th trial.

However, strength of the LTD varies depending on the

parts of the trial. In the middle part without practical

contribution of ill-matched firing group, strong LTD

occurs, due to contribution of only well-matched active PF

signals. On the other hand, at the initial and the final parts,

somewhat less LTD takes place, because both the ill-mat-

ched firing group (with practically no LTD) and the well-
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matched firing group make contributions together. Conse-

quently, with increasing the number of trials, the middle-

stage part comes down more rapidly than the initial and

final parts. Hence, the modulation MJ increases mono-

tonically from 0, and it gets saturated at 0.0867 at about the

250th trial.

Influence of PF-PC synaptic plasticity
on subsequent learning process in the PC-CN-IO
system

As a result of various recoding in the GR clusters, well- and

ill-matched firing groups appear. In the case of well-mat-

ched PF signals, they are strongly depressed by the error-

teaching (instructor) CF signals due to good association

between the PF and CF signals. On the other hand, in the

case of ill-matched PF signals, practically no LTD occurs

because most of them have no conjunctions with the error-

teaching CF signals. In this subsection, we investigate the

influence of this kind of effective PF-PC synaptic plasticity

on the subsequent learning process in the PC-CN-IO

system.

Figure 8 shows change in firing activity of PCs during

learning trial in the case of pc ¼ 0:029. Trial-evolutions of

raster plots of spikes of 16 PCs and the corresponding

instantaneous population spike rates RPCðtÞ are shown in

Figs. 8a1–a9 and Figs. b1–b9, respectively. Realization-

averaged smooth instantaneous population spike rates

hRPCðtÞir are also shown in Figs. 8c1–c9. Here, h� � �ir
denotes realization average and the number of realizations

is 100. hRPCðtÞir seems to be saturated at about the 250th

cycle.

As shown in Figs. 7b1–b9, bin-averaged normalized

synaptic weights ~JðtÞ
� �

form a step-well-shaped curve. In

the middle part of each trial, strong LTD occurs due to

contribution of only well-matched firing group. On the

(a1)

(a6) (a7) (a8) (a9)

(a2) (a3) (a4) (a5)

(b1) (b2) (b3)

(b4) (b5)

(b6) (b7) (b8) (b9)

(c)

(d)

Fig. 7 Change in synaptic

weights of active PF-PC

synapses during learning trials

in the case of pc ¼ 0:029. a1–a9
Trial-evolution of distribution

of normalized synaptic weights
~JðtÞ of active PF signals. b1–b9
Trial-evolution of bin-averaged

(normalized) synaptic weights

h ~JðtÞi of active PF signals. Bin

size: Dt ¼ 50 msec. Plots of (c)

trial-averaged mean h ~JðtÞi and d
modulation MJ for the bin-

averaged (normalized) synaptic

weights h ~JðtÞi versus trial
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other hand, at the initial and the final parts, somewhat less

LTD takes place because both the ill-matched firing group

(with practically no LTD) and the well-matched firing

group make contributions together. As a result of this kind

of effective depression at the (excitatory) PF-PC synapses,

with increasing the number of learning trials, raster plots of

spikes of all the 16 PCs become more and more sparse in

the middle part of each trial (i.e, near t ¼ 500 msec), which

may be clearly seen in the instantaneous population spike

rate hRPCðtÞir. hRPCðtÞir becomes lower in the middle part

than at the initial and the final parts. Thus, hRPCðtÞir also
forms a step-well-shaped curve with a minimum in the

middle part.

As the number of trials is increased, such step-well-

shaped curve for hRPCðtÞir comes down and the (top) width

and the depth of the well increase. Eventually, at the 141st

trial, a ‘‘zero-bottom’’ is formed in the step-well in the

middle part of the trial (i.e., hRPCðtÞir ’ 0 for

468\t\532 msec). Appearance of the zero-bottom in the

step-well is the prerequisite condition for acquisition of

CR. At the zero-bottom of the step-well, PCs stop inhibi-

tion completely. This process may be seen well in

Figs. 8c1–c5. Thus, from the 141st threshold trial, the CN

neuron may fire spikes which evoke CR, which will be seen

in Fig. 9. With increasing the number of trials from the

141st trial, both the (top) width of the step-well and the

zero-bottom width are increased, although the depth of the

(a1)

(b1)

(a6) (a7) (a8) (a9)

(b2)

(b3) (b4) (b5)

(a2) (a3) (a4) (a5)

(b6) (b7) (b8) (b9)

(c1)

(c6)

(d1)

(d2)

(c7) (c8) (c9)

(c2)
(c3) (c4) (c5)

Fig. 8 Change in firing activity

of PCs during learning trial in

the case of pc ¼ 0:029. a1–a9
Raster plots of spikes of PCs

and b1–b9 instantaneous

population spike rates RPCðtÞ.
c1–c9 Realization-averaged

instantaneous population spike

rates hRPCðtÞir ; number of

realizations is 100. Plots of d1

trial-averaged mean hRPCðtÞir
and d2 modulations MPC for

hRPCðtÞir versus trial
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well remains unchanged [see Figs. 8c6–c9]. As a result, the

strength S of CR increases, while its timing degree T d is

decreased; the details will be given in Fig. 9. The (overall)

learning efficiency degree Le, taking into consideration

both T d and S, increases with the trial, and becomes sat-

urated at about the 250th trial.

Figures 8d1 and d2 show plots of trial-averaged mean

hRPCðtÞir (i.e., time average of hRPCðtÞir over the trial) and
modulation MPC of hRPCðtÞir versus trial, respectively.

Due to effective LTD at the PF-PC synapses, the trial-

averaged mean hRPCðtÞir decreases monotonically from

92.47 Hz, and it gets saturated at 19.91 Hz at about the

250th cycle. On the other hand, the modulation MPC

increases monotonically from 0.352 Hz, and it becomes

saturated at 16.11 Hz at about the 141st cycle. After the

141st threshold trial, MPC remains unchanged due to no

change in the depth of the step-well, unlike the case of

hRPCðtÞir. These PCs (principal cells of the cerebellar

cortex) exert effective inhibitory coordination on the CN

neuron which evokes the CR (i.e., learned eyeblink).

Figure 9 shows change in firing activity of the CN

neuron which produces the final output of the cerebellum

during learning trial in the case of pc ¼ 0:029. Trial-evo-

lutions of raster plots of spikes of the CN neuron (i.e.,

collection of spike trains for all the realizations; number of

realizations is 100) and the bin-averaged instantaneous

individual firing rates fCNðtÞ (i.e., the number of spikes of

the CN neuron in a bin with the bin width Dt ¼ 50 msec)

are shown in Figs. 9a1–a6 and Figs. 9b1–b6, respectively.

At the 140th trial, the CN neuron does not fire due to strong

inhibition from the PCs, and thus it is silent (i.e., it lies in

the silent period) during the whole trial stage (0\t\1000

msec). However, as a result of appearance of the zero-

bottom in the step-well for hRPCðtÞir at the 141st threshold
trial, the CN neuron begins to fire spikes in the middle part

of the trial. In this case, as the time is increased from t ¼ 0;

the CN neuron first lies in the silent period, then a transi-

tion to the firing state occurs in the middle part, and finally

another transition to the silent state also takes place. With

increasing the number of trials, raster plots of spikes of the

CN neuron become more and more dense in the middle part

of each trial, in contrast to the case of PCs.

This process may be clearly seen in the instantaneous

individual firing rates fCNðtÞ. Due to the effective inhibitory
coordinations of PCs on the CN neuron, fCNðtÞ begins to

increase from 0 in the middle part of the trial, it reaches a

peak, and then it decreases to 0 relatively slowly. The peak

of fCNðtÞ appears a little earlier than the US presentation

(a1) (a2) (a3) (a4) (a5) (a6)

(b1)

(c1)

(b2) (b3) (b4) (b5) (b6)

(c2)

(d)

Fig. 9 Change in firing activity of the CN neuron during learning trial

in the case of pc ¼ 0:029. a1–a6 Raster plots of spikes of the CN

neuron (i.e., collection of spike trains for all the realizations; number

of realizations is 100) and b1–b6 bin-averaged instantaneous

individual firing rate fCNðtÞ; the bin size is Dt ¼ 50 msec. Plots of

(c1) timing degree T d and c2 strength S of CR versus trial. d Plot of

(overall) learning efficiency degree Le for the CR versus trial
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(t ¼ 500 msec) which may denote the anticipatory CR

(Medina et al. 2000b; Yamazaki and Tanaka 2007). Thus,

fCNðtÞ forms a bell-shaped curve. As the number of trials is

increased, the bottom-base width and the peak height of the

bell are increased, and fCNðtÞ seems to be saturated at about

the 250th trial.

Figures 9c1 and c2 show plots of the timing degree T d

and the strength S of the CR versus trial, respectively. The

timing degree T d; representing the matching degree

between the firing activity of the CN neuron [fCNðtÞ] and
the US timing signal fUSðtÞ, is given by the cross-correla-

tion CorrTð0Þ at the zero lag between fCNðtÞ and fUSðtÞ:

CorrTðsÞ ¼
DfUSðt þ sÞDfCNðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Df 2USðtÞ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Df 2CNðtÞ

q ; ð31Þ

where DfUSðtÞ ¼ fUSðtÞ � fUSðtÞ, DfCNðtÞ ¼ fCNðtÞ � fCNðtÞ,
and the overline denotes the time average. Practically, T d

reflects the width of the bottom base of the bell curve. With

increasing the number of trials, the width of the bottom

base increases, due to increase in the (top) width of the

step-well curve for the PCs. As a result, T d decreases

monotonically from 0.912 at the 141st trial, and it becomes

saturated at 0.346 at about the 250th trial. On the other

hand, as the number of trials is increased, the peak height

of the bell increases. Thus, the strength S of CR (repre-

senting the amplitude of eyelid closure), given by the

modulation [(maximum - minimum)/2] of fCNðtÞ; increases
monotonically from 1.803 at the 141st trial, and it gets

saturated at 32.38 at about the 250th trial.

Then, the (overall) learning efficiency degree Le for the

CR, taking into consideration both the timing degree T d

and the strength S of CR, is given by their product:

Le ¼ T d � S: ð32Þ

Figure 9d shows a plot of Le versus trial. Le increases

monotonically from 1.645 at the 141st trial, and it becomes

saturated at about the 250th cycle. Thus, we get the satu-

rated learning efficiency degree L�
e ð’ 11:19Þ. As will be

seen in the next subsection, L�
e is the largest one among the

available ones. Hence, in the case of pc ¼ 0:029 where

firing patterns of GR clusters with the variety degree Vð’
1:842Þ are the most various, motor learning for the EBC

with the saturated learning efficiency degree L�
e is the most

effective.

Learning progress can be clearly seen in the IO system.

During the learning trial, the IO neuron receives both the

excitatory (airpuff) US signal for the desired timing and the

inhibitory signal from the CN neuron (representing a

realized eye-movement). Then, the learning progress

degree Lp is given by the ratio of the time-averaged inhi-

bitory input from the CN neuron to the magnitude of the

time-averaged excitatory input of the desired US timing

signal:

Lp ¼
I
ðIO;CNÞ
GABA

I
ðIO;USÞ
AMPA

���
���
: ð33Þ

here, I
ðIO;CNÞ
GABA is the trial-averaged inhibitory GABA

receptor-mediated current from the CN neuron to the IO

neuron, and I
ðIO;USÞ
AMPA is the trial-averaged excitatory AMPA

receptor-mediated current into the IO neuron via the

desired US timing signal; no (excitatory) NMDA receptors

exist on the IO neuron. [Note that the 4th term in Eq. (1) is

given by �I
ðXÞ
syn;iðtÞ, because I

ðIO;CNÞ
GABA [ 0 and I

ðIO;USÞ
AMPA \0:]

Figure 10a1 shows plots of I
ðIO;CNÞ
GABA

D E

r
(open circles)

and jIðIO;USÞAMPA j
D E

r
(crosses) versus trial in the case of

pc ¼ 0:029; h� � �ir represents an average over 100 realiza-

tions. At the 141st threshold trial, acquisition of CR starts

(i.e., the CN neuron begins to fire spikes). Hence, before

the threshold the trial-averaged inhibitory input from the

CN neuron is zero, it begins to increase from the threshold

and converges to the constant trial-averaged excitatory

input through the US signal for the desired timing. Thus,

with increasing the number of trials, Lp is zero before the

threshold, it begins to increase from the threshold, and

becomes saturated at Lp ¼ 1, as shown well in Fig. 10a2.

In this saturated case, the trial-averaged excitatory and

inhibitory inputs to the IO are balanced.

We also investigate the firing activity of IO neuron

during learning process. Figures 10b1–b6 and Fig-

ures 10c1–c6 show trial-evolutions of raster plots of spikes

of the IO neuron (i.e., collection of spike trains for all the

realizations; number of realizations is 100) and the bin-

averaged instantaneous individual firing rates fIO (i.e., the

number of spikes of the IO neuron in a bin with the bin

width Dt ¼ 40 msec), respectively. Before the 141st

threshold trial, relatively dense spikes appear in the middle

part of the trial in the raster plot of spikes, due to the effect

of excitatory US timing signal. However, with increasing

the number of trials from the threshold, spikes in the

middle part become sparse, because of increased inhibitory

input from the CN neuron. In this case, the bin-averaged

instantaneous individual firing rate fIOðtÞ of the IO neuron

forms a bell-shaped curve due to the US timing signal into

the IO neuron. With increasing the number of trials from

the 141st threshold, the amplitude of fIOðtÞ begins to

decrease due to the increased inhibitory input from the CN

neuron, and it becomes saturated at about the 250th trial.

Thus, the trial-averaged individual firing rate fIOðtÞ is

constant (=1.5 Hz) before the threshold without the inhi-

bitory input from the CN neuron. However, with increasing
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the number of trials from the threshold, it is decreased from

1.326 Hz due to increase in the inhibitory input from the

CN neuron, and gets saturated at 0.0902 Hz at about the

250th trial, as shown in Fig. 10d.

The firing output of the IO neuron is fed into the PCs via

the CFs. Hence, with increasing the trial from the thresh-

old, the error-teaching (instructor) CF signals become

weaker and saturated at about the 250th cycle. While the

saturated CF signals are fed into the PCs, saturation for the

trial-averaged bin-averaged synaptic weights ~JðtÞ
� �

appears [see Fig. 7c]. Then, the subsequent learning pro-

cess in the PC-CN system also gets saturated, and we

obtain the saturated learning efficiency degree L�
e

ð’ 11:19Þ, which is shown in Fig. 9d.

Variation of the connection probability pc
and strong correlation between variety degree V
for the firing patterns and learning efficiency
degree Le of CR

In the above subsections, we consider the case of pc ¼
0:029 (i.e., 2:9%) where the firing patterns of the GR cells

are the most various and the Pavlovian EBC learning is

also the most efficient [which will be clearly shown in

Figs. 14b and c3, respectively]. From now on, we change

the connection probability pc from GO to GR cells, and

study dependence of the variety degree V for the firing

patterns in the GR clusters and the learning efficiency

degree Le of the CR on pc.

We first consider both the highly-connected case of pc ¼
0:3 (i.e., 30%) and the lowly-connected case of pc ¼ 0:003

(i.e., 0:3%). Figures 11a1 and a2 show the raster plots of

spikes of 103 randomly chosen GR cells for pc ¼ 0:3 and

0.003, respectively. The population-averaged firing activi-

ties in the whole population of GR cells may be well seen

in the instantaneous whole-population spike rates RGRðtÞ in
Figs. 11b1 and b2 for pc ¼ 0:3 and 0.003, respectively.

As shown in Fig. 2b, each GR cluster is bounded by four

glomeruli (corresponding to the terminals of the MFs) at

both ends. Each glomerulus receives inhibitory inputs from

nearby 81 GO cells with the connection probability pc. In

the highly-connected case of pc ¼ 0:3, on average, about

24 GO cell axons innervate each glomerulus. Then, each

GR cell in a GR cluster receives about 97 inhibitory inputs

via four dendrites which contact the four glomeruli at both

ends. In this highly-connected case, inhibitory inputs from

the pre-synaptic GO cells are increased, in comparison with

the case of pc ¼ 0:029: As a result, spike density in the

raster plot of spikes is decreased (i.e., spikes become

sparse) due to decreased individual firing rates, and hence

(a1)

(a2)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1)

(d)

(c2) (c3) (c4) (c5) (c6)

Fig. 10 Change in firing activity of the IO neuron during learning trial

in the case of pc ¼ 0:029. Plots of (a1) realization-average for the

time-averaged inhibitory synaptic current from the CN neuron

(hIðIO;CNÞGABA ir) (open circles) and realization-average for the time-

averaged excitatory synaptic current via the (airpuff) US signal

(hjIðIO;USÞAMPA jir) versus trial; number of realizations h� � �ir is 100. a2 Plot

of learning progress degree Lp versus trial. b1–b5 Raster plots of

spikes of the IO neuron (i.e., collection of spike trains for all the

realizations; number of realizations is 100) and c1–c5 bin-averaged

instantaneous individual firing rate fIOðtÞ; the bin size is Dt ¼ 40

msec. d Plot of trial-averaged individual firing rate fIOðtÞ versus trial
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the flat top part of RGRðtÞ becomes lowered, in comparison

to the case of pc ¼ 0:029 in Fig. 3b.

In the highly-connected case of pc ¼ 0:3; differences

between total inhibitory synaptic inputs from pre-synaptic

GO cells to each GR cells are decreased due to increase in

the number of pre-synaptic GO cells. In addition, the

excitatory inputs into each GR cells via MFs are Poisson

spike trains with the same firing rates, and hence they are

essentially the same. Hence, differences between the total

synaptic inputs (including both the inhibitory and the

excitatory inputs) into each GR cells become reduced.

These less different inputs into GR cells produce less dif-

ferent outputs (i.e. firing activities) of GR cells, which

become more similar to the population-averaged firing

activity RGRðtÞ with a flat top in Fig. 11b1. Thus, GR cells

tend to exhibit relatively regular firings during the whole

trial stage (0\t\1000 msec), in comparison with the case

of pc ¼ 0:029. Consequently, the raster plot of sparse

spikes for pc ¼ 0:3 becomes relatively uniform [compare

Fig. 11a1 with Fig. 3a].

On the other hand, in the lowly-connected case of

pc ¼ 0:003, the inhibitory inputs from GO cells into GR

cells are so much reduced, and the excitatory MF signals

into the GR cells become dominant inputs. Hence, spike

density in the raster plot of spikes is increased (i.e., spikes

become dense), because of increased individual firing rate,

and the flat top part of RGRðtÞ becomes raised, in com-

parison to the case of pc ¼ 0:029 in Fig. 3b. Furthermore,

differences between the total synaptic inputs into each GR

cells become reduced, because the dominant excitatory MF

signals, generated by the Poisson spike trains with the same

firing rates, are essentially the same, and thus firing

activities of GR cells become more similar to RGRðtÞ with a

flat top in Fig. 11b2. Hence, as in the highly-connected

case, GR cells tend to show relatively regular firings during

the whole trial stage. As a result, the raster plot of dense

spikes for pc ¼ 0:003 also becomes relatively uniform, as

shown in Fig. 11a2, in comparison with the case of pc ¼
0:029 in Fig. 3a.

Figures 11c1 and c2 show the distributions of matching

indices MðIÞ
n o

for pc ¼ 0:3 and 0.003, respectively. The

ranges in the distributions of MðIÞ
n o

for pc ¼ 0:3 and

0.003 are (� 0.21, 0.44) and (� 0.18, 0.48), respectively. In

both cases, their ranges are narrowed from both the positive

and the negative sides, in comparison with the range (�
0.49, 0.79) in the case of pc ¼ 0:029. As explained above,

in both the highly- and the lowly-connected cases of pc ¼
0:3 and 0.003, GR cells tend to exhibit relatively regular

firings in the whole trial stage, due to decrease in the dif-

ferences in the total synaptic inputs from GO cells into

each GR cells, which is in contrast to the case of pc ¼
0:029 where random repetitions of transitions between

bursting and silent states (both of which are persistent long-

lasting ones) occur. Then, in both the highly- and the

lowly-connected cases, highly well-matched firing patterns

with higher MðIÞ and highly ill-matched firing patterns

with higher magnitude MðIÞ
���

��� disappear, which leads to

reduction in the ranges of the distributions of MðIÞ
n o

arise.

Due to the narrowed distribution of MðIÞ
n o

, both the

mean (’ 0:239) and the standard deviation (’ 0:360) in the

highly-connected case of pc ¼ 0:3 are decreased, in com-

parison to the case of pc ¼ 0:029 where the mean and the

standard deviation are 0.333 and 0.614, respectively. Then,

the variety degree V for the firing patterns R
ðIÞ
GRðtÞ

h i
in the

GR clusters, denoting a quantitative measure for various

(a1)

(d1)

(b1)

(c1) (c2)

(d2)

(a2)

(b2)

Fig. 11 Highly-connected (pc ¼ 0:3) and lowly-connected

(pc ¼ 0:003) cases. Raster plots of spikes of 103 randomly chosen

GR cells for a1 pc ¼ 0:3 and a2 pc ¼ 0:003. Instantaneous whole-

population spike rates RGRðtÞ in the whole population of GR cells for

b1 pc ¼ 0:3 and (b2) pc ¼ 0:003. Band width for RGRðtÞ: h ¼ 10

msec. Distributions of matching indices fMðIÞg of the firing patterns

in the GR clusters in the whole population for c1 pc ¼ 0:3 and c2
pc ¼ 0:003. Bin size for the histograms in (c1) and (c2) is 0.1.

Fractions of well-matched and ill-matched firing groups for d1 pc ¼
0:3 and d2 pc ¼ 0:003
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recoding in the granular layer, is given by the relative

standard deviation for the distribution of fMðIÞg [see

Eq. (22)]. For pc ¼ 0:3, its variety degree is V ’ 1:506

which is smaller than Vð’ 1:842Þ in the case of

pc ¼ 0:029. Similar to the highly-connected case, for pc ¼
0:003 both the mean (’ 0:272) and the standard deviation

(’ 0:315) for the distribution of MðIÞ
n o

are also

decreased. In this lowly-connected case, the variety degree

V for the firing patterns R
ðIÞ
GRðtÞ

h i
in the GR clusters is

V ’ 1:157 which is much smaller than Vð’ 1:842Þ in the

case of pc ¼ 0:029. We also note that the variety degree V
for pc ¼ 0:003 is smaller than that for pc ¼ 0:3; V ¼ 1:842

ðpc ¼ 0:029Þ[V ¼ 1:506ðpc ¼ 0:3Þ[V ¼ 1:157ðpc ¼
0:003Þ:

Figures 11d1 and d2 show fractions of well-matched

MðIÞ [ 0
n o� �

and ill-matched MðIÞ\0
n o� �

firing

groups for pc ¼ 0:3 and 0.003, respectively. In the highly-

connected case of pc ¼ 0:3; the well-matched firing group

is a major one with fraction 88.2%, while the ill-matched

firing group is a minor one with fraction 11.8%. In com-

parison with the case of pc ¼ 0:029 where the fraction of

well-matched firing group is 82.1%, the fraction of well-

matched firing group for pc ¼ 0:3 is increased. In this

highly-connected case, the firing-group ratio, given by the

ratio of the fraction of the well-matched firing group to that

of the ill-matched firing group, is Rsp ’ 7:48 which is

larger than that (Rsp ’ 4:59) in the case of pc ¼ 0:029. In

the lowly-connected case of pc ¼ 0:003; the fraction of

well-matched firing group is more increased to 93.9%.

Hence, the firing-group ratio is Rsp ’ 13:8 which is much

larger than that in the case of pc ¼ 0:029.

Due to decrease in differences between the total synaptic

inputs into each GR cells, firing activities of GR cells for

pc ¼ 0:3 and 0.003 become more similar to the population-

averaged firing activity RGRðtÞ, in comparison with the case

of pc ¼ 0:029. We note that RGRðtÞ is well-matched with

the US signal fUSðtÞ [i.e, RGRðtÞ has a positive conjunction

index with respect to fUSðtÞ], which results in increase in

the fraction of well-matched firing group for pc ¼ 0:3 and

0.003. In contrast to the case of pc ¼ 0:3; in the lowly-

connected case of pc ¼ 0:003; inhibitory inputs into each

GR cells are so much reduced, and hence the dominant

inputs are just the excitatory MF signals which are well-

matched with the US signal fUSðtÞ. Thus, the fraction of

well-matched firing group for pc ¼ 0:003 becomes larger

than that for pc ¼ 0:3.

These changes in the variety degree V of the firing

patterns in the GR clusters have direct effect on the

synaptic plasticity at the PF-PC synapses and the subse-

quent learning process in the PC-CN system. As shown in

the case of pc ¼ 0:029, the ill- and the well-matched firing

groups play their own roles for the CR. The ill-matched

firing group plays a role of protection barrier for the timing

of CR, while the strength of CR is determined by strong

LTD in the well-matched firing group. Due to break-up of

highly well-matched and highly ill-matched firing patterns,

the distributions of MðIÞ
n o

for the highly- and the lowly-

connected cases of pc ¼ 0:3 and 0.003 are narrowed.

Hence, both the timing degree T d and the strength S of CR

are decreased for both pc ¼ 0:3 and 0.003, which are well

shown in Figs. 12 and 13.

Figure 12 shows change in the firing activity of the CN

neuron which generates the final output of the cerebellum

during learning trial in the highly- and the lowly-connected

cases of pc ¼ 0:3 and 0.003. For pc ¼ 0:3; trial-evolutions

of the raster plots of spikes of the CN neuron (i.e., col-

lection of spike trains for all the realizations; number of

realizations is 100) and the bin-averaged instantaneous

individual firing rates fCNðtÞ (i.e., the number of spikes of

the CN neuron in a bin with the bin width Dt ¼ 50 msec)

are shown in Figs. 12a1–a6 and Figs. 12b1–b6, respec-

tively. In this highly-connected case, at the 142nd threshold

trial, the CN neuron begins to fire in the middle part of the

trial. Thus, acquisition of CR occurs a little later, in com-

parison with the case of pc ¼ 0:029 with the 141st

threshold. In this case, fCNðtÞ forms a bell-shaped curve.

With increasing the number of trials from the threshold,

raster plots of spikes of the CN neuron become more and

more dense in the middle part of each trial, and bottom-

base width and peak height of the bell curve for fCNðtÞ
increase. At about the 250th trial, fCNðtÞ seems to become

saturated. Thus, the number of the threshold trial for

acquisition of CR and the number of trial for the saturation

of fCNðtÞ are nearly the same in both cases of pc ¼ 0:3 and

0.029, although pc ¼ 0:3 is about 10 times as large as

pc ¼ 0:029. However, the main concern in the Pavlovian

EBC lies in the learning efficiency degree at the saturated

state. T d [timing degree representing the bottom-base

width of fCNðtÞ], S [strength of CR representing the peak

height of fCNðtÞ], and the learning efficiency degree Le

(given by product of T d and S) are significantly decreased

for pc ¼ 0:3 from those values for pc ¼ 0:029, which is

well explained in the next paragraph.

For pc ¼ 0:3; the bottom-base width of the bell curve is

wider and its peak height is shorter, in comparison with the

case of pc ¼ 0:029 (see Fig. 9). Due to break-up of highly

ill-matched firing patterns (which play the role of protec-

tion barrier for timing of CR), bottom-base width (associ-

ated with the reciprocal of timing degree of CR) of the bell

increases. Also, peak height of the bell (related to the

strength of CR) decreases because of break-up of highly

well-matched firing patterns (which induce strong LTD and
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determine the strength of CR). Consequently, as the variety

degree V of the firing patterns in the GR clusters is

deceased from 1.842 (pc ¼ 0:029) to 1.507 (pc ¼ 0:3), the

bottom-base width of the bell curve is increased, and the

peak height is decreased.

For pc ¼ 0:003; trial-evolutions of the raster plots of

spikes of the CN neuron and the bin-averaged instanta-

neous individual firing rates fCNðtÞ are shown in

Figs. 12c1–c6 and Figs. 12d1–d6, respectively. In this

lowly-connected case, acquisition of CR occurs at the

143rd trial which is a little later in comparison with the

142nd threshold for pc ¼ 0:3. Similar to the highly-con-

nected case, with increasing the number of trials from the

threshold, raster plots of spikes of the CN neuron become

more and more dense in the middle part of each trial, and

the bottom-base width and the peak height of the bell curve

for fCNðtÞ increase. Eventually, saturation occurs at about

the 250th trial. In comparison to the highly-connected case,

the bottom-base width of the bell curve is wider and its

peak height is shorter, because of more break-up of highly

ill-matched firing patterns and highly well-matched firing

patterns (which results in more decrease in the variety

degree of firing patterns). As a result, with decreasing the

variety degree V from 1.507 (pc ¼ 0:3) to 1.157

(pc ¼ 0:003), the bottom-base width of the bell curve

increases, and the peak height decreases (i.e., less variety in

the firing patterns results in decrease in the timing degree

and the strength of CR).

Figures 13a and b show plots of the timing degree T d

and the strength S of CR versus trial for pc ¼ 0:3 (solid

circles), 0.003 (open circles), and 0.029 (crosses), respec-

tively. The timing degree T d; denoting the matching

degree between the firing activity of the CN neuron [fCNðtÞ]
and the US signal fUSðtÞ for a timing, is given by the cross-

correlation CorrTð0Þ at the zero lag between fCNðtÞ and

fUSðtÞ in Eq. (31). This timing degree T d reflects the width

(a1) (a2) (a3) (a4) (a5) (a6)

(b1) (b2) (b3) (b4) (b5) (b6)

(c1) (c2) (c3) (c4) (c5) (c6)

(d1) (d2) (d3) (d4) (d5) (d6)

Fig. 12 Change in firing activity of the CN neuron in the highly-

connected (pc ¼ 0:3) and the lowly-connected (pc ¼ 0:003) cases.

Case of pc ¼ 0:3: a1–a6 raster plots of spikes of the CN neuron (i.e.,

collection of spike trains for all the realizations; number of

realizations is 100) and b1–b6 bin-averaged instantaneous individual

firing rate fCNðtÞ; the bin size is Dt ¼ 50 msec. Case of pc ¼ 0:003:
c1–c6 raster plots of spikes of the CN neuron and (d1)-(d6) bin-

averaged instantaneous individual firing rate fCNðtÞ

(a)

(b)

(c)

Fig. 13 Timing degree, strength, and learning efficiency degree of the

CR in the highly-connected (pc ¼ 0:3) and the lowly-connected

(pc ¼ 0:003) cases. a Plots of timing degree T d of the CR versus trial.

b Plots of strengths S of the CR versus trial. c Plots of learning

efficiency degree Le for the CR versus trial. Solid circles, open

circles, and crosses represent data in the cases of pc ¼ 0.3, 0.003, and

0.029, respectively
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of the bottom base of the bell curve. With increasing the

number of trials, the width of the bottom base increases, as

shown in Fig. 12, and hence T d decreases monotonically,

and it becomes saturated at about the 250th trial. We note

that, as the variety degree V of the firing patterns is

decreased (V ¼ 1.507, 1.157, and 1.842 for pc ¼ 0:3;

0.003, and 0.029, respectively), T �
d (saturated value of T d)

decreases; T �
d ¼ 0:346ðpc ¼ 0:029Þ[ T �

d ¼ 0:266ðpc ¼
0:3Þ[ T �

d ¼ 0:187ðpc ¼ 0:003Þ.
On the other hand, as the number of trials is increased,

the peak height of the bell increases. Hence, the strength S
of CR, given by the modulation of fCNðtÞ; increases

monotonically, and it becomes saturated at about

the 250th trial. In this case, S� (saturated value of S) also
is decreased with decrease in the variety degree V; S� ¼
32:382ðpc¼0:029Þ[S� ¼27:099ðpc¼0:3Þ[S� ¼ 21:656

ðpc¼0:003Þ.
We then consider the learning efficiency degree Le for

the CR, given by product of the timing degree T d and the

strength S in Eq. (32). Figure 13c shows a plot of Le

versus trial. Le increases monotonically from the threshold

trial, and it becomes saturated at about the 250th cycle.

Thus, we obtain the saturated learning efficiency degree

L�
e , the values of which are 7.216, 4.054, and 11.19 for

pc ¼ 0.3, 0.003, and 0.029, respectively. Among the three

cases, L�
eð¼ 11:19Þ in the case of pc ¼ 0:029 is the largest

one, and L�
e is decreased with decrease in the variety

degree V; L�
e ¼ 11:19ðpc ¼ 0:029Þ[L�

e ¼ 7:216

ðpc ¼ 0:3Þ[L�
e ¼ 4:054ðpc ¼ 0:003Þ.

Finally, based on the above two examples for the highly-

and the lowly-connected cases, we investigate dependence

of the variety degree V for the firing patterns of the GR

clusters and the saturated learning efficiency degree L�
e on

pc by varying it from the value of pc ¼ 0:029. Figure 14a

shows plots of fractions of the well- and the ill-matched

firing groups versus pc. The fraction of the well-matched

firing group (solid circles) forms a well-shaped curve with

a minimum in the case of pc ¼ 0:029, while the fraction of

the ill-matched firing group (open circles) forms a bell-

shaped curve with a maximum in the case of pc ¼ 0:029. In

the case of pc ¼ 0:029, the firing-group ratio (i.e., ratio of

fraction of the well-matched firing group to fraction of the

ill-matched firing group) is Rsp ¼ 4:59. As pc is changed

(i.e., increased or decreased) from pc ¼ 0:029, the fraction

of the well-matched firing group increases, and then the

firing-group ratio Rsp increases from Rsp ¼ 4:59 in the

case of pc ¼ 0:029.

Figure 14b show a plot of the variety degree V for the

firing patterns in the GR clusters. The variety degrees V
forms a bell-shaped curve with a maximum Vð’ 1:842Þ in
the case of pc ¼ 0:029. With changing pc from pc ¼ 0:029;

V decreases from V ’ 1:842. Hence, in the case of

pc ¼ 0:029, temporal recoding of GR cells is the most

various. Figures 14c1–c3 show plots of the saturated tim-

ing degree T �
d, the saturated strength S�, and the saturated

learning efficiency degree L�
e of CR, respectively. All of

them form bell-shaped curves with maxima T �
dð’ 0:346Þ,

S�ð’ 32:38Þ, and L�
eð’ 11:19Þ in the case of pc ¼ 0:029.

As pc is changed from pc ¼ 0:029, T �
d, S�, and L�

e are

decreased. Hence, the case of pc ¼ 0:029 may be regarded

as an ‘‘optimal’’ one with both the maximum variety degree

Vð’ 1:842Þ for the firing patterns of the GR cells and the

maximum saturated learning efficiency degree

L�
eð’ 11:19Þ. That is, for pc ¼ 0:029; the firing patterns of

the GR cells are the most various, which also results in the

most efficient learning for the EBC. Hereafter, we call the

case of pc ¼ 0:029 as an optimal one. Figure 14d shows a

plot of L�
e versus V. As shown clearly in Fig. 14d, both L�

e

and V have a strong correlation with the Pearson’s corre-

lation coefficient r ’ 0:9982. Consequently, the more

various in temporal recoding of the GR cells (i.e., the larger

the variety degree V of the firing patterns of the GR cells),

the more effective in learning for the Pavlovian EBC (i.e.,

the greater the learning efficiency degree Le for the EBC),

which is our main result.

Summary and discussion

We are concerned about the Pavlovian EBC. Various

works on the EBC have been done experimentally in many

mammalian species such as humans, monkeys, dogs, fer-

rets, rabbits, rats, and mice (Hilgard and Campbell 1936;

Hilgard and Marquis 1935, 1936; Schneiderman et al.

1962; Skelton 1988; McCormick et al. 1982; McCormick

and Thomson 1984; Ivarsson and Svesson 2000; Heiney

et al. 2014). Also, computational works reproduced some

features (e.g., representation of time passage) of the EBC

in artificial models (Desmond and Moore 1988; Moore

et al. 1989; Gluck et al. 1990; Chapeau-Blondeau and

Chauvet 1991; Bullock et al. 1994; Fiala et al. 1996), a

realistic biological model (Buonomano and Mauk 1994;

Medina et al. 2000a; Medina and Mauk 2000), a rate-

coding model (Yamazaki and Tanaka 2005), and a spiking

neural network model (Yamazaki and Tanaka 2007).

However, more clarification is necessary for influences of

various temporal recoding in GR clusters on the Pavlovian

EBC.

To the best of our knowledge, for the first time, we made

complete quantitative classification of various firing pat-

terns in the GR clusters in terms of the newly-introduced

matching index MðIÞ
n o

and variety degree V in the case of

Pavlovian EBC. Each firing pattern is characterized in

terms of its matching index MðIÞ between the firing pattern
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and the US signal for the desired timing. Then, the whole

firing patterns are clearly decomposed into the well-mat-

ched MðIÞ [ 0
� �

and the ill-matched MðIÞ\0
� �

firing

groups. Furthermore, the degree of various recoding of the

GR cells may be quantified in terms of the variety degree

V, given by the relative standard deviation in the distri-

bution of MðIÞ
n o

. Thus, V provides a quantitative measure

for various temporal recoding of GR cells. It has also been

shown that various total synaptic inputs (including both the

excitatory inputs via MFs and the inhibitory inputs from

the pre-synaptic GO cells) into the GR clusters result in

generation of various firing patterns (i.e. outputs) in the GR

clusters.

Based on the above dynamical classification of various

firing patterns in the GR clusters, we made clear investi-

gations on the influence of various recoding of GR cells on

the Pavlovian EBC (i.e., their effect on the synaptic plas-

ticity at the PF-PC synapses and the subsequent learning

process in the PC-CN-IO system). To the best of our

knowledge, this kind of approach, based on the well- and

the ill-matched firing groups, is unique in studying the

Pavlovian EBC. The well-matched firing patterns are

strongly depressed (i.e., strong LTD) by the instructor CF

signals due to good association between the well-matched

PF and the CF signals, and they make dominant contribu-

tions in the middle part of each trial. In contrast, for the ill-

matched firing patterns with central gaps in the middle part,

practically no LTD occurs because most of the ill-matched

firing patterns have no matching with the instructor CF

signals. Thus, in the middle part of each trial, strong LTD

occurs via dominant contributions of well-matched firing

group, and hence a minimum of the bin-averaged synaptic

weight ~J
� �

appears. On the other hand, at the initial and the

final parts of each trial, less LTD takes place because both

the ill-matched firing group with practically no LTD and

the well-matched firing group with strong LTD make

contributions together, and hence maxima of ~J
� �

occur. As

a result, a big modulation in ~J
� �

arises via constructive

interplay of the well- (strong LTD) and ill-matched

(practically no LTD) firing groups.

Due to this type of effective synaptic plasticity at the

PF-PC synapses, the (realization-averaged) population

spike rate hRPCðtÞi of PCs forms a step-well-shaped curve

with a minimum in the middle part of each trial. When

passing a threshold trial, a ‘‘zero-bottom’’ (where

hRPCðtÞi ’ 0) appears in the central well. At this threshold

trial, the CN neuron begins to fire in the middle part of

trial. Hence, appearance of the zero-bottom in the step-well

for hRPCðtÞi is a prerequisite condition for acquisition of

CR. In the subsequent trials, the individual firing rate fCNðtÞ
of the CN neuron forms a bell-shaped curve with a maxi-

mum in the middle part (which is up-down reversed with

respect to hRPCðtÞi). Outside the bottom of the bell in the

middle part, the CN neuron cannot fire, due to inhibition of

(a) (b)

(c1) (c2) (c3)

(d)

Fig. 14 Strong correlation

between the variety degree V of

the firing patterns and the

saturated learning efficiency

degree L�
e . a Fractions of well-

matched (solid circles) and ill-

matched (open circles) firing

groups versus the connection

probability pc. b Plot of variety

degree V of the firing patterns in

the GR clusters versus pc. Plots
of saturated c1 timing degree

T �
d , c2strengths S�, and c3

learning efficiency degree L�
e of

the CR versus pc. d Plot of L�
e

versus V
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ill-matched firing group (with practically no LTD). Hence,

the ill-matched firing group plays a role of protection

barrier for timing, and the timing degree of CR is recip-

rocally associated with the bottom width of the bell. In this

case, the peak of the bell in the middle part is formed due

to strong LTD in the well-matched firing group, and its

height is directly related to the strength of CR (corre-

sponding to the amplitude of eyelid closure). In this way,

both the well- and the ill-matched firing groups play their

own roles for the timing and the strength of CR,

respectively.

By changing pc; we investigated dependence of the

variety degree V of the firing patterns and the saturated

learning efficiency degree L�
e for the CR (given by the

product of the timing degree and the strength of CR) on pc:

Both V and L�
e have been found to form bell-shaped curves

with peaks (V ’ 1:842 and Le
�ð’ 11:19Þ) at the same

optimal value of pc ¼ 0:029. In Refs. (Yamazaki and

Tanaka 2007; Yamazaki and Nagao 2012)where the

parameter values were taken, based on anatomical and

physiological data, the connection probability from the GO

to the GR cells is pc ¼ 0:025; which is very close to that in

the optimal case. Thus, we hypothesize that the granular

layer in the cerebellar cortex has evolved toward the goal

of the most various recoding. Moreover, Both V and L�
e

have also been found to have a strong correlation with the

Pearson’s correlation coefficient r ’ 0:9982. Hence, the

more various in the firing patterns of GR cells, the more

efficient in learning for the Pavlovian EBC, which is the

main result in our work.

To examine our main result, we also suggest a real

experiment for the EBC. To control pc in a given species of

animals (e.g., a species of rabbit, rat, or mouse) in an

experiment seems to be practically difficult, in contrast to

the case of computational neuroscience where pc may be

easily varied. Instead, we may consider an experiment

consisting of several species of animals (e.g., 3 species of

rabbit, rat, and mouse). In each species, a large number of

randomly chosen GR cells (i ¼ 1; � � � ;M) are considered.

Then, through many CS-US trials, one may get the peris-

timulus time histogram (PSTH) for each ith GR cell [i.e.,

(bin-averaged) instantaneous individual firing rate f
ðiÞ
GRðtÞ of

the ith GR cell]. GR cells are expected to exhibit various

PSTHs. Then, in the case of each ith GR cell, one can get

its matching index Mi between its PSTH f
ðiÞ
GRðtÞ and the CF

signal for the desired timing [i.e., the PSTH of the IO

neuron fIOðtÞ]. In this case, the matching index Mi is given

by the cross-correlation at the zero-time lag between f
ðiÞ
GRðtÞ

and fIOðtÞ. Thus, one may get the variety degree V of

PSTHs of GR cells, given by the relative standard deviation

in the distribution of fMig, for the species.

In addition to the PSTHs of GR cells, under the many

CS-US trials, one can also obtain a bell-shaped PSTH of a

CN neuron [(bin-averaged) instantaneous individual firing

rate fCNðtÞ of the CN neuron]. The reciprocal of bottom-

base width and the peak height of the bell curve correspond

to timing degree T d and strength S for the EBC, respec-

tively. In this case, the (overall) learning efficiency degree

Le for the EBC is given by the product of T d and S. In this

way, a set of ðV;LeÞ may be experimentally obtained for

each species, and depending on the species, the set of

ðV;LeÞ may change. Then, for example in the case of 3

species of rabbit, rat, and mouse, with the three different

data sets for ðV;LeÞ, one can examine our main result (i.e.,

whether more variety in PSTHs of GR cells leads to more

efficient learning for the EBC).

Finally, we make discussion on limitations of our pre-

sent work and future works. In the present work where the

ISI between the onsets of CS and US was set at 500 msec,

we investigated the effect of various temporal recoding of

GR cells on the Pavlovian EBC. The acquisition rate and

the timing degree and strength of CR have been known to

depend on the ISI (Mauk and Ruiz 1992; Yamazaki and

Tanaka 2007). Hence, in a future work, it would be inter-

esting to study dependence of EBC on the ISI. Based on the

results of our work, it would also be interesting to study

extinction of CR, as a future work. After acquisition of CR,

we turn off the airpuff US. Then, the CR is expected to

become gradually extinct via LTP at the PF-PC synapses

(Mauk and Donegan 1997). In this work, we considered

only the PF-PC synaptic plasticity. In the cerebellum,

synaptic plasticity takes place at various synapses (Hansel

et al. 2001; Gao et al. 2012)(e.g., MF-CN and PC-CN

synapses (Zheng and Raman 2010), PF-BC and BC-PC

synapses (Lennon et al. 2015), and MF-GR cells synapses

(D’Angelo and De Zeeuw 2008)). Hence, it would be

interesting to make a future study on the influence of

various synaptic plasticity at various synapses on the

cerebellar learning for the Pavlovian EBC; particularly, we

are interested in the effect of the synaptic plasticity at the

MF-CN synapse on the EBC (Mauk and Donegan 1997). In

addition to change in pc (i.e., connection probability from

GO to GR cells), one can vary synaptic inputs into the GR

cells by changing NMDA receptor-mediated maximum

conductances �g
ðGRÞ
NMDA and �g

ðGOÞ
NMDA (Yamazaki and Tanaka

2007). Hence, as a future work, it would also be interesting

to study the influence of NMDA receptor-mediated

synaptic inputs on various recoding of GR cells and

learning for the EBC by varying �g
ðGRÞ
NMDA and �g

ðGOÞ
NMDA.
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Appendix

Parameter values for the LIF neuron models
and the synaptic currents

In Appendix A, we list four tables which show parameter

values for the LIF neuron models in Subsect. 2.3 and the

synaptic currents in Subsect. 2.4. These values are adopted

from physiological data (Yamazaki and Tanaka 2007;

Yamazaki and Nagao 2012).

For the LIF neuron models, the parameter values for the

capacitance CX , the leakage current I
ðXÞ
L , the AHP current

I
ðXÞ
AHP, and the external constant current I

ðXÞ
ext are shown in

Table 1.

For the synaptic currents, the parameter values for the

maximum conductance �g
ðTÞ
R , the synaptic weight J

ðT ;SÞ
ij , the

synaptic reversal potential V
ðSÞ
R , the synaptic decay time

constant sðTÞR , and the amplitudes A1 and A2 for the type-2

exponential-decay function in the granular layer, the

Purkinje-molecular layer, and the other parts for the CN

and IO neurons are shown in Tables 2, 3, and 4,

respectively.

Refined rule for synaptic plasticity

In Appendix B, we introduce a refined rule for synaptic

plasticity. The coupling strength of the synapse from the

pre-synaptic neuron j in the source S population to the post-

synaptic neuron i in the target T population is J
ðT ;SÞ
ij . Initial

synaptic strengths for J
ðT ;SÞ
ij are given in Tables 2, 3, and 4.

In this work, we assume that learning occurs only at the PF-

PC synapses. Hence, only the synaptic strengths J
ðPC;PFÞ
ij of

PF-PC synapses may be modifiable (i.e., they are depressed

or potentiated), while synaptic strengths of all the other

synapses are static. [Here, the index j for the PFs corre-

sponds to the two indices (M, m) for GR cells representing

the mth (1�m� 50) cell in the Mth (1�M� 210) GR

cluster.] Synaptic plasticity at PF-PC synapses have been

so much studied in many experimental (Ito et al. 1982; Ito

and Kano 1982; Sakurai 1987; Ito 1989; De Schutter 1995;

Chen and Thompson 1995; Wang et al. 2000; Lev-Ram

et al. 2003; Coesmans et al. 2004; Steuber et al. 2007; Safo

and Regehr 2008; Molnár 2014; Yang and Lisberger 2014;

Gallimore et al. 2018) and computational (Albus 1971;

Gerstner and van Hemmen 1992; Buonomano and Mauk

1994; Kenyon et al. 1998; Medina et al. 2000a; Yamazaki

and Tanaka 2007; Roberts 2007; Achard and De Schutter

2008; Yamazaki and Nagao 2012; Bouvier et al. 2018)

works.

As the time t is increased, synaptic strength J
ðPC;PFÞ
ij ðtÞ

for each PF-PC synapse is updated with the following

multiplicative rule (depending on states) (Safo and Regehr

2008; Kim and Lim 2021):

J
ðPC;PFÞ
ij ðtÞ ! J

ðPC;PFÞ
ij ðtÞ þ DJðPC;PFÞij ðtÞ; ð34Þ

where

DJðPC;PFÞij ðtÞ ¼DLTDð1Þ
ij ðtÞ þ DLTDð2Þ

ij ðtÞ þ DLTPijðtÞ;
ð35Þ

DLTDð1Þ
ij ðtÞ ¼ � dLTD � JðPC;PFÞij ðtÞ � CFiðtÞ

�
XDt�r

Dt¼0

DJLTDðDtÞ;
ð36Þ

DLTDð2Þ
ij ðtÞ ¼ � dLTD � JðPC;PFÞij ðtÞ � ½1� CFiðtÞ	 � PFijðtÞ

� DiðtÞ �
XDt�l

Dt¼0

DJLTDðDtÞ;

ð37Þ

DLTPijðtÞ ¼ dLTP � ½JðPC;PFÞ0 � J
ðPC;PFÞ
ij ðtÞ	 � ½1� CFiðtÞ	

� PFijðtÞ � ½1� DiðtÞ	:
ð38Þ

Here, J
ðPC;PFÞ
0 is the initial value (=0.006) for the synaptic

strength of PF-PC synapses. Synaptic modification (LTD or

LTP) occurs, depending on the relative time difference Dt
[= tCF (CF activation time) - tPF (PF activation time)]

between the spiking times of the error-teaching instructor

CF and the variously-recoded student PF. In Eqs. (36)-(38),

CFiðtÞ denotes a spike train of the CF signal coming into

the ith PC. When CFiðtÞ activates at a time t, CFiðtÞ ¼ 1;

otherwise, CFiðtÞ ¼ 0. This instructor CF activation gives

rise to LTD at PF-PC synapses in conjunction with earlier

(Dt[ 0Þ student PF activations in the range of tCF �
Dt�r\tPF\tCF (Dt�r ’ 277:5 msec), which corresponds to

the major LTD in Eq. (36).

We next consider the case of CFiðtÞ ¼ 0, which corre-

sponds to Eqs. (37) and (38). Here, PFijðtÞ denotes a spike
train of the PF signal from the jth pre-synaptic GR cell to

the ith post-synaptic PC. When PFijðtÞ activates at time t,

PFijðtÞ ¼ 1; otherwise, PFijðtÞ ¼ 0. In the case of

PFijðtÞ ¼ 1, PF firing may cause LTD or LTP, depending

on the presence of earlier CF firings in an effective range.

If CF firings exist in the range of tPF þ Dt�l \tCF\tPF
(Dt�l ’ �117:5 msec), DiðtÞ ¼ 1; otherwise DiðtÞ ¼ 0.

When both PFijðtÞ ¼ 1 and DiðtÞ ¼ 1, the PF activation

causes another LTD at PF-PC synapses in conjunction with

earlier (Dt\0) CF activations [see Eq. (37)]. The proba-

bility for occurrence of earlier CF firings within the

effective range is very low because mean firing rates of the
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CF signals (corresponding to output firings of individual IO

neurons) are 
 1.5 Hz (Mathy et al. 2009; Llinás 2014).

Hence, this 2nd type of LTD is a minor one. In contrast, in

the case of DiðtÞ ¼ 0 (i.e., absence of earlier associated CF

firings), LTP occurs because of the PF firing alone [see

Eq. (38)]. The update rate dLTD for LTD in Eqs. (36) and

(37) is 0.005, while the update rate dLTP for LTP in

Eqs. (38) is 0.0005 (=dLTD=10) (Yamazaki and Nagao

2012).

In the case of LTD in Eqs. (36) and (37), the synaptic

modification DJLTDðDtÞ changes depending on the relative

time difference Dt ð¼ tCF � tPF). We use the following

time window for the synaptic modification DJLTDðDtÞ (Safo
and Regehr 2008; Kim and Lim 2021):

DJLTDðDtÞ ¼ Aþ B � e�ðDt�t0Þ2=r2 ; ð39Þ

where A ¼ �0:12, B ¼ 0:4, t0 ¼ 80, and r ¼ 180. The

time window for DJLTDðDtÞ is well shown in Fig. 3 in

Ref. (Kim and Lim 2021), where LTD occurs in an

effective range of Dt�l \Dt\Dt�r . We note that a peak

appears at t0 ¼ 80 msec, and hence peak LTD takes place

when PF firing precedes CF firing by 80 msec. A CF firing

gives rise to LTD in association with earlier PF firings in

the black region (0\Dt\Dt�r ), and it also causes to another
LTD in conjunction with later PF firings in the gray region

(Dt�l \Dt\0). The effect of CF firing on earlier PF firings

is much larger than that on later PF firings. However,

outside the effective range (i.e., Dt[Dt�r or \Dt�l ), PF
firings alone results in occurrence of LTP, because of

absence of effectively associated CF firings.

Our refined rule for synaptic plasticity has the following

advantages for the DLTD in comparison with that in (Ya-

mazaki and Tanaka 2007; Yamazaki and Nagao 2012). Our

rule is based on the experimental result in (Safo and Regehr

2008). In the presence of a CF firing, a major LTD

(DLTDð1Þ) occurs in conjunction with earlier PF firings in

the range of tCF � Dt�r\tPF\tCF (Dt�r ’ 277:5 msec),

while a minor LTD (DLTDð2Þ) takes place in conjunction

with later PF firings in the range of tCF\tPF\tCF � Dt�l
(Dt�l ’ �117:5 msec). The magnitude of LTD varies

depending on Dt (= tCF - tPF); a peak LTD occurs when

Dt ¼ 80 msec. In contrast, the rule in (Yamazaki and

Nagao 2012; Yamazaki and Tanaka 2007)considers only

the major LTD in association with earlier PF firings in the

range of tCF � 50\tPF\tCF, the magnitude of major LTD

is equal, independently of Dt, and minor LTD in con-

junction with later PF firings is not considered. Outside the

effective range of LTD, PF firings alone lead to LTP in

both rules. However, we also note that some features of

Pavlovian EBC were successfully reproduced by using the

simple synaptic rule with only the major LTD in (Ya-

mazaki and Tanaka 2007).

List of abbreviations

In Appendix C, we present a list of abbreviations which is

shown in Table 5.
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