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Abstract We are interested in noise-induced firings of

subthreshold neurons which may be used for encoding

environmental stimuli. Noise-induced population synchro-

nization was previously studied only for the case of global

coupling, unlike the case of subthreshold spiking neurons.

Hence, we investigate the effect of complex network archi-

tecture on noise-induced synchronization in an inhibitory

population of subthreshold bursting Hindmarsh–Rose neu-

rons. For modeling complex synaptic connectivity, we

consider the Watts–Strogatz small-world network which

interpolates between regular lattice and random network via

rewiring, and investigate the effect of small-world connec-

tivity on emergence of noise-induced population synchro-

nization. Thus, noise-induced burst synchronization

(synchrony on the slow bursting time scale) and spike syn-

chronization (synchrony on the fast spike time scale) are

found to appear in a synchronized region of the J–D plane (J:

synaptic inhibition strength and D: noise intensity). As the

rewiring probability p is decreased from 1 (random network)

to 0 (regular lattice), the region of spike synchronization

shrinks rapidly in the J–D plane, while the region of the burst

synchronization decreases slowly. We separate the slow

bursting and the fast spiking time scales via frequency fil-

tering, and characterize the noise-induced burst and spike

synchronizations by employing realistic order parameters

and statistical-mechanical measures introduced in our recent

work. Thus, the bursting and spiking thresholds for the burst

and spike synchronization transitions are determined in

terms of the bursting and spiking order parameters, respec-

tively. Furthermore, we also measure the degrees of burst and

spike synchronizations in terms of the statistical-mechanical

bursting and spiking measures, respectively.

Keywords Subthreshold bursting neurons � Small-world

networks � Noise-induced burst and spike synchronizations

Introduction

Noise-induced firing patterns of subthreshold neurons which

cannot exhibit deterministic spontaneous firings have been

studied in many physiological and pathophysiological

aspects (Huber and Braun 2006). For example, for encoding

environmental electric or thermal stimuli, sensory receptor

neurons were found to use the noise-induced firings, which

are generated via the ‘‘constructive’’ interplay of sub-

threshold oscillations and noise (Braun et al. 1994; Longtin

and Hinzer 1996). In contrast to the suprathreshold case

where deterministic firings occur, a distinct characteristic of

the noise-induced firings is occurrence of ‘‘skipping’’ of

spikes at random integer multiples of a basic oscillation

period (i.e., occurrence of stochastic phase locking) (Braun

et al. 1994; Longtin and Hinzer 1996; Longtin 1997; Huber

and Braun 2006). This random skipping leads to a multi-

modal interspike interval histogram. These noise-induced

firings of a single subthreshold neuron become most coherent

at an optimal noise intensity, which is called coherence

resonance (or autonomous stochastic resonance without

periodic forcing) (Neiman 2007). Furthermore, array-

enhanced coherence resonance was found to occur via noise-

induced synchronization in a population of subthreshold

spiking neurons (Wang et al. 2000; Hu and Zhou 2000; Zhou
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et al. 2001; Zhou and Kurths 2002; Shinohara et al. 2002).

Here, we are interested in synchronization of noise-induced

firings in an ensemble of subthreshold bursting neurons.

Bursting occurs when neuronal activity alternates, on a slow

time scale, between a silent phase and an active (bursting)

phase of fast repetitive spikings (Rinzel 1985, 1987;

Coombes and Bressloff 2005; Izhikevich 2006, 2007).

Hence, bursting neurons exhibit two different patterns of

synchronization due to the slow and fast time scales of

bursting activity. Burst synchronization (synchrony on the

slow bursting time scale) refers to a temporal coherence

between the active phase onset or offset times of bursting

neurons, while spike synchronization (synchrony on the fast

spike time scale) characterizes a temporal coherence

between intraburst spikes fired by bursting neurons in their

respective active phases (Rubin 2007; Omelchenko et al.

2010). Recently, the burst and spike synchronizations have

been studied in many aspects (van Vreeswijk and Hansel

2001; Dhamala et al. 2004; Ivanchenko et al. 2004; Shi and

Lu 2005; Tanaka et al. 2006; Batista et al. 2007; Pereira et al.

2007; Shi and Lu 2009; Sun et al. 2011; Yu et al. 2011; Wang

et al. 2011b; Batista et al. 2012; Lameu et al. 2012; Wang

et al. 2011a; Duan et al. 2013; Meng et al. 2013; Wang et al.

2013). However, most of these studies were focused on the

suprathreshold case where bursting neurons fire determin-

istic firings, in contrast to subthreshold case of our concern.

In this paper, we are interested in noise-induced syn-

chronization in a population of subthreshold bursting neu-

rons which may be used for encoding environmental stimuli.

For the case of subthreshold spiking neurons, noise-induced

synchronization was studied in both regular (global or local)

(Wang et al. 2000; Hu and Zhou 2000; Zhou et al. 2001; Zhou

and Kurths 2002; Shinohara et al. 2002; Lim and Kim 2011)

and random (Hong et al. 2011) networks, and recently the

effect of small-world connectivity on the noise-induced

sparse synchronization was also investigated (Kim and Lim

2013a, 2014c). On the other hand, noise-induced population

synchronization of subthreshold bursting neurons was stud-

ied only in globally-coupled neuronal networks (Kim et al.

2012; Kim and Lim 2013b). To our knowledge, no previous

works on noise-induced synchronization of subthreshold

busting neurons were made in complex neuronal networks.

Hence, we study the effect of complex network architecture

on noise-induced burst and spike synchronizations of sub-

threshold bursting Hindmarsh–Rose (HR) neurons. The HR

neurons are representative bursting neurons (Hindmarsh and

Rose 1982, 1984; Rose and Hindmarsh 1985), and they

interact through inhibitory GABAergic synapses (involving

the GABAA receptors). When the decay time of the synaptic

interaction is enough long, mutual inhibition (rather than

excitation) may synchronize neural firing activities (van

Vreeswijk et al. 1994; Hansel et al. 1995). By providing a

coherent oscillatory output to the principal cells, inhibitory

neuronal networks play the role of the backbones of many

brain oscillations (Wang and Rinzel 1992; Golomb and

Rinzel 1994; Wang and Buzsáki 1996; White et al. 1998;

Whittington et al. 2000; Tiesinga et al. 2001; Lim and Kim

2011; Hong et al. 2011; Buzsáki and Wang 2012; Guo et al.

2012; Kim and Lim 2013a, 2014c). The conventional Erdös–

Rényi random graph has been often used for modeling

complex connectivity occurring in diverse fields such as

social, biological, and technological networks (Erdös and

Rényi 1959). Hence, we first consider a random graph of

subthreshold bursting HR neurons, and investigate occur-

rence of the noise-induced population synchronization by

varying the synaptic inhibition strength J and the noise

intensity D. Thus, noise-induced burst and spike synchro-

nizations are found to appear in a synchronous region of the

J–D plane. For the random networks, global efficiency of

information transfer becomes high because the average path

length (i.e., typical separation between two neurons along the

minimal path) is short due to long-range connections (Latora

and Marchiori 2001, 2003). On the other hand, random

networks have poor clustering (i.e., low cliquishness of a

typical neighborhood) (Buzsáki et al. 2004; Sporns 2011).

However, in a real neural network, synaptic connections are

known to have complex topology which is neither regular nor

random (Sporns 2011; Buzsáki et al. 2004; Chklovskii et al.

2004; Song et al. 2005; Sporns and Honey 2006; Larimer and

Strowbridge 2008; Bullmore and Sporns 2009; Sporns et al.

2000; Bassett and Bullmore 2006). Hence, we consider the

Watts–Strogatz small-world network of subthreshold burst-

ing HR neurons which interpolates between regular lattice

(with high clustering) and random network (with short path

length) via rewiring (Watts and Strogatz 1998; Strogatz

2001; Watts 2003). The Watts–Strogatz model can be

regarded as a cluster-friendly extension of the random net-

work by reconciling the six degrees of separation (small-

worldness) (Milgram 1967; Guare 1990) with the circle of

friends (clustering). These small-world networks (with pre-

dominantly local connections and rare long-distance con-

nections) have been employed in many recent works on

various subjects of neurodynamics (Sporns et al. 2000; Lago-

Fernández et al. 2000; Kwon and Moon 2002; Roxin et al.

2004; Kaiser and Hilgetag 2006; Perc 2007; Achard and

Bullmore 2007; Riecke et al. 2007; Yu et al. 2008; Wang

et al. 2008; Shanahan 2008; Ozer et al. 2009; Wang et al.

2010; Lizier et al. 2011; Lu and Tian 2014; Zheng et al. 2014;

Qu et al. 2014). By varying the rewiring probability p [p ¼ 1

(0) corresponds to a random network (regular lattice)], we

investigate the effect of small-world connectivity on emer-

gence of noise-induced burst and spike synchronizations. As

p is decreased from 1, the region of fast spike synchroniza-

tion shrinks rapidly in the J–D plane, while the region of the

slow burst synchronization decreases slowly. Hence, com-

plete synchronization (including both the burst and spike
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synchronizations) may occur only for sufficiently large p

where global effective communication (between distant

neurons) for fast spike synchronization may be available via

short synaptic paths. On the other hand, for small p only the

slow burst synchronization (without spike synchronization)

occurs.

Population synchronization may be well visualized in the

raster plot of neural spikes which is a collection of spike

trains of individual neurons. Such raster plots of spikes are

fundamental data in experimental neuroscience. The

instantaneous population firing rate (IPFR) RðtÞ which may

be directly obtained from the raster plot of spikes is often

used as a collective quantity describing population behaviors

(Brunel and Hakim 2008; Wang 2010). The experimentally-

obtainable IPFR RðtÞ is in contrast to the ensemble-averaged

global potential VG which is also used as a population

quantity in both the computational and theoretical neuro-

science, because to directly get VG in real experiments is

practically difficult (Kim and Lim 2014a). For the case of

spiking neurons, we developed realistic order parameter and

statistical-mechanical spiking measure, based on IPFR RðtÞ,
to make practical characterization of noise-induced syn-

chronization in both computational and experimental neu-

roscience (Kim and Lim 2014a). Particularly, the statistical-

mechanical spiking measure was introduced by considering

both the occupation and the pacing patterns of spikes in the

raster plot. We note that the pacing degree between spikes is

determined in a statistical-mechanical way by quantifying

the average contribution of (microscopic) individual spikes

to the (macroscopic) IPFR RðtÞ. Thus, the statistical-

mechanical spiking measure has been found to reflect both

the occupation and the pacing degrees of spikes seen in the

raster plot very well. Furthermore, as discussed in Kim and

Lim (2014a), it is expected that the statistical-mechanical

spiking measure may be easily implemented to quantify not

only the degree of spike synchronization in an experimen-

tally obtained raster plot of spikes, but also the reliability of

spike timing and the stimulus discrimination in real experi-

mental data. This statistical-mechanical spiking measure is

in contrast to conventional ‘‘microscopic’’ synchronization

measures such as the correlation-based measure (based on

the cross-correlation between the microscopic individual

potentials of pairs of neurons) (Wang and Buzsáki 1996;

White et al. 1998), the spike-based measures (based on the

spike-distance (Victor and Purpura 1996, 1997; van Rossum

2001; Kreuz et al. 2011, 2013) and the ISI (interspike

interval)-distance (Kreuz et al. 2007) between the micro-

scopic individual spike trains of neurons), and the burst

phase order parameter (Kuramoto 2003; Batista et al. 2007;

Sun et al. 2011; Batista et al. 2012; Lameu et al. 2012). The

correlation-based and the spike-based measures and the burst

phase order parameter are microscopic ones because all of

them concern just the microscopic individual potentials or

spike-trains or burst phases without taking into account any

quantitative relation between the microscopic quantities and

the macroscopic global activities (e.g., IPFR and VG). These

microscopic measures show just ‘‘cross-correlations’’ or

‘‘coherence’’ between microscopic individual quantities

without any explicit relation to the macroscopic occupation

and pacing patterns of spikes visualized well in the raster

plot. Recently, we extended the realistic order parameter and

statistical-mechanical measure of spiking neurons to the case

of bursting neurons (Kim and Lim 2014b). By employing

these extended order parameter and statistical-mechanical

measure, we characterize the noise-induced burst and spike

synchronizations of subthreshold HR neurons. Through

frequency filtering, we separate the IPFR RðtÞ into RbðtÞ (the

instantaneous population burst rate (IPBR) describing the

slow bursting behavior) and RsðtÞ (the instantaneous popu-

lation spike rate (IPSR) describing the fast intraburst spiking

behavior). The time-averaged fluctuations of Rb and Rs play

the role of bursting and spiking order parameters,Ob andOs,

used to determine the bursting and spiking thresholds for the

burst and spike synchronization transitions, respectively

(Kim and Lim 2014b). Furthermore, the degree of noise-

induced burst synchronization is measured in terms of a

statistical-mechanical bursting measure Mb, introduced by

considering the occupation and the pacing patterns of

bursting onset or offset times in the raster plot. Similarly, we

also use a statistical-mechanical spiking measure Ms, and

quantitatively measure the degree of the noise-induced in-

traburst spike synchronization.

This paper is organized as follows. In ‘‘Inhibitory pop-

ulation of subthreshold bursting Hindmarsh–Rose neurons’’

section, we describe an inhibitory population of sub-

threshold bursting HR neurons. In ‘‘Effect of small-world

connectivity on noise-induced burst and spike synchroni-

zations’’ section, we investigate the effect of the small-

world connectivity on the noise-induced burst and spike

synchronizations by varying the rewiring probability p, and

characterize the noise-induced burst and spike synchroni-

zations in terms of the realistic thermodynamic order

parameters and statistical-mechanical measures introduced

in our recent work (Kim and Lim 2014b). Finally, a sum-

mary is given in ‘‘Summary’’ section.

Inhibitory population of subthreshold bursting

Hindmarsh–Rose neurons

We consider an inhibitory population of N subthreshold

bursting neurons. As an element in our coupled neural

system, we choose the representative bursting HR neuron

model which was originally introduced to describe the time

evolution of the membrane potential for the pond snails

(Hindmarsh and Rose 1982, 1984; Rose and Hindmarsh
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1985). The population dynamics in this neural network is

governed by the following set of ordinary differential

equations:

dxi

dt
¼ yi � ax3

i þ bx2
i � zi þ IDC þ Dni � Isyn;i; ð1Þ

dyi

dt
¼ c� dx2

i � yi; ð2Þ

dzi

dt
¼ r sðxi � xoÞ � zi½ �; ð3Þ

dgi

dt
¼ ag1ðxiÞð1� giÞ � bgi; i ¼ 1; . . .;N; ð4Þ

where

Isyn;i ¼
J

din
i

XN

jð6¼iÞ
wijgjðtÞðxi � XsynÞ; ð5Þ

g1ðxiÞ ¼ 1=½1þ e�ðxi�x�s Þd�: ð6Þ

Here, the state of the ith neuron at a time t (measured in

units of milliseconds) is characterized by four state vari-

ables: the fast membrane potential xi, the fast recovery

current yi; the slow adaptation current zi, and the synaptic

gate variable gi denoting the fraction of open synaptic ion

channels. The parameters in the single HR neuron are taken

as a ¼ 1:0, b ¼ 3:0, c ¼ 1:0, d ¼ 5:0, r ¼ 0:001, s ¼ 4:0;

and xo ¼ �1:6 (Longtin 1997).

Each bursting HR neuron is stimulated by using the

common DC current IDC and an independent Gaussian

white noise ni [see the 5th and the 6th terms in Eq. (1)]

satisfying hniðtÞi ¼ 0 and hniðtÞ njðt0Þi ¼ dij dðt � t0Þ,
where h� � �i denotes the ensemble average. The noise n is a

parametric one that randomly perturbs the strength of the

applied current IDC, and its intensity is controlled by using

the parameter D. As IDC passes a threshold I�DCð’ 1:26Þ in

the absence of noise (i.e., D ¼ 0), each single HR neuron

exhibits a transition from a resting state (Fig. 1a) to a

bursting state (Fig. 1b). For the suprathreshold case of

IDC ¼ 1:3, deterministic bursting occurs when neuronal

activity alternates, on a slow time scale ð’ 609 ms),

between a silent phase and an active (bursting) phase of

fast repetitive spikings. An active phase of the bursting

activity begins (ends) at a bursting onset (offset) time when

the membrane potential x of the bursting HR neuron passes

the bursting threshold of x�b ¼ �1 from below (above). In

Fig. 1b, the dotted horizontal line ðx�b ¼ �1Þ denotes the

bursting threshold (the solid and open circles denote the

active phase onset and offset times, respectively), while the

dashed horizontal line ðx�s ¼ 0Þ represents the spiking

threshold within the active phase. Throughout this paper,

we consider the subthreshold case of IDC ¼ 1:25 where

each HR neuron cannot exhibit spontaneous bursting

activity without noise. For D ¼ 0:03, the subthreshold HR

neurons show intermittent noise-induced burstings, as

shown in Fig. 1c. This random skipping of bursts occurs

roughly at random multiples of a slow time scale of

bursting for the noisy HR neuron. However, the slow time

scale for the subthreshold spike-driven bursting HR neuron

is not defined clearly because the HR neuron model does

not have a deterministic slow subsystem which can oscil-

late in the absence of spikes (Longtin 1997). To confirm

(a)

(b)

(c)

(d)

Fig. 1 Single bursting HR neuron. Time series of the fast membrane

potential x for a the subthreshold case of IDC ¼ 1:25 and b the

suprathreshold case of IDC ¼ 1:3 in the absence of noise. The dotted

horizontal line ðx�b ¼ �1Þ represents the bursting threshold (the solid

and open circles denote the active phase onset and offset times,

respectively), while the dashed horizontal line ðx�s ¼ 0Þ represents the

spiking threshold within the active phase. c Noise-induced intermit-

tent bursting and d multi-peaked interburst interval (IBI) histogram

for D ¼ 0:03 in the subthreshold case of IDC ¼ 1:25. The IBI

histogram is made of 5� 104 IBIs and the bin size is 50 ms
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this random burst skipping, we collect 5� 104 interburst

intervals (IBIs) from the single HR neuron, where IBIs of

an ith bursting neuron are referred to intervals between the

bursting onset times at which the membrane potential xi

passes a bursting threshold of x�b ¼ �1 from below. Thus,

we get the multi-modal IBI histogram, as shown in Fig. 1d:

the 1st peak occurs at t ¼ 675 ms and the higher nth-order

ðn ¼ 2; 3; 4; . . .Þ peaks seem to appear at t ’ 675þ
400 ðn� 1Þ ms.

The last term in Eq. (1) represents the synaptic coupling

of the network. Isyn;i of Eq. (5) represents a synaptic current

injected into the ith neuron. The synaptic connectivity is

given by the connection weight matrix W ð¼ fwijgÞ where

wij ¼ 1 if the neuron j is presynaptic to the neuron i;

otherwise, wij ¼ 0. Here, the synaptic connection is mod-

eled by using both the conventional Erdös–Rényi random

graph and the Watts–Strogatz small-world network. Then,

the in-degree of the ith neuron, din
i (i.e., the number of

synaptic inputs to the neuron i) is given by din
i ¼

PN
jð6¼iÞ wij.

Here the coupling strength is controlled by the parameter J

and Xsyn is the synaptic reversal potential. Here, we use

Xsyn ¼ �2 for the inhibitory synapse. The synaptic gate

variable g obeys the 1st order kinetics of Eq. (4) (Golomb

and Rinzel 1994; Wang and Buzsáki 1996). Here, the

normalized concentration of synaptic transmitters, activat-

ing the synapse, is assumed to be an instantaneous sig-

moidal function of the membrane potential with a spiking

threshold x�s in Eq. (6), where we set x�s ¼ 0 and d ¼ 30

(Liang et al. 2009). The transmitter release occurs only

when the neuron emits a spike (i.e., its potential x is larger

than x�s ). For the inhibitory GABAergic synapse (involving

the GABAA receptors), the synaptic channel opening rate,

corresponding to the inverse of the synaptic rise time sr, is

a ¼ 10 ms�1, and the synaptic closing rate b, which is the

inverse of the synaptic decay time sd, is b ¼ 0:1 ms�1

(Börgers and Kopell 2003, 2005). Hence, Isyn rises fast and

decays slowly.

Numerical integration of Eqs. (1)–(4) is done using the

Heun method (San Miguel and Toral 2000) (with the time step

Dt ¼ 0:01 ms). For each realization of the stochastic process,

we choose a random initial point ½xið0Þ; yið0Þ; zið0Þ; gið0Þ� for

the ith ði ¼ 1; . . .;NÞ neuron with uniform probability in the

range of xið0Þ 2 ð�1:7;�1:3Þ, yið0Þ 2 ð�13;�8Þ,
zið0Þ 2 ð1:0; 1:4Þ, and gið0Þ 2 ð0; 0:1Þ.

Effect of small-world connectivity on noise-induced

burst and spike synchronizations

In this section, we study the effect of small-world con-

nectivity on noise-induced population synchronization in

an inhibitory Watts–Strogatz small-world network of

subthreshold bursting HR neurons which interpolates

between regular lattice and random network via rewiring.

Emergence of noise-induced burst and spike synchroniza-

tions is investigated in the J–D plane (J: synaptic inhibition

strength and D: noise intensity) for different values of the

rewiring probability p. It is thus found that complete noise-

induced synchronization (including both the burst and

spike synchronizations) occurs for large p, while for small

p only the noise-induced burst synchronization emerges

because more long-range connections are necessary for fast

spike synchronization. Through frequency filtering, we

separate the slow bursting and the fast spiking time scales,

and characterize the noise-induced population synchroni-

zation by employing realistic order parameters and statis-

tical-mechanical measures introduced in our recent work

(Kim and Lim 2014b).

For modeling complex synaptic connectivity, we first

consider the conventional Erdös–Rényi random graph of N

sparsely-connected bursting HR neurons equidistantly

placed on a one-dimensional ring of radius N=2p (Erdös

and Rényi 1959). The HR neurons are subthreshold ones

which can fire only with the aid of noise, and they are

coupled via inhibitory synapses. A postsynaptic neuron i

receives a synaptic input from another presynaptic neuron j

with a connection probability Psyn ð¼ Msyn=NÞ, where Msyn

is the average number of synaptic inputs per neuron (i.e.,

Msyn ¼ hdin
i i; din

i is the number of synaptic inputs to the

neuron i and h� � �i denotes an ensemble-average over all

neurons). Here, we consider a sparse case of Msyn ¼ 100.

By varying the synaptic inhibition strength J and the noise

intensity D, we investigate occurrence of noise-induced

population synchronization. Figure 2 shows the state dia-

gram in the J–D plane. Complete synchronization

Fig. 2 State diagram in the J–D plane in the sparse Erdös–Rényi

random graph of N ð¼ 103Þ inhibitory subthreshold bursting HR

neurons for IDC ¼ 1:25 and Msyn ¼ 100. Complete synchronization

(including both the burst and spike synchronizations) occurs in the

dark gray region, while in the gray region only the burst synchro-

nization appears. Change in population states along the routes ‘‘A’’

and ‘‘B’’ and change in bursting type along the route ‘‘C’’ are given in

Fig. 3
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Fig. 3 Population and individual behaviors along the routes ‘‘A’’ and

‘‘B’’ in Fig. 2 in the Erdös–Rényi random graph of N ð¼ 103Þ
inhibitory subthreshold bursting HR neurons for IDC ¼ 1:25 and

Msyn ¼ 100. For the route ‘‘A’’ of J ¼ 0:35, a1 raster plot of neural

spikes for D ¼ 0:05 and IPFR a2 histogram HðtÞ and a3 kernel

estimate RðtÞ for D ¼ 0:05. Route ‘‘A’’ for J ¼ 0:35: unsynchroni-

zation for D ¼ 0:02 ! burst synchronization for D ¼ 0:04 ! burst

synchronization for D ¼ 0:05 ! burst synchronization for D ¼
0:08 ! unsynchronization for D ¼ 0:11; b1–b5 raster plots of

spikes, c1–c5 IPFR kernel estimates RðtÞ, and d1–d5 IBI histograms.

Route ‘‘B’’ for J ¼ 0:6: unsynchronization for D ¼ 0:015 ! burst

synchronization for D ¼ 0:019 ! complete synchronization (includ-

ing both the burst and spike synchronizations) for D ¼ 0:03 ! burst

synchronization for D ¼ 0:06 ! burst synchronization for D ¼
0:1 ! unsynchronization for D ¼ 0:14; e1–e6 raster plots of spikes,

f1–f6 IPFR kernel estimates RðtÞ, and g1–g6 IBI histograms. Change

in the bursting type along the route ‘‘C’’ for D ¼ 0:03 in Fig. 2: h1
fold-homoclinic (square-wave) bursting for J ¼ 0:7 ! h2 mixed type

of fold-homoclinic and fold-Hopf (tapering) burstings for J ¼ 0:9 !
h3 fold-Hopf (tapering) burstings for J ¼ 1:1. The bin width Dt for

HðtÞ is 1 ms and the band width h for the Gaussian kernel estimate is

1 ms for the IPFR kernel estimate RðtÞ. The IBI histogram is made of

5� 104 IBIs, the bin size is 50 ms, and the vertical dotted lines

represent the integer multiples of the slow bursting time scale (i.e.,

bursting period) sb of RðtÞ: d2 208 ms, d3 207 ms, d4 201 ms, g2 208

ms, g3 207 ms, g4 207 ms, and g5 203 ms

184 Cogn Neurodyn (2015) 9:179–200

123



(including both the burst and spike synchronizations)

occurs in the dark gray region, while in the gray region

only the burst synchronization (without spike synchroni-

zation) appears. For J\J�1 ð’ 0:295Þ, no population syn-

chronization occurs. For J�1\J\J�2 ð’ 0:394Þ, only slow

burst synchronization appears in the gray region, while fast

spike synchronization emerges in the dark-gray region for

J [ J�2 in addition to the burst synchronization.

Population and individual behaviors along the route ‘‘A’’

for J ¼ 0:35 in Fig. 2 are given in Fig. 3. The noise-induced

burst and spike synchronizations may be well visualized in

the raster plot of neural spikes which is a collection of spike

trains of individual neurons. Such raster plots of spikes are

fundamental data in experimental neuroscience. For

describing emergence of population synchronization, we use

an experimentally-obtainable IPFR which is often used as a

collective quantity showing population behaviors (Wang

2010; Brunel and Hakim 2008). The IPFR is directly obtained

from the raster plot of neural spikes. For example, Fig. 3a1

shows the raster plot of spikes for the case of D ¼ 0:05. Two

‘‘bursting bands’’ (composed of spike and representing pop-

ulation synchronization) are seen in the raster plot. Then the

IPFR histogram, HðtÞ, at a time t is given by:

HðtÞ ¼ NsðtÞ
N � Dt

; ð7Þ

where Dt is the bin width for the histogram and NsðtÞ is the

number of spikes in a bin at time t. Figure 3a2 shows the

IPFR histogram HðtÞ with bin width Dt ¼ 1 ms. In accor-

dance to the structure of bursting bands, HðtÞ shows col-

lective oscillatory behavior. But, it seems to be rough. To

obtain a smooth IPFR from the raster plot of spikes, we

employ the kernel density estimation (kernel smoother)

(Shimazaki and Shinomoto 2010). Each spike in the raster

plot is convoluted (or blurred) with a kernel function KhðtÞ
to obtain a smooth estimate of IPFR, RðtÞ:

RðtÞ ¼ 1

N

XN

i¼1

Xni

s¼1

Khðt � tðiÞs Þ; ð8Þ

where t
ðiÞ
s is the sth spiking time of the ith neuron, ni is the

total number of spikes for the ith neuron, and we use a

Gaussian kernel function of band width h:

KhðtÞ ¼
1ffiffiffiffiffiffi
2p
p

h
e�t2=2h2

; �1\t\1: ð9Þ

Figure 3a3 shows a smooth IPFR kernel estimate RðtÞ of

band width h ¼ 1 ms. In this way, for a synchronous case

where ‘‘bands’’ are formed in the raster plot, an oscillating

IPFR kernel estimate RðtÞ appears, while for an unsyn-

chronized case RðtÞ becomes nearly stationary. Throughout

this study, we consider the population behaviors after the

transient time of 2� 103 ms. As examples of population

states, Fig. 3b1–b5 and 3c1–c5 show the raster plots of

spikes and the corresponding IPFR kernel estimates RðtÞ
for various values of noise intensity D along the route ‘‘A’’

for J ¼ 0:35. For small D, unsynchronized states exist, as

shown in the case of D ¼ 0:02. For this case of unsyn-

chronization sparse spikes are completely scattered in the

raster plot of Fig. 3b1 and hence the IPFR kernel estimate

RðtÞ in Fig. 3c1 is nearly stationary. However, as D passes

a lower threshold D ð’ 0:033Þ, a transition to burst syn-

chronization occurs due to the constructive role of noise to

stimulate population synchronization between noise-

induced spikes. As an example, see the case of D ¼ 0:04

where ‘‘bursting bands’’ appear successively at nearly

regular time intervals [i.e., the slow bursting time scale

sb ð’ 208 ms)] in the raster plot of spikes, as shown in

Fig. 3b2. Within each burst band, spikes are completely

scattered, and hence no fast spike synchronization occurs.

Consequently, only the slow burst synchronization (with-

out intraburst spike synchronization) emerges. For this case

of burst synchronization, the IPFR kernel estimate RðtÞ in

Fig. 3c2 shows a slow-wave oscillation with the bursting

frequency fb ’ 4:8 Hz. As D is increased, the smearing

degree of the bursting bands becomes reduced, while the

density of the bursting bands increases because of the

increased bursting rate of the HR neurons, as shown in

Fig. 3b3 for D ¼ 0:05. As a result, the amplitude of the

slow wave exhibited by the IPFR kernel estimate RðtÞ
increases [see Fig. 3c3]. However, with further increase in

D, the smearing degree of the bursting bands begins to

increase, while the density of the bursting bands decreases

because of the reduced bursting rate of the HR neurons

[e.g., see the case of D ¼ 0:08 in Fig. 3b4]. Consequently,

the amplitude of the slow wave shown by the IPFR kernel

estimate RðtÞ decreases, as shown in Fig. 3c4. Eventually,

when passing a higher threshold D ð’ 0:099Þ the smeared

bursting bands begin to overlap, and a transition to un-

synchronization occurs because of the destructive role of

noise to spoil population synchronization between noise-

induced spikes. As an example of the unsynchronized state,

see the case of D ¼ 0:11 where the spikes in the raster plot

of Fig. 3b5 are completely scattered without forming any

bursting bands and the IPFR kernel estimate RðtÞ in

Fig. 3c5 becomes nearly stationary. Depending on whether

the population states are synchronous or unsynchronous,

the bursting patterns of individual HR neurons become

distinctly different. To obtain the IBI histograms, we col-

lect 5� 104 IBIs from all individual HR neurons. Fig-

ure 3d1–d5 show the IBI histograms for various values of

D. For the unsynchronized case of D ¼ 0:02, the IBI his-

togram in Fig. 3d1 shows a broad distribution with a long

tail, and hence the average value of the IBIs ð’
23; 947 msÞ becomes very large. However, when passing
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the lower threshold D ð’ 0:033Þ, a burst synchronization

occurs, and hence a slow-wave oscillation appears in the

IPFR kernel estimate RðtÞ. Then, individual HR neurons

exhibit intermittent burstings phase-locked to RðtÞ at ran-

dom multiples of the slow-wave bursting period sb ð’ 208

ms) of RðtÞ. This random burst skipping (arising from the

random phase locking) leads to a multi-modal IBI histo-

gram, as shown in Fig. 3d2 for D ¼ 0:04. The 1st peak in

the IBI histogram appears at 3 sb (not sb). Hence, indi-

vidual HR neurons fire sparse burstings mostly every 3rd

bursting cycle of RðtÞ. As D is increased, the degree of

burst synchronization increases [e.g., see in Fig. 3b3, c3 for

D ¼ 0:05]. For this case, the 1st peak becomes prominently

dominant, as shown in Fig. 3d3, and hence the tendency of

exhibiting burstings every 3rd bursting cycle becomes

intensified. However, with further increase in D, the

heights of peaks are decreased, but their widths are wid-

ened. Thus, peaks begin to merge, as shown in Fig. 3d4 for

D ¼ 0:08. This merging of peaks results in smearing of

bursting bands, and hence the degree of burst synchroni-

zation begin to decrease [see Fig. 3b4, c4]. Eventually, as

D passes a higher threshold ð’ 0:099Þ, unsynchronized

states appear (i.e., RðtÞ becomes nearly stationary), and

then the multi-modal structure in the IBI histogram dis-

appears [e.g., see Fig. 3d5 for D ¼ 0:11]. In this way, the

IBI histograms have multi-peaked structures due to random

burst skipping for the case of burst synchronization, while

such peaks disappear in the case of unsynchronization.

Similar skipping of spikings (characterized with multi-

peaked interspike interval histograms) was also found in

inhibitory population of subthreshold spiking neurons (Lim

and Kim 2011). This kind of random burst/spike skipping

in networks of inhibitory subthreshold bursting/spiking

neurons is a collective effect because it occurs due to a

driving by a coherent ensemble-averaged synaptic current.

As in the above case of the route ‘‘A’’ we also study the

population behaviors along the route ‘‘B’’ for J ¼ 0:6 in

Fig. 2. The raster plots of spikes and the IPFR kernel esti-

mates RðtÞ are shown in Fig. 3e1–e6 and f1–f6, respectively.

When passing a bursting threshold D ð’ 0:017Þ, a transition

from unsynchronization [e.g., see Fig. 3e1, f1 for

D ¼ 0:015] to burst synchronization [e.g., see Fig. 3e2, f2

for D ¼ 0:019] occurs. For the case of burst synchronization,

bursting bands (composed of spikes and indicating popula-

tion synchronization) appear successively in the raster plot,

and the IPFR kernel estimate RðtÞ shows a slow-wave

oscillation with the slow bursting time scale sb ’ 207 ms. As

D is increased and passes another lower spiking threshold

D ð’ 0:021Þ, in addition to burst synchronization [syn-

chrony on the slow bursting time scale sb ð’ 207 ms)], spike

synchronization [synchrony on the fast spike time scale ss ð’
16 ms)] occurs, as shown in Fig. 3e3, f3 for D ¼ 0:03. For

this complete synchronization (including both the burst and

spike synchronizations) each bursting band consists of

‘‘spiking stripes’’ and the corresponding IPFR kernel esti-

mate RðtÞ exhibits a bursting activity [i.e., fast spikes appear

on the slow wave in RðtÞ], as clearly shown in the magnified

1st bursting band of Fig. 7d4 and in the magnified 1st

bursting cycle of RðtÞ in Fig. 7e4. Unlike the case of the route

‘‘A,’’ fast intraburst spike synchronization occurs for

J [ J�2 ð’ 0:394Þ, in addition to the slow burst synchroni-

zation. However, such fast intraburst spike synchronization

disappears due to overlap of spiking stripes in the bursting

bands when passing a higher spiking threshold D ð’ 0:043).

Then, only the burst-synchronized states (without fast spike

synchronization) appear, as shown in Fig. 3e4 and f4 for

D ¼ 0:06. Like the above case of the route ‘‘A,’’ with further

increase in D the bursting bands become smeared, and hence

the degree of burst synchronization decreases [e.g., see

Fig. 3e5, f5 for D ¼ 0:1]. Eventually, when passing another

higher bursting threshold D ð’ 0:127), a transition to un-

synchronization occurs due to overlap of bursting bands, as

shown in Fig. 3e6, f6 for D ¼ 0:14. Furthermore, the

bursting patterns of individual HR neurons are the same as

those for the above case of the route ‘‘A,’’ as shown in the IBI

histograms of Fig. 3g1–g6. For the case of burst synchroni-

zation multi-peaked IBI histograms appear, while such peaks

disappear due to their merging in the IBI histograms for the

case of unsynchronization. Throughout this paper, we con-

sider only the case where the bursting type of individual HR

neurons is the fold-homoclinic square-wave bursting which

is just the bursting type of the single HR neuron (Rinzel 1985,

1987; Izhikevich 2007). Unlike the single case, the bursting

types of individual HR neurons depend on the coupling

strength J, as shown in Fig. 3h1–h3 along the route ‘‘C’’ for

D ¼ 0:03 in Fig. 2. For J ¼ 0:7, the bursting type of indi-

vidual HR neurons is still the square-wave bursting, while

the bursting type for J ¼ 1:1 is the fold-Hopf tapering

bursting (Izhikevich 2007). For an intermediate value (e.g.,

J ¼ 0:9), a mixed type of square wave and tapering burstings

appear (i.e., square-wave and tapering burstings alternate).

So far, we have studied noise-induced burst and spike

synchronizations in the conventional Erdös–Rényi random

graph of inhibitory subthreshold bursting HR neurons. For

random connectivity, the average path length is short due

to appearance of long-range connections, and hence global

efficiency of information transfer becomes high (Latora

and Marchiori 2001, 2003). On the other hand, unlike the

regular lattice, the random network has poor clustering

(Buzsáki et al. 2004; Sporns 2011). However, real synaptic

connectivity is known to have complex topology which is

neither regular nor completely random (Sporns et al. 2000;

Buzsáki et al. 2004; Chklovskii et al. 2004; Song et al.

2005; Bassett and Bullmore 2006; Sporns and Honey 2006;

Larimer and Strowbridge 2008; Bullmore and Sporns 2009;
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Sporns 2011). To study the effect of network structure on

noise-induced burst and spike synchronizations, we con-

sider the Watts–Strogatz model for small-world networks

which interpolates between regular lattice and random

graph via rewiring (Watts and Strogatz 1998). By varying

the rewiring probability p from local to long-range con-

nection, we investigate the effect of small-world connec-

tivity on emergence of noise-induced burst and spike

synchronizations. We start with a directed regular ring

lattice with N subthreshold bursting HR neurons where

each HR neuron is coupled to its first Msyn neighbors

(Msyn=2 on either side) via outward synapses, and rewire

each outward connection at random with probability p such

that self-connections and duplicate connections are exclu-

ded. As in the above random case, we consider a sparse but

connected network with a fixed value of Msyn ¼ 100. Then,

we can tune the network between regularity ðp ¼ 0Þ and

randomness ðp ¼ 1Þ; the case of p ¼ 1 corresponds to the

above Erdös–Rényi random graph. In this way, we inves-

tigate emergence of noise-induced population synchroni-

zation in the directed Watts–Strogatz small-world network

of N inhibitory subthreshold bursting HR neurons by

varying the rewiring probability p.

The topological properties of the small-world connec-

tivity has been well characterized in terms of the clustering

coefficient (local property) and the average path length

(global property) (Watts and Strogatz 1998). The clustering

coefficient, denoting the cliquishness of a typical neigh-

borhood in the network, characterizes the local efficiency

of information transfer, while the average path length,

representing the typical separation between two vertices in

the network, characterizes the global efficiency of infor-

mation transfer. The regular lattice for p ¼ 0 is highly

clustered but large world where the average path length

grows linearly with N, while the random graph for p ¼ 1 is

poorly clustered but small world where the average path

length grows logarithmically with N (Watts and Strogatz

1998). As soon as p increases from 0, the average path

length decreases dramatically, which leads to occurrence of

a small-world phenomenon which is popularized by the

phrase of the ‘‘six degrees of separation’’ (Milgram 1967;

Guare 1990). However, during this dramatic drop in the

average path length, the clustering coefficient remains

almost constant at its value for the regular lattice. Conse-

quently, for small p small-world networks with short path

length and high clustering emerge (Watts and Strogatz

1998).

We now investigate occurrence of noise-induced burst

and spike synchronizations in the Watts–Strogatz small-

world network of N inhibitory subthreshold bursting HR

neurons by decreasing the rewiring probability p from 1

(random network). Figure 4a, b show the state diagrams in

the J–D plane for p ¼ 0:2 and 0, respectively. When

comparing with the case of p ¼ 1 in Fig. 2, the gray region

of slow burst synchronization decreases a little, while the

dark-gray region of fast spike synchronization shrinks

much more. As a result, only the burst synchronization

(without fast spike synchronization) occurs in the regular

lattice ðp ¼ 0Þ. Unlike the case of the slow burst syn-

chronization, more long-range connections are necessary

for the emergence of fast spike synchronization. Hence,

fast spike synchronization may occur only when the

rewiring probability p passes a (non-zero) critical value p�c
(e.g., p�c ’ 0:14 for J ¼ 0:6 and D ¼ 0:03, as shown in

Fig. 7f).

We first study bursting transitions (i.e., transitions to

slow burst synchronization) with increasing D for J ¼ 0:6

in the three cases of p ¼ 0 (regular lattice), 0.2 (small-

world network), and 1 (random network). Figure 5a1–a5

and b1–b5 show the raster plots of spikes and the IPFR

kernel estimate RðtÞ for p ¼ 0 and N ¼ 103. We note that

the IPFR kernel estimate RðtÞ is a population quantity

describing the ‘‘whole’’ combined collective behaviors

(including both the burst and spike synchronizations) of

bursting neurons. For more clear investigation of burst

(a)

(b)

Fig. 4 State diagrams in the J–D plane in a the Watts–Strogatz

small-world network for p ¼ 0:2 and b the regular lattice for p ¼ 0;

each network consists of N ð¼ 103Þ inhibitory subthreshold bursting

HR neurons for IDC ¼ 1:25 and Msyn ¼ 100. Complete synchroniza-

tion (including both the burst and spike synchronizations) occur in the

dark gray region, while in the gray region only the burst synchro-

nization appears
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synchronization, we separate the slow bursting time scale

and the fast spiking time scale via frequency filtering, and

decompose the IPFR kernel estimate RðtÞ into the IPBR

RbðtÞ and the IPSR RsðtÞ. Through low-pass filtering of

RðtÞ with cut-off frequency of 10 Hz, we obtain the IPBR

RbðtÞ (containing only the bursting behavior without spik-

ing) for p ¼ 0 and N ¼ 103 in Fig. 5c1–c5. For

comparison, we also consider the case of N ¼ 104. Fig-

ure 5d1–d2 and e1–e2 show the raster plots of spikes and

the IPBR kernel estimates RbðtÞ for p ¼ 0 and N ¼ 104. As

N is increased, Rb exhibit more regular oscillation with

nearly same amplitudes for the case of burst synchroniza-

tion [e.g., compare Fig. 5c3 with Fig. 5e1 for D ¼ 0:03],

while Rb becomes more stationary for the case of burst

Fig. 5 Bursting transitions [based on the IPBR RbðtÞ] with increasing

D for J ¼ 0:6 in the three cases of p ¼ 0 (regular lattice), p ¼ 0:2
(small-world network), and p ¼ 1 (random graph): each network

consists of N ½¼ 103 except for the cases of d–f, j, and n] inhibitory

subthreshold bursting HR neurons for IDC ¼ 1:25 and Msyn ¼ 100.

Case of p ¼ 0: a1–a5 raster plot of spikes, b1–b5 IPFR kernel

estimates RðtÞ, and c1–c5 low-pass filtered (cut-off frequency=10 Hz)

IPBR RbðtÞ for N ¼ 103, d1–d2 raster plot of spikes and e1–e2 IPBR

RbðtÞ for N ¼ 104, and f plots of bursting order parameters hObir

[based on RbðtÞ] versus D. Case of p ¼ 0:2: g1–g6 raster plot of

spikes, h1–h6 IPFR kernel estimates RðtÞ, i1–i6 low-pass filtered (cut-

off frequency=10 Hz) IPBR RbðtÞ, and j plots of bursting order

parameters hObir versus D. Case of p ¼ 1: k1–k6 raster plot of

spikes, l1–l6 IPFR kernel estimates RðtÞ, m1–m6 low-pass filtered

(cut-off frequency = 10 Hz) IPBR RbðtÞ, and n plots of bursting order

parameters hObir versus D. The band width h of the Gaussian kernel

function is 1 ms for the IPFR kernel estimate RðtÞ
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unsynchronization [e.g., compare Fig. 5c5 with Fig. 5e2

for D ¼ 0:11]. Then, the mean square deviation of RbðtÞ,

Ob � ðRbðtÞ � RbðtÞÞ2; ð10Þ

plays the role of a bursting order parameter Ob to deter-

mine the bursting noise threshold for the bursting transition,

where the overbar represents the time average (Kim and Lim

2014b). As explained above in both cases of burst synchro-

nization and unsynchronization for N ¼ 103 and 104, the

bursting order parameter hObir, representing the time-aver-

aged fluctuation of Rb, approaches a non-zero (zero) limit

value for the synchronized (unsynchronized) bursting state

in the thermodynamic limit of N !1. This order parameter

Ob may be regarded as a thermodynamic measure because it

concerns just the macroscopic IPBR RbðtÞ without any

consideration between RbðtÞ and microscopic individual

burstings. Here, we discard the first time steps of a trajectory

as transients for 2� 103 ms, and then we compute Ob by

following the trajectory for 104 ms for each realization. We

obtain hObir via average over 10 realizations. Figure 5f

shows plots of the bursting order parameter hObir versus D

for p ¼ 0. For D�b;lð’ 0:017Þ\D\D�b;h ð’ 0:095), syn-

chronized bursting states appear because the values of hObir
become saturated to non-zero limit values in the thermody-

namic limit of N !1. However, for D\D�b;l or D [ D�b;h,

the bursting order parameter hObir tends to zero as N !1,

and hence unsynchronized bursting states exist. In the case of

burst synchronization for p ¼ 0, the raster plot shows a

zigzag pattern of inclined partial bursting bands of spikes

[see Fig. 5a2–a4], and the corresponding IPFR RðtÞ and

IPBR RbðtÞ exhibit slow-wave oscillations, as shown in

Fig. 5b2–b4 and c2–c4. For p ¼ 0 the clustering coefficient

is high, and hence inclined partial bursting bands (indicating

local clustering of spikes) seem to appear. On the other hand,

for the case of unsynchronization for p ¼ 0 the IPBR RbðtÞ
becomes nearly stationary because spikes are scattered

without forming zigzagged bursting bands in the raster plot,

as shown in the cases of D ¼ 0:015 and 0.11. With increasing

p, we also investigate another bursting transitions in terms of

hObir. As shown in Fig. 5f ðp ¼ 0Þ, 5j ðp ¼ 0:2Þ, and 5n

ðp ¼ 1Þ, the higher bursting threshold values D�b;h increases

with increase in p (i.e., D�b;h for p ¼ 0, 0.2, and 1 are 0.095,

0.115, and 0.127, respectively), while the lower bursting

threshold D�b;l ð’ 0:017Þ is nearly the same for the three cases

of p ¼ 0, 0.2, and 1. In this way, as the rewiring probability p

is increased, the burst-synchronized range of D increases

gradually because the average synaptic path length (char-

acterizing the global efficiency of information transfer)

decreases due to appearance of long-range connections with

increasing p. We also note that with increase in p the zig-

zagness degree of bursting bands in the raster plots of spikes

becomes reduced [e.g., compare Fig. 5a2 ðp ¼ 0Þ, 5g2

ðp ¼ 0:2Þ, and 5k2 ðp ¼ 1Þ for D ¼ 0:019] because the

clustering coefficient (characterizing the local efficiency of

information transfer) decreases as p is increased.

For more direct visualization of bursting behavior, we

consider another raster plot of bursting onset or offset times

[e.g., see the solid or open circles in Fig. 1b], from which

we can directly obtain the IPBR kernel estimate of band

width h ¼ 50 ms, R
ðonÞ
b ðtÞ or R

ðoff Þ
b ðtÞ, without frequency

filtering. Based on R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ, we investigate

bursting transitions with increasing D for J ¼ 0:6 in the

three cases of p ¼ 0; 0.2, and 1. Figure 6a1–a5 show the

raster plots of the bursting onset times for p ¼ 0, while the

raster plots of the bursting offset times are shown in

Fig. 6b1–b5. From these raster plots of the bursting onset

(offset) times, we obtain smooth IPBR kernel estimates,

R
ðonÞ
b ðtÞ ½R

ðoff Þ
b ðtÞ� in Fig. 6c1–c5 [6d1–d5]. Then, the mean

square deviations of R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ,

OðonÞ
b � ðRðonÞ

b ðtÞ � R
ðonÞ
b ðtÞÞ

2
andOðoff Þ

b � ðRðoff Þ
b ðtÞ � R

ðoff Þ
b ðtÞÞ2;
ð11Þ

play another bursting order parameters, used to determine

the bursting thresholds for the bursting transition (Kim and

Lim 2014b). As in the case of Ob, we discard the first time

steps of a trajectory as transients for 2� 103 ms and then we

compute OðonÞ
b and Oðoff Þ

b by following the trajectory for 104

ms for each realization. Thus, we obtain hOðonÞ
b ir and hOðoff Þ

b ir
via average over 10 realizations. Figure 6(e1) and (e2) show

plots of the bursting order parameters hOðonÞ
b ir and hOðoff Þ

b ir
versus D for p ¼ 0, respectively. Like the case of hObir, in the

same region of D�b;lð’ 0:017Þ\D \D�b;h ð’ 0:095), syn-

chronized bursting states exist because the values of hOðonÞ
b ir

and hOðoff Þ
b ir become saturated to non-zero limit values as

N !1. On the other hand, for D\D�b;l or D [ D�b;h, the

bursting order parameters hOðonÞ
b ir and hOðoff Þ

b ir tend to zero

in the thermodynamic limit of N !1, and hence unsyn-

chronized bursting states appear. In this way, the bursting

transition may also be well described in terms of the bursting

order parameters hOðonÞ
b ir and hOðoff Þ

b ir. In the case of burst

synchronization for p ¼ 0, zigzagged bursting ‘‘stripes,’’

composed of bursting onset (offset) times, are formed in the

raster plots of Fig. 6a2–a4 [b2–b4]; the bursting onset and

offset stripes are time-shifted [e.g., compare Fig. 6a2, b2 for

D ¼ 0:019]. Since the clustering coefficient is high for p ¼ 0,

zigzagged bursting onset and offset stripes (indicating local

clustering of bursting onset and offset times) seem to appear.

For this synchronous case, the corresponding IPBR kernel

estimates, R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ, show slow-wave oscillations
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with the same population bursting frequency fb ð’ 4:8 Hz), as

shown in Fig. 6c2–c4 and d2–d4, respectively, although they

are phase-shifted [e.g., compare Fig. 6c2 and d2 for

D ¼ 0:019]. In terms of hOðonÞ
b ir and hOðoff Þ

b ir, we also

investigate another bursting transitions with increasing p.

Figure 6j1 and o1 [j2, o2] show plots of the bursting order

parameter hOðonÞ
b ir ½hO

ðoff Þ
b ir� versus D for p ¼ 0:2 and 1,

respectively. The burst-synchronized ranges of D for p ¼ 0:2

and 1 are the same as those for the case of hObir [see Fig. 5h,

l], and they increase as p is increased because the average

synaptic path length (characterizing the global efficiency of

information transfer) decreases due to appearance of long-

range connections. Furthermore, with increase in p, the zig-

zagness degree of bursting onset and offset stripes in the raster

plots becomes reduced [e.g., compare Fig. 6a2 [b2], f2 [g2]

and k2 [l2] for D ¼ 0:019] because the clustering coefficient

(characterizing the local efficiency of information transfer)

decreases as p is increased.

Fig. 6 Bursting transitions [based on the IPBRs R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ]

with increasing D for J ¼ 0:6 in the three cases of p ¼ 0 (regular

lattice), p ¼ 0:2 (small-world network), and p ¼ 1 (random graph):

each network consists of N ½¼ 103 except for the cases of the bursting

order parameters, hOðonÞ
b ir and hOðoff Þ

b ir] inhibitory subthreshold

bursting HR neurons for IDC ¼ 1:25 and Msyn ¼ 100. Case of p ¼ 0:

a1–a5 raster plots of bursting onset times, b1–b5 raster plots of

bursting offset times, c1–c5 IPBR kernel estimates R
ðonÞ
b ðtÞ, d1–d5

IPBR kernel estimates R
ðoff Þ
b ðtÞ, and plots of e1 bursting order

parameters hOðonÞ
b ir [based on R

ðonÞ
b ðtÞ] and e2 hOðoff Þ

b ir [based on

R
ðoff Þ
b ðtÞ] versus D. Case of p ¼ 0:2: f1–f6 raster plot of bursting onset

times, g1–g6 raster plot of bursting offset times, h1–h6 IPBR kernel

estimates R
ðonÞ
b ðtÞ, i1–i6 IPBR kernel estimates R

ðoff Þ
b ðtÞ, and plots of

j1 bursting order parameters hOðonÞ
b ir [based on R

ðonÞ
b ðtÞ] and j2

hOðoff Þ
b i

r
[based on R

ðoff Þ
b ðtÞ] versus D. Case of p ¼ 1: k1–k6 raster

plot of bursting onset times, l1–l6 raster plot of bursting offset times,

m1–m6 IPBR kernel estimates R
ðonÞ
b ðtÞ, n1–n6 IPBR kernel estimates

R
ðoff Þ
b ðtÞ, and plots of o1 bursting order parameters hOðonÞ

b i
r

[based on

R
ðonÞ
b ðtÞ] and o2 hOðoff Þ

b ir [based on R
ðoff Þ
b ðtÞ] versus D. The symbols of

the solid circles, open circles, pluses, and crosses used in the bursting

order parameters, hOðonÞ
b i

r
and hOðoff Þ

b i
r

represent N ¼ 3� 102, 103,

3� 103, and 104, respectively. The band width h of the Gaussian

kernel function is 50 ms for the IPBR kernel estimates R
ðonÞ
b ðtÞ and

R
ðoff Þ
b ðtÞ
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In addition to the bursting transition, we also investigate

spiking transitions (i.e., transitions to intraburst spike

synchronization) of bursting HR neurons by varying the

rewiring probability p for J ¼ 0:6 and D ¼ 0:03. We first

consider the case of p ¼ 0 (regular lattice) with long syn-

aptic path length (corresponding to a large world). Fig-

ure 7a1 and a2 show the raster plot of intraburst spikes and

the corresponding IPFR kernel estimate RðtÞ during the 1st

global bursting cycle of the IPBR RbðtÞ for N ¼ 103,

respectively. As mentioned above, RðtÞ exhibits the whole

combined population behaviors including the burst and

spike synchronizations with both the slow bursting and the

fast spiking time scales. Hence, through band-pass filtering

of RðtÞ [with the lower and the higher cut-off frequencies

of 30 Hz (high-pass filter) and 90 Hz (low-pass filer)], we

obtain the IPSR RsðtÞ, which is shown in Fig. 7a3. Then,

the intraburst spike synchronization may be well described

in terms of the IPSR RsðtÞ. For the case of N ¼ 103, the

IPFR RðtÞ shows an explicit slow-wave oscillation, and

hence population burst synchronization occurs for p ¼ 0.

However, occurrence of intraburst spike synchronization

cannot be clearly seen for N ¼ 103, because the IPSR RsðtÞ
is composed of coherent parts with regular oscillations and

incoherent parts with irregular fluctuations. For more clear

investigation of spike synchronization, we also consider the

case of N ¼ 104. Figure 7b1–b3 show the raster plot of

intraburst spikes, the IPFR kernel estimate RðtÞ, and the

IPSR RsðtÞ for N ¼ 104, respectively. No ordered structure

cannot be seen in the raster plot and the IPSR RsðtÞ is

nearly stationary. Hence, the population state for p ¼ 0

Fig. 7 Intraburst spiking

transition with increasing p for

J ¼ 0:6 and D ¼ 0:03 in the

small-world networks of N ½¼
103 except for the case of f]
inhibitory subthreshold bursting

HR neurons for IDC ¼ 1:25 and

Msyn ¼ 100. Intraburst spike

unsynchronized state for p ¼ 0:

plots of raster plot of spikes,

IPFR kernel estimates RðtÞ, and

band-pass filtered IPSR RsðtÞ
[lower and higher cut-off

frequencies of 30 Hz (high-pass

filter) and 90 Hz (low-pass

filter)] in the 1st global bursting

cycle of the IPBR RbðtÞ (after

the transient time of 2� 103

ms) in a1–a3 for N ¼ 103 and in

b1–b3 for N ¼ 104. The band

width h of the Gaussian kernel

function is 1 ms for the IPFR

kernel estimate RðtÞ. c1-c4
Raster plots of neural spikes,

d1–d4 IPFR kernel estimates

RðtÞ, and e1–e4 band-pass

filtered IPSR RsðtÞ [lower and

higher cut-off frequencies of 30

Hz (high-pass filter) and 90 Hz

(low-pass filter)] in the 1st

global bursting cycle of the

IPBR RbðtÞ (after the transient

time of 2� 103 ms) for varioue

spike-synchronized cases of p ¼
0:2; 0.3, 0.4, and 1. f Plots of

spiking order parameters hOsir
[based on RsðtÞ] versus p. For

each p, we follow 100 bursting

cycles in each realization, and

obtain hOsir via average over

10 realizations
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seems to have no intraburst spike synchronization. How-

ever, as p is increased, long-range short-cuts begin to

appear, and hence characteristic synaptic path length

becomes shorter. Consequently, for sufficiently large p we

expect emergence of intraburst spike synchronization

because global efficiency of information transfer becomes

better. Figure 7c1–c4, d1–d4, and e1–e4 show the raster

plots of intraburst spikes, the IPFRs RðtÞ, and the IPSRs

RsðtÞ during the 1st global bursting cycle of the IPBR RbðtÞ
for various synchronized cases of p ¼ 0:2, 0.3, 0.4, and 1,

respectively. Clear spiking stripes (composed of intraburst

spikes and indicating population spike synchronization)

appear in the bursting band of the 1st global bursting cycle

of the IPBR RbðtÞ, and the IPFR kernel estimate RðtÞ
exhibits a bursting activity [i.e., fast spikes appear on a

slow wave in RðtÞ] due to the complete synchronization

(including both the burst and spike synchronizations).

However, the band-pass filtered IPSR RsðtÞ shows only the

fast spiking oscillations (without a slow wave) with the

population spiking frequency fs ð’ 63 Hz). We also

determine the spiking threshold for this intraburst spiking

transition in terms of a spiking order parameter, based on

RsðtÞ. The mean square deviation of RsðtÞ in the ith global

bursting cycle,

OðiÞs � ðRsðtÞ � RsðtÞÞ2; ð12Þ

plays the role of a spiking order parameter OðiÞs in the ith

global bursting cycle of the IPBR RbðtÞ. By averaging OðiÞs

over a sufficiently large number Nb of global bursting

cycles, we obtain the thermodynamic spiking order

parameter:

Os ¼
1

Nb

XNb

i¼1

OðiÞs : ð13Þ

For each realization we follow 100 bursting cycles, and

obtain the spiking order parameter hOsir via average over

10 realizations. Figure 7f shows plots of hOsir versus p.

When passing the spiking threshold value p�c ð’ 0:14), a

transition to intraburst spike synchronization occurs

because the values of hOsir become saturated to non-zero

limit values as N !1. Consequently, for p [ p�c syn-

chronized spiking states exist because sufficient number of

long-range short cuts for emergence of intraburst spike

synchronization appear. In this way, the intraburst spiking

transition may be well described in terms of the spiking

order parameter hOsir.
From now on, we employ a statistical-mechanical

bursting measure Mb, based on the IPBR kernel estimates

R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ (Kim and Lim 2014b), and measure

the degree of burst synchronization by varying the rewiring

probability p for J ¼ 0:6 and D ¼ 0:03. As shown in

Fig. 8a1–a5 [b1–b5], burst synchronization may be well

visualized in the raster plots of bursting onset (offset)

times. Clear bursting stripes (composed of bursting onset

(offset) times and indicating population burst synchroni-

zation) appear in the raster plots. As p is increased, the

clustering coefficient (characterizing the local efficiency of

information transfer) decreases, and hence the zigzagness

degree of bursting onset and offset stripes becomes

reduced. For this case of burst synchronization, both the

IPBR kernel estimates R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ exhibit slow-

wave oscillations, as shown in Fig. 8c1–c5 and d1–d5,

respectively. As an example, we consider a synchronous

bursting case of p ¼ 0:3. We measure the degree of the

burst synchronization seen in the raster plot of bursting

onset (offset) times in Fig. 8e1 [f1] in terms of a statistical-

mechanical bursting measure M
ðonÞ
b ½Mðoff Þ

b �, based on

R
ðonÞ
b ðtÞ ½R

ðoff Þ
b ðtÞ�, which is developed by considering the

occupation pattern and the pacing pattern of the bursting

onset (offset) times in the bursting stripes (Kim and Lim

2014b). We first consider the raster plot of the bursting

onset times. The bursting measure M
ðb;onÞ
i of the ith

bursting onset stripe is defined by the product of the

occupation degree O
ðb;onÞ
i of bursting onset times (repre-

senting the density of the ith bursting onset stripe) and the

pacing degree P
ðb;onÞ
i of bursting onset times (denoting the

smearing of the ith bursting onset stripe):

M
ðb;onÞ
i ¼ O

ðb;onÞ
i � Pðb;onÞ

i : ð14Þ

The occupation degree O
ðb;onÞ
i of bursting onset times in the

ith bursting stripe is given by the fraction of HR neurons

which exhibit burstings:

O
ðb;onÞ
i ¼ N

ðbÞ
i

N
; ð15Þ

where N
ðbÞ
i is the number of HR neurons which exhibit

burstings in the ith bursting stripe. For the full occupation

O
ðb;onÞ
i ¼ 1, while for the partial occupation O

ðb;onÞ
i \1. The

pacing degree P
ðb;onÞ
i of bursting onset times in the ith

bursting stripe can be determined in a statistical-mechani-

cal way by taking into account their contributions to the

macroscopic IPBR kernel estimate R
ðonÞ
b ðtÞ. The IPBR

kernel estimate R
ðonÞ
b ðtÞ for p ¼ 0:3 is shown in Fig. 8e2;

local maxima and minima are represented by solid and

open circles, respectively. Obviously, central maxima of

R
ðonÞ
b ðtÞ between neighboring left and right minima of

R
ðonÞ
b ðtÞ coincide with centers of bursting stripes in the

raster plot. The global bursting cycle starting from the left

minimum of R
ðonÞ
b ðtÞ which appears first after the transient
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Fig. 8 Measurement of the degree of burst synchronization in terms

of the statistical-mechanical bursting measure Mb for J ¼ 0:6 and

D ¼ 0:03 in the small-world networks of N ð¼ 103Þ inhibitory

subthreshold bursting HR neurons for IDC ¼ 1:25 and Msyn ¼ 100.

a1–a5 Raster plots of active phase (bursting) onset times, b1–b5
raster plots of active phase (bursting) offset times, c1–c5 IPBR kernel

estimates R
ðonÞ
b ðtÞ, and d1–d5 IPBR kernel estimates R

ðoff Þ
b ðtÞ for

various values of p. For p ¼ 0:3, e1 [f1] raster plot of active phase

bursting onset (offset) times, e2 [f2] IPBR kernel estimate

R
ðonÞ
b ðtÞ ½Rðoff Þ

b ðtÞ�, e3 [f3] global bursting phase UðonÞ
b ðtÞ ½Uðoff Þ

b ðtÞ�,
and plots of g1 [g2] O

ðb;onÞ
i ½Oðb;off Þ

i � [occupation degree of bursting

onset (offset) times in the ith global bursting onset (offset) cycle], h1

[h2] P
ðb;onÞ
i ½Pðb;off Þ

i � [pacing degree of bursting onset (offset) times in

the ith global bursting onset (offset) cycle], and i1 [i2]

M
ðb;onÞ
i ½Mðb;off Þ

i � [bursting measure in the ith global bursting onset

(offset) cycle] versus i. In e2–e3 and f2–f3, vertical dashed and dotted

lines represent the times at which local minima and maxima (denoted

by open and solid circles) of R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ occur, respectively,

and G
ðb;onÞ
i ½Gðb;off Þ

i � ði ¼ 1; 2Þ denotes the ith global bursting onset

(offset) cycle. Plots of j1 hObir (average occupation degree of

burstings), j2 hPbir (average pacing degree of burstings), and j3 hMbir
(statistical-mechanical bursting measure) versus p. For each p, we

follow 100 bursting onset and 100 bursting offset cycles in each

realization, and obtain hObir , hPbir , and hMbir via average over ten

realizations
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time ð¼ 2� 103 ms) is regarded as the 1st one, which is

denoted by G
ðb;onÞ
1 . The 2nd global bursting cycle G

ðb;onÞ
2

begins from the next following right minimum of G
ðb;onÞ
1 ,

and so on. Then, we introduce an instantaneous global

bursting phase UðonÞ
b ðtÞ of R

ðonÞ
b ðtÞ via linear interpolation in

the two successive subregions forming a global bursting

cycle (Kim and Lim 2014b), as shown in Fig. 8e3. The

global bursting phase UðonÞ
b ðtÞ between the left minimum

(corresponding to the beginning point of the ith global

bursting cycle) and the central maximum is given by:

UðonÞ
b ðtÞ ¼ 2pði� 3=2Þ þ p

t � t
ðon;minÞ
i

t
ðon;maxÞ
i � t

ðon;minÞ
i

 !

for t
ðon;minÞ
i � t\t

ðon;maxÞ
i ði ¼ 1; 2; 3; . . .Þ;

ð16Þ

and UðonÞ
b ðtÞ between the central maximum and the right

minimum (corresponding to the beginning point of the

ðiþ 1Þth global bursting cycle) is given by

UðonÞ
b ðtÞ ¼ 2pði� 1Þ þ p

t � t
ðon;maxÞ
i

t
ðon;minÞ
iþ1 � t

ðon;maxÞ
i

 !

for t
ðon;maxÞ
i � t\t

ðon;minÞ
iþ1 ði ¼ 1; 2; 3; . . .Þ;

ð17Þ

where t
ðon;minÞ
i is the beginning time of the ith global

bursting cycle (i.e., the time at which the left minimum of

R
ðonÞ
b ðtÞ appears in the ith global bursting cycle) and t

ðon;maxÞ
i

is the time at which the maximum of R
ðonÞ
b ðtÞ appears in the

ith global bursting cycle. Then, the contribution of the kth

microscopic bursting onset time in the ith bursting stripe

occurring at the time t
ðb;onÞ
k to R

ðonÞ
b ðtÞ is given by

cos Uðb;onÞ
k , where Uðb;onÞ

k is the global bursting phase at the

kth bursting onset time [i.e., Uðb;onÞ
k � UðonÞ

b ðt
ðb;onÞ
k Þ]. A

microscopic bursting onset time makes the most con-

structive (in-phase) contribution to R
ðonÞ
b ðtÞ when the cor-

responding global phase Uðb;onÞ
k is 2pn ðn ¼ 0; 1; 2; . . .Þ,

while it makes the most destructive (anti-phase) contribu-

tion to R
ðonÞ
b ðtÞ when Uðb;onÞ

k is 2pðn� 1=2Þ. By averaging

the contributions of all microscopic bursting onset times in

the ith stripe to R
ðonÞ
b ðtÞ, we obtain the pacing degree of

spikes in the ith stripe:

P
ðb;onÞ
i ¼ 1

B
ðonÞ
i

XB
ðonÞ
i

k¼1

cos Uðb;onÞ
k ; ð18Þ

where B
ðonÞ
i is the total number of microscopic bursting

onset times in the ith bursting stripe. By averaging M
ðb;onÞ
i

of Eq. (14) over a sufficiently large number Nb of bursting

stripes, we obtain the statistical-mechanical bursting mea-

sure M
ðonÞ
b , based on the IPSR kernel estimate R

ðonÞ
b ðtÞ:

M
ðonÞ
b ¼ 1

Nb

XNb

i¼1

M
ðb;onÞ
i : ð19Þ

For p ¼ 0:3 we follow 100 bursting stripes and get O
ðb;onÞ
i ,

P
ðb;onÞ
i , and M

ðb;onÞ
i in each ith bursting stripe, which are

shown in Fig. 8g1, h1and i1, respectively. Due to sparse

burstings of individual HR neurons, the average occupation

degree O
ðonÞ
b (=hOðb;onÞ

i ib ’ 0:3Þ, where h� � �ib denotes the

average over bursting stripes, is small. Hence, only a

fraction (about 3/10) of the total HR neurons fire burstings

in each bursting stripe. On the other hand, the average

pacing degree P
ðonÞ
b (=hPðb;onÞ

i ib ’ 0:89Þ is large in contrast

to O
ðonÞ
b . Hence, the statistical-mechanical bursting measure

M
ðonÞ
b (=hMðb;onÞ

i ib), representing the degree of burst syn-

chronization seen in the raster plot of bursting onset times,

is about 0.26. In this way, the statistical-mechanical

bursting measure M
ðonÞ
b can be used effectively for mea-

surement of the degree of burst synchronization because

M
ðonÞ
b concerns the pacing degree as well as the occupation

degree of bursting onset times in the bursting stripes of the

raster plot.

In addition to the above case of bursting onset times, we

also measure the degree of burst synchronization between

the bursting offset times. Figure 8f1 and f2 show the raster

plot composed of two stripes of bursting offset times and

the corresponding IPBR R
ðoff Þ
b for p ¼ 0:3, respectively; the

1st and 2nd global bursting cycles, G
ðb;off Þ
1 and G

ðb;off Þ
2 , are

shown. Then, as in the case of UðonÞ
b ðtÞ, one can introduce

an instantaneous global bursting phase Uðoff Þ
b ðtÞ of R

ðoff Þ
b ðtÞ

via linear interpolation in the two successive subregions

forming a global bursting cycle, which is shown in

Fig. 8f3. Similar to the case of bursting onset times, we

also measure the degree of the burst synchronization seen

in the raster plot of bursting offset times in terms of a

statistical-mechanical bursting measure M
ðoff Þ
b , based on

R
ðoff Þ
b ðtÞ, by considering the occupation and the pacing

patterns of the bursting offset times in the bursting stripes.

The bursting measure M
ðb;off Þ
i in the ith bursting stripe also

is defined by the product of the occupation degree O
ðb;off Þ
i

of bursting offset times and the pacing degree P
ðb;off Þ
i of

bursting offset times in the ith bursting stripe. We also

follow 100 bursting stripes and get O
ðb;off Þ
i , P

ðb;off Þ
i , and

M
ðb;off Þ
i in each ith bursting stripe for p ¼ 0:3, which are

shown in Fig. 8g2, h2 and i2, respectively. For this case of

bursting offset times, O
ðoff Þ
b (=hOðb;off Þ

i ibÞ ’ 0:3, P
ðoff Þ
b
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(=hPðb;off Þ
i ibÞ ’ 0:83, and M

ðoff Þ
b (=hMðb;off Þ

i ib) ’ 0:25. The

pacing degree of offset times P
ðoff Þ
b is a little smaller than

the pacing degree of the onset times ðPðonÞ
b ’ 0:89Þ,

although the occupation degrees ð’ 0:3Þ of the onset and

the offset times are the same. We take into consideration

both cases of the onset and offset times equally and define

the average occupation degree Ob, the average pacing

degree Pb, and the statistical-mechanical bursting measure

Mb as follows:

Ob ¼ ½OðonÞ
b þ O

ðoff Þ
b �=2; Pb ¼ ½PðonÞ

b þ P
ðoff Þ
b �=2; and

Mb ¼ ½MðonÞ
b þM

ðoff Þ
b �=2:

ð20Þ

By increasing the rewiring probability from p ¼ 0, we

follow 100 bursting onset and 100 bursting offset stripes in

each realization and measure the degree of burst synchro-

nization in terms of hObir (average occupation degree),

hPbir (average pacing degree), and hMbir (statistical-

mechanical bursting measure) via average over 10 real-

izations in the whole region of burst synchronization, and

the results are shown in Fig. 8j1–j3. The average occupa-

tion degree hObir (denoting the average density of bursting

stripes in the raster plot) is nearly the same (about 0.3),

independently of p. On the other hand, with increasing p,

the average pacing degree hPbir (representing the average

smearing of the bursting stripes in the raster plot) increases

rapidly due to appearance of long-range connections.

However, the value of hPbir saturates for p ¼
pb;max ð	 0:3Þ because long-range short-cuts which appear

up to pb;max play sufficient role to get maximal degree of

burst pacing. This saturation of the average pacing degree

can be seen well in the raster plots of bursting onset times

[see Fig. 8a1–a5] and bursting offset times [see Fig. 8b1–

b5]. With increasing p the zigzagness degree of bursting

stripes in the raster plots becomes reduced, eventually for

p ¼ pb;max the raster plot becomes composed of vertical

bursting stripes without zigzag, and then the pacing degree

between bursting onset and offset times becomes nearly the

same. In the whole region of burst synchronization, R
ðonÞ
b

and R
ðoff Þ
b show slow-wave oscillations with the population

bursting frequency fb ’ 4:8 Hz, independently of p. The

amplitudes of the IPBR kernel estimates R
ðonÞ
b and R

ðoff Þ
b

also increase up to p ¼ pb;max, and then its value becomes

saturated. The statistical-mechanical bursting measure

hMbir (taking into account both the occupation and the

pacing degrees of bursting onset and offset times) also

makes a rapid increase up to p ¼ pb;max, as in the case of

hPbir. hMbir is nearly equal to 3hPbir=10 because of the

sparse occupation ðhObir ’ 3=10Þ. In this way, we char-

acterize burst synchronization in terms of the statistical-

mechanical bursting measure hMbir in the whole region of

burst synchronization, and find that hMbir reflects the

degree of burst synchronization seen in the raster plot of

onset and offset times very well.

Finally, we measure the degree of spike synchronization

in terms of a statistical-mechanical spiking measure Ms,

based on the IPSR RsðtÞ. As shown in Fig. 7c1–c4, spike

synchronization may be well visualized in the raster plot of

spikes. For the synchronous spiking case, spiking stripes

(composed of spikes and indicating intraburst spike syn-

chronization) appear in the intraburst band of the raster

plot. As an example, we consider a synchronous spiking

case of p ¼ 0:4. Figure 9a1 and a2 show a magnified raster

plot of neural spikes and the IPSR RsðtÞ, corresponding to

the 1st global bursting cycle of the IPBR RbðtÞ [denoted by

the vertical dash-dotted lines: t
ðbÞ
1 ð¼ 2,044 msÞ\t\t

ðbÞ
2

ð¼ 2,248 msÞ]. The intraburst band in Fig. 9a1 [represented

by the vertical dotted lines: t
ðb;onÞ
1 ð¼ 2,085 msÞ\t\t

ðb;off Þ
2

ð¼ 2,209 msÞ], corresponding to the 1st global active

phase, is composed of 8 smeared spiking stripes; t
ðb;onÞ
1

(maximum of R
ðonÞ
b ðtÞ in Fig. 8c4 within the 1st global

bursting cycle) is the global active phase onset time, and

t
ðb;off Þ
1 (maximum of R

ðoff Þ
b ðtÞ in Fig. 8d4 within the 1st

global bursting cycle) is the global active phase offset time.

In the intraburst band (bounded by the dotted lines), the

maxima (minima) of the IPSR RsðtÞ are denoted by solid

(open) circles, and 8 global spiking cycles G
ðsÞ
1;j ðj ¼

1; . . .; 8Þ [denoted by the number j in Fig. 9a2] exist in the

1st global bursting cycle of RbðtÞ. For 1\j\8, each jth

global spiking cycle G
ðsÞ
1;j , containing the jth maximum of

RsðtÞ, begins at the left nearest-neighboring minimum of

RsðtÞ and ends at the right nearest-neighboring minimum of

RsðtÞ, while for both extreme cases of j ¼ 1 and 8, G
ðsÞ
1;1

begins at t
ðbÞ
1 [the beginning time of the 1st global bursting

cycle of RbðtÞ] and G
ðsÞ
1;8 ends at t

ðbÞ
2 [the ending time of the

1st global bursting cycle of RbðtÞ]. Then, as in the case of

the global bursting phase UðonÞ
b ðtÞ ½Uðoff Þ

b ðtÞ� of R
ðonÞ
b ðtÞ

½RðonÞ
b ðtÞ�, we introduce an instantaneous global spiking

phase UsðtÞ of RsðtÞ via linear interpolation in the two

successive subregions (the left subregion joining the left

beginning point and the central maximum and the right

subregion joining the central maximum and the right end-

ing point) forming a global spiking cycle [see Fig. 9a3].

Similar to the case of burst synchronization, we measure

the degree of the intraburst spike synchronization seen in

the raster plot in terms of a statistical-mechanical spiking

measure, based on RsðtÞ, by considering the occupation and

the pacing patterns of spikes in the global spiking cycles.

The spiking measure M
ðsÞ
1;j of the jth global spiking cycle in
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the 1st global bursting cycle is defined by the product of the

occupation degree O
ðsÞ
1;j of spikes (denoting the density of

spikes in the jth global spiking cycle) and the pacing degree

P
ðsÞ
1;j of spikes (representing the smearing of spikes in the jth

global spiking cycle). Plots of O
ðsÞ
1;j , P

ðsÞ
1;j , and M

ðsÞ
1;j , are

shown in Fig. 9b1–b3, respectively. For the 1st global

bursting cycle, the spiking-averaged occupation degree O
ðsÞ
1

(=hOðsÞ1;j is) ’ 0:24, the spiking-averaged pacing degree P
ðsÞ
1

(=hPðsÞ1;j is) ’ 0:1, and the spiking-averaged statistical-

mechanical spiking measure M
ðsÞ
1 (=hMðsÞ1;j is) ’ 0:024,

where h� � �is represents the average over the spiking cycles.

We also follow 100 bursting cycles and get O
ðsÞ
i , P

ðsÞ
i , and

M
ðsÞ
i in each ith global bursting cycle for p ¼ 0:4, which

are shown in Fig. 9c1, c2 and c3, respectively. Then,

through average over all bursting cycles, we obtain the

bursting-averaged occupation degree Os ð¼ hOðsÞi ib ’
0:24Þ, the bursting-averaged pacing degree Ps ð¼ hPðsÞi ib ’
0:1Þ, and the bursting-averaged statistical-mechanical

spiking measure Ms ð¼ hMðsÞi ib ’ 0:024Þ for p ¼ 0:4. We

note that Os, Ps, and Ms are obtained through double-

averaging ½hh� � �isib� over the spiking and bursting cycles.

When compared with the bursting case of Ob ’ 0:3 and

Pb ’ 0:86 for p ¼ 0:4, a fraction (about 4/5) of the HR

neurons exhibiting the bursting active phases fire spi-

kings in the spiking cycles, and the pacing degree of

spikes ðPsÞ is about 12 percentage of the pacing degree

of burstings ðPbÞ. Consequently, the statistical-mechani-

cal spiking measure ðMsÞ becomes only about 10 per-

centage of the statistical-mechanical bursting measure

ðMbÞ for p ¼ 0:4 (i.e., the degree of the intraburst spike

synchronization is much less than that of the burst syn-

chronization). We increase the rewiring probability p

from 0 and repeat the above process to get Os, Ps, and

Ms for multiple realizations. Thus, we obtain hOsir
(average occupation degree of spikes in the global

spiking cycles), hPsir (average pacing degree of spikes in

the global spiking cycles), and hMsir (average statistical-

mechanical spiking measure in the global spiking cycles)

through average over all realizations. For each realiza-

tion, we follow 100 bursting cycles, and obtain hOsir,
hPsir, and hMsir via average over 10 realizations.

Fig. 9 Measurement of the degree of intraburst spike synchronization

in terms of the statistical-mechanical spiking measure Ms for J ¼ 0:6

and D ¼ 0:03 in the small-world networks of N ð¼ 103Þ inhibitory

subthreshold bursting HR neurons for IDC ¼ 1:25 and Msyn ¼ 100. a1
Magnified raster plot of neural spikes, a2 IPSR RsðtÞ [each integer

j ð¼ 1; . . .; 8Þ represents the jth spiking cycle G
ðsÞ
1;j ], and a3 global

spiking phase UsðtÞ in the 1st global bursting cycle of RbðtÞ
[represented by the vertical dash-dotted lines: t

ðbÞ
1 (=2,044 ms)

\t\ t
ðbÞ
2 (=2,248 ms)] for p ¼ 0:4. The intraburst band in a1

[denoted by the vertical dotted lines: t
ðb;onÞ
1 (=2,085 ms) \t\ t

ðb;off Þ
1

(=2,209 ms)], corresponding to the 1st global active phase, is

composed of eight smeared spiking stripes. Plots of b1 O
ðsÞ
1;j

(occupation degree of spikes), b2 P
ðsÞ
1;j (pacing degree of spikes),

and b3 M
ðsÞ
1;j (spiking measure) in the jth spiking cycle G

ðsÞ
1;j of the 1st

global bursting cycle of RbðtÞ versus j for p ¼ 0:4. Plots of c1 O
ðsÞ
i

(occupation degree of spikes), c2 P
ðsÞ
i (pacing degree of spikes), and

c3 M
ðsÞ
i (spiking measure) in the ith global bursting cycle versus i for

p ¼ 0:4. Measurement of the degree of intraburst spike synchroniza-

tion: plots of d1 hOsir (average occupation degree of spikes), d2 hPsir
(average pacing degree of spikes), and d3 plot of hMsir (average

statistical-mechanical intraburst spiking measure) versus p. For each

p, we follow 100 bursting cycles in each realization, and obtain hOsir ,
hPsir , and hMsir via average over ten realizations

196 Cogn Neurodyn (2015) 9:179–200

123



Through these multiple-realization simulations, we mea-

sure the degree of intraburst spike synchronization in

terms of hOsir, hPsir, and hMsir in the whole region of

spike synchronization ½p
 p�cð’ 0:14Þ�, which are shown

in Fig. 9d1–d3, respectively. The average occupation

degree hOsir (denoting the average density of spiking

stripes in the raster plot) is nearly the same (about 0.24),

independently of p. On the other hand, with increasing p,

the average pacing degree hPsir (representing the average

smearing of the spiking stripes in the raster plot)

increases rapidly due to appearance of long-range con-

nections. However, the value of hPsir saturates for p ¼
ps;max ð	 0:4Þ because long-range short-cuts which appear

up to ps;max play sufficient role to get maximal degree of

spike pacing. In this way, we characterize intraburst

spike synchronization in terms of the average statistical-

mechanical spiking measure hMsir in the whole spike-

synchronized region, and find that hMsir reflects the

degree of intraburst spike synchronization seen in the

raster plot very well.

Summary

Noise-induced firing patterns of subthreshold neurons,

which may be used for encoding environmental electric or

thermal stimuli in sensory receptor neurons, are in contrast

to the deterministic firings for the suprathreshold case.

Unlike the case of subthreshold spiking neurons, noise-

induced population synchronization of subthreshold busting

neurons was previously studied only in the globally-coupled

case. Hence, we have investigated the effect of complex

network architecture on the noise-induced burst and spike

synchronizations in an inhibitory population of subthresh-

old bursting HR neurons. For modeling the complex syn-

aptic connectivity, we first employed the conventional

Erdös–Rényi random graph of subthreshold HR neurons,

and studied occurrence of the noise-induced population

synchronization by varying the synaptic inhibition strength

J and the noise intensity D. Thus, noise-induced burst and

spike synchronizations have been found to occur in a syn-

chronized region in the J–D plane. However, real synaptic

connections are known to be neither regular nor random.

Hence, we considered the Watts–Strogatz model for small-

world networks which interpolates between regular lattice

and random network via rewiring. By varying the rewiring

probability p, we have investigated the effect of small-

world connectivity on emergence of noise-induced burst

and spike synchronizations. With decreasing p from 1

(random network) to 0 (regular lattice), the region of burst

synchronization has been found to decrease slowly in the J–

D plane, while the region of spike synchronization has been

found to shrink rapidly. Hence, complete synchronization

(including both the burst and spike synchronizations) may

occur only when p is sufficiently large, whereas for small p

only burst synchronization (without spike synchronization)

emerges because more long-range connections are neces-

sary for the occurrence of fast spike synchronization.

Through frequency filtering, we have separated the slow

bursting and the fast spiking time scales, and characterized

the noise-induced burst and spike synchronizations by

employing realistic order parameters and statistical-

mechanical measures introduced in our recent work. Thus,

the bursting and spiking thresholds for the noise-induced

burst and spike synchronization transitions were determined

in terms of the bursting and spiking order parameters Ob

and Os, respectively. By varying D, we have investigated

the noise-induced bursting transition in terms of Ob for a

given J, and found that, with increasing the rewiring

probability p from 0 (regular lattice) the burst-synchronized

range of D increases gradually because long-range con-

nections appear. For fixed J and D, we have also studied the

noise-induced spiking transition in terms of Os by

increasing p from 0. As p passes a critical value p�c ð’ 0:14Þ,
a transition to spike synchronization has been found to

occur in small-world networks, because sufficient number

of long-range connections for occurrence of fast spike

synchronization appear. Furthermore, we have measured

the degree of noise-induced burst synchronization in terms

of a statistical-mechanical bursting measure Mb, introduced

by considering the occupation and the pacing patterns of

bursting onset or offset times in the raster plot. Similarly,

we have also used a statistical-mechanical spiking measure

Ms, and quantitatively measured the degree of the noise-

induced intraburst spike synchronization. With increasing

p, both the degrees of the noise-induced burst and spike

synchronizations have been found to increase because more

long-range connections appear. However, the degrees of the

burst and spike synchronizations become saturated for their

maximal values of p, pb;max ð	 0:3Þ and ps;max ð	 0:4Þ,
respectively because long-range short-cuts which appear up

to the maximal values of p play sufficient role to get max-

imal degrees of the burst and spike synchronizations. As is

well known, the real brain network has another complex

topological properties such as scale-freeness and modular-

ity, in addition to the small-worldness (Sporns 2011). Based

on our results in small-world networks, we expect that

noise-induced burst and spike synchronizations may also

emerge in scale-free and clustered networks only if the

number of long-range connections is sufficient. Explicit

study in other complex networks (including actual con-

nectivity (Izhikevich and Edelman 2008; Wang et al.

2011a)) is beyond our present subject, and it is left as a

future work.
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