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Abstract We are interested in characterization of syn-

chronization transitions of bursting neurons in the fre-

quency domain. Instantaneous population firing rate (IPFR)

RðtÞ, which is directly obtained from the raster plot of

neural spikes, is often used as a realistic collective quantity

describing population activities in both the computational

and the experimental neuroscience. For the case of spiking

neurons, a realistic time-domain order parameter, based on

RðtÞ, was introduced in our recent work to characterize the

spike synchronization transition. Unlike the case of spiking

neurons, the IPFR RðtÞ of bursting neurons exhibits

population behaviors with both the slow bursting and the

fast spiking timescales. For our aim, we decompose the

IPFR RðtÞ into the instantaneous population bursting rate

RbðtÞ (describing the bursting behavior) and the instanta-

neous population spike rate RsðtÞ (describing the spiking

behavior) via frequency filtering, and extend the realistic

order parameter to the case of bursting neurons. Thus, we

develop the frequency-domain bursting and spiking order

parameters which are just the bursting and spiking ‘‘co-

herence factors’’ bb and bs of the bursting and spiking

peaks in the power spectral densities of Rb and Rs (i.e.,

‘‘signal to noise’’ ratio of the spectral peak height and its

relative width). Through calculation of bb and bs, we ob-

tain the bursting and spiking thresholds beyond which the

burst and spike synchronizations break up, respectively.

Consequently, it is shown in explicit examples that the

frequency-domain bursting and spiking order parameters

may be usefully used for characterization of the bursting

and the spiking transitions, respectively.

Keywords Frequency-domain order parameters �
Bursting neurons � Burst and spike synchronization

transitions

Introduction

Recently, much attention has been paid to brain rhythms,

observed in electrical recordings of firing activity (Buzsáki

2006). These brain rhythms emerge via synchronization

between firings of individual neurons. This kind of neural

synchronization may be used for efficient sensory and

cognitive processing (Wang 2003, 2010), and it is also

correlated with pathological rhythms associated with neu-

ral diseases (Uhlhaas and Singer 2006; Traub and Whit-

tington 2010; Kaper et al. 2013). Here, we are interested in

characterization of population synchronization of bursting

neurons in terms of neural synchrony measures (Golomb

2007). Bursting occurs when neuronal activity alternates,

on a slow timescale, between a silent phase and an active

(bursting) phase of fast repetitive spikings (Rinzel 1985,

1987; Coombes and Bressloff 2005; Izhikevich 2006,

2007). Due to the slow and fast timescales of bursting

activity, bursting neurons exhibit two types of burst and

spike synchronizations. Burst synchronization on the slow

bursting timescale refers to a coherence between the active

phase onset or offset times of bursting neurons, while spike

synchronization on the fast spike timescale characterizes a

coherence between intraburst spikes fired by bursting

neurons (Rubin 2007; Omelchenko et al. 2010). Many
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recent studies on the burst and spike synchronizations have

been made in several aspects (e.g., chaotic phase syn-

chronization, transitions between different states of burst

synchronization, effect of network topology, effect on in-

formation transmission, suppression of bursting synchro-

nization, and effect of noise and coupling on the burst and

spike synchronization) (van Vreeswijk and Hansel 2001;

Dhamala et al. 2004; Ivanchenko et al. 2004; Belykh et al.

2005; Duan et al. 2013; Shi and Lu 2005, 2009; Tanaka

et al. 2006; Batista et al. 2007, 2012; Pereira et al. 2007;

Sun et al. 2011; Yu et al. 2011; Lameu et al. 2012; Kim

et al. 2012; Kim and Lim 2013; Meng et al. 2013; Wang

et al. 2013).

In this paper,we are interested in practical characterization

of the burst and spike synchronization transitions of bursting

neurons in the frequency domain. The frequency-domain

method has often been employed in the field of nonlinear

dynamics to analyze the dynamical bifurcations (Itovich and

Moiola 2001, 2002; Torresi et al. 2012). Population syn-

chronizationmaybewell visualized in the raster plot of neural

spikes which can be obtained in experiments. Instantaneous

population firing rate (IPFR), RðtÞ, which is directly obtained
from the raster plot of spikes, is a realistic population quantity

describing collective behaviors in both the computational and

the experimental neuroscience (Brunel and Hakim 1999,

2008; Brunel 2000; Brunel and Wang 2003; Geisler et al.

2005; Brunel and Hansel 2006; Wang 2010). This ex-

perimentally-obtainable RðtÞ is in contrast to the ensemble-

averaged potential XG which is often used as a population

quantity in the computational neuroscience, because to di-

rectly get XG in real experiments is very difficult. To over-

come this difficulty, instead of XG, we used RðtÞ as a

population quantity, and developed a realistic order pa-

rameter, based on RðtÞ, to make practical characterization of

synchronization of spiking neurons in both the computational

and the experimental neuroscience (Kim and Lim 2014a).

The mean square deviation of RðtÞ plays the role of the re-

alistic order parameter O used to determine the threshold

value for the synchronization transition of spiking neurons. In

this way, synchronization transition of spiking neurons may

be well characterized in terms of the realistic order parameter

O, based on the IPFR RðtÞ.
In the field of neuroscience, power-spectral analysis of a

time-series xðtÞ (e.g., neuronal membrane potential) is often

made to examine how the variance of the data xðtÞ is dis-
tributed over the frequency components into which xðtÞmay

be decomposed (Brunel and Hakim 1999, 2008; Brunel

2000; Brunel and Wang 2003; Geisler et al. 2005; Brunel

and Hansel 2006). Following this conventional direction, we

investigate the synchronization transitions of bursting neu-

rons in the frequency domain. Themain purpose of ourworks

is to characterize the synchronization transitions of bursting

neurons in terms of ‘‘frequency-domain’’ order parameters

by extending the realistic ‘‘time-domain’’ order parameter of

spiking neurons (Kim and Lim 2014a) to the case of bursting

neurons. This extensionwork on the frequency-domain order

parameters is in contrast to another extensionworkwhere the

synchronization transitions of bursting neurons are charac-

terized in terms of the time-domain order parameters (Kim

and Lim 2014b). The IPFR RðtÞ shows the whole combined

population behaviors with both the slow and fast timescales.

To clearly investigate the synchronization transitions of

bursting neurons, we separate the slow and fast timescales of

the bursting activity via frequency filtering, and decompose

the IPFR RðtÞ into RbðtÞ [the instantaneous population burst
rate (IPBR) describing the bursting behavior] and RsðtÞ [the
instantaneous population spike rate (IPSR) describing the

intraburst spiking behavior]. In presence of the burst and

spike synchronizations, Rb and Rs exhibit regular oscilla-

tions, independently of N (the number of the bursting neu-

rons). On the other hand, in absence of the burst and spike

synchronizations, Rb and Rs become stationary as N goes to

the infinity. The synchronous oscillations of Rb and Rs in the

time domain may be well characterized by the bursting and

spiking peaks of their power spectral densities. As in the case

of the coherence resonance (Neiman 2007), each spectral

‘‘resonance’’ (i.e., peak) in the power spectral densitymay be

well analyzed in terms of a ‘‘coherence factor’’ b (i.e., a

measure of spectral coherence) which is defined by a ‘‘signal

to noise’’ ratio of the spectral peak height and its relative

width (Gang et al. 1993; Longtin 1997).We also note that the

signal to noise ratio has a long history of being used in

neuroscience as a measure of the fidelity of signal trans-

mission and detection by neurons and synapses (Schultz

2007). Then, the bursting and spiking coherence factors bb
and bs of the bursting and spiking peaks in the power spectral
densities of RbðtÞ and RsðtÞ are shown to play the role of the
bursting and spiking order parameters in the frequency do-

main which are used to determine the bursting and spiking

thresholds for the bursting and spiking transitions, respec-

tively. We also consider another raster plot of bursting onset

or offset times which visualizes the bursting behaviors more

directly. From this type of raster plot, we may directly obtain

the IPBR, R
ðonÞ
b ðtÞ or Rðoff Þ

b ðtÞ, without frequency filtering.

Then, the bursting onset and offset coherence factors, bðonÞb

and bðoff Þb , of the bursting onset and offset peaks in the power

spectral densities of R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ are also shown to

play the role of the frequency-domain bursting order pa-

rameters for the bursting transition. The frequency-domain

order parameters bðonÞb and bðoff Þb yield the same bursting

threshold which is obtained through calculation of bb, and
they are more direct ones than bb because they may be di-

rectly obtained without frequency filtering. Consequently,

all the frequency-domain bursting and spiking order
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parameters may be usefully used for characterization of the

burst and and spike synchronization transitions of the

bursting neurons in the frequency domain.

This paper is organized as follows. In second section, as an

example for characterization we describe an inhibitory net-

work of bursting Hindmarsh–Rose (HR) neurons (Hindmarsh

and Rose 1982, 1984; Rose and Hindmarsh 1985; Shilnikov

and Kolomiets 2008). In third section, we separate the slow

bursting and the fast spiking timescales via frequency filtering,

and develop realistic frequency-domain bursting and spiking

order parameters (i.e., the bursting and spiking coherence

factors), based on the power spectral densities of the IPBR and

the IPSR, which are applicable in both the computational and

the experimental neuroscience. Their usefulness for charac-

terization of the burst and spike synchronization transitions is

shown in explicit examples of bursting HR neurons. Finally, a

summary is given in last section.

A network of inhibitory bursting Hindmarsh–Rose

neurons

As an example for characterization, we consider an in-

hibitory network of N globally-coupled bursting HR neu-

rons. The representative bursting HR neuron model was

originally introduced to describe the time evolution of the

membrane potential for the pond snails (Hindmarsh and

Rose 1982, 1984; Rose and Hindmarsh 1985; Shilnikov

and Kolomiets 2008). The population dynamics in this

inhibitory network is governed by the following set of

ordinary differential equations:

dxi

dt
¼ yi � ax3i þ bx2i � zi þ IDC þ Dni � Isyn;i; ð1Þ

dyi

dt
¼ c� dx2i � yi; ð2Þ

dzi

dt
¼ r sðxi � xoÞ � zi½ �; ð3Þ

dgi

dt
¼ ag1ðxiÞð1� giÞ � bgi; i ¼ 1; � � � ;N; ð4Þ

where

Isyn;i ¼
J

N � 1

XN

jð6¼iÞ
gjðtÞðxi � XsynÞ; ð5Þ

g1ðxiÞ ¼ 1=½1þ e�ðxi�x�s Þd�: ð6Þ

Here, the state of the ith HR neuron at a time t (measured in

units of milliseconds) is described by four state variables:

the fast membrane potential xi, the fast recovery current yi;

the slow adaptation current zi, and the synaptic gate vari-

able gi representing the fraction of open synaptic ion

channels. The parameters in the single HR neuron are taken

as a ¼ 1:0; b ¼ 3:0; c ¼ 1:0; d ¼ 5:0; r ¼ 0:001; s ¼ 4:0;

and xo ¼ �1:6 (Longtin 1997).

Each bursting HR neuron is stimulated by using the

common DC current IDC and an independent Gaussian

white noise ni [see the 5th and the 6th terms in Eq. (1)]

satisfying hniðtÞi ¼ 0 and hniðtÞnjðt0Þi ¼ dijdðt � t0Þ, where
h� � �i denotes the ensemble average. The noise n is a

parametric one that randomly perturbs the strength of the

applied current IDC, and its intensity is controlled by using

the parameter D. As IDC passes a threshold I�DCð’1:26Þ in
the absence of noise, each single HR neuron exhibits a

transition from a resting state to a bursting state.

Throughout this paper, we consider the suprathreshold case

of IDC ¼ 1:3 where each HR neuron exhibits spontaneous

bursting activity without noise. Figure 1a, b shows the time

series of the fast membrane potential xðtÞ and the fast re-

covery current yðtÞ, while the time series of the slow

adaptation current zðtÞ is shown in Fig. 1c. As seen well in

the time series of x and y, the bursting activity alternates,

on a slow timescale, between a silent phase and an active

(bursting) phase of fast repetitive spikings. For this case,

the slow bursting timescale is sb ’ 609 ms [corresponding

to the slow bursting frequency fbð’1:6 Hz)], while the fast

spiking timescale is ss ’18:2 ms [corresponding to the fast

spiking frequency fsð’55 Hz)].

The last term in Eq. (1) represents the synaptic coupling

of the network. Isyn;i of Eq. (5) represents a synaptic current

injected into the ith neuron. Here the coupling strength is

(a)

(b)

(c)

Fig. 1 Single HR neuron for IDC ¼ 1:3 and D ¼ 0. Plots of time

series of a the fast membrane potential xðtÞ, b the fast recovery

current yðtÞ, and c the slow adaptation current zðtÞ
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controlled by the parameter J and Xsyn is the synaptic re-

versal potential. Here, we use Xsyn ¼ �2 for the inhibitory

synapse. The synaptic gate variable g obeys the 1st order

kinetics of Eq. (4) (Golomb and Rinzel 1994; Wang and

Buzsáki 1996). Here, the normalized concentration of sy-

naptic transmitters, activating the synapse, is assumed to be

an instantaneous sigmoidal function of the membrane po-

tential with a threshold x�s in Eq. (6), where we set x�s ¼ 0

and d ¼ 30 (Liang et al. 2009). The transmitter release

occurs only when the neuron emits a spike (i.e., its po-

tential x is larger than x�s ). For the inhibitory GABAergic

synapse (involving the GABAA receptors), the synaptic

channel opening rate, corresponding to the inverse of the

synaptic rise time sr, is a ¼ 10ms�1, and the synaptic

closing rate b, which is the inverse of the synaptic decay

time sd, is b ¼ 0:1ms�1 (Börgers and Kopell 2003, 2005).

Hence, Isyn rises fast and decays slowly.

Numerical integration of Eqs. (1)–(4) is done using the

Heun method (San Miguel and Toral 2000) (with the

time step Dt ¼ 0:01 ms). For each realization of the

stochastic process, we choose a random initial point

½xið0Þ; yið0Þ; zið0Þ; gið0Þ� for the ith ði ¼ 1; . . .;NÞ neuron

with uniform probability in the range of xið0Þ 2 ð�2; 2Þ,
yið0Þ 2 ð�16; 0Þ, zið0Þ 2 ð1:1; 1:4Þ, and gið0Þ 2 ð0; 1Þ.

Frequency-domain order parameters for the burst

and spike synchronization transitions

In this section, we extend the realistic order parameter of

spiking neurons to the case of bursting neurons for charac-

terization of population synchronization transition in the

frequency domain. For our aim, we separate the slow

bursting and the fast spiking timescales through frequency

filtering, and decompose the IPFR RðtÞ into the IPBR RbðtÞ
(describing the bursting behavior) and the IPSR RsðtÞ (de-
scribing the intraburst spiking behavior). Then, we develop

realistic frequency-domain bursting and spiking order pa-

rameters, based on the power spectral densities of the IPBR

RbðtÞ and the IPSR RsðtÞ, and show their usefulness for

characterization of the burst and spike synchronization

transitions in explicit examples of bursting HR neurons.

As an example for characterization, we consider an in-

hibitory network of N globally-coupled bursting HR neu-

rons, and characterize the synchronization transitions of

bursting HR neurons in the frequency domain by varying

the noise intensity D. To compare our results in the fre-

quency domain with those in the time domain, we fix the

DC current strength IDC and the coupling strength J at

IDC ¼ 1:3 and J ¼ 0:3, as in the time-domain work (Kim

and Lim 2014b). In computational neuroscience, a

population-averaged global potential,

XGðtÞ ¼
1

N

XN

i¼1

xiðtÞ; ð7Þ

is often used for describing emergence of population syn-

chronization. In this study, we consider the population

behaviors after the transient time of 2� 103 ms. Although

the global potential XG is an important ensemble-averaged

quantity to describe synchronization in computational

neuroscience, it is practically difficult to directly get XG in

real experiments. To overcome this difficulty, instead of

XG, we use the IPFR which is an experimentally-obtainable

population quantity used in both the experimental and the

computational neuroscience (Brunel and Hakim 1999,

2008; Brunel 2000; Brunel and Wang 2003; Geisler et al.

2005; Brunel and Hansel 2006; Wang 2010). The IPFR is

obtained from the raster plot of spikes which is a collection

of spike trains of individual neurons. Such raster plots of

spikes, where population synchronization may be well vi-

sualized, are fundamental data in the experimental neuro-

science. The raster plots of spikes in Fig. 2a1–a5 shows

population states for various values of noise intensity D. To

get a smooth IPFR from the raster plot of spikes, we em-

ploy the kernel density estimation (kernel smoother) (Shi-

mazaki and Shinomoto 2010). Each spike in the raster plot

is convoluted (or blurred) with a kernel function KhðtÞ to

get a smooth estimate of IPFR, RðtÞ:

RðtÞ ¼ 1

N

XN

i¼1

Xni

s¼1

Khðt � tðiÞs Þ; ð8Þ

where t
ðiÞ
s is the sth spiking time of the ith neuron, ni is the

total number of spikes for the ith neuron, and we use a

Gaussian kernel function of band width h:

KhðtÞ ¼
1ffiffiffiffiffiffi
2p

p
h
e�t2=2h2 ; �1\t\1: ð9Þ

Figure 2b1–b5 shows smooth IPFR kernel estimates RðtÞ of
band width h ¼ 1 ms for D ¼ 0, 0.01, 0.04, 0.06 and 0.08,

respectively. For D ¼ 0, clear ‘‘bursting bands,’’ each of

which is composed of ‘‘stripes’’ of spikes, appear succes-

sively at nearly regular time intervals (see Fig. 2a1); a

magnified 1st intraburst band is given in Fig. 3a1. For the

case of D ¼ 0, both the burst synchronization [synchrony

on the slow bursting timescale sb (’215 ms)] and the spike

synchronization [synchrony on the fast spike timescale

ssð’14:6 ms)] occur in each bursting band. As a result of

this complete synchronization, the IPFR kernel estimate

RðtÞ shows a bursting activity [i.e., fast spikings appear on

a slow wave in RðtÞ], as shown in Fig. 2b1. However, as D

is increased, loss of spike synchronization occurs in each

bursting band because spiking stripes become smeared due

to a destructive role of noise. As an example, see the case

of D ¼ 0:01 where the raster plot of spikes and the IPFR

414 Cogn Neurodyn (2015) 9:411–421
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kernel estimate RðtÞ are shown in Fig. 2a2, b2, respec-

tively. The magnified 1st bursting band in Fig. 3a3 show

smearing of the spiking stripes well. Consequently, the

amplitude of RðtÞ decreases, as shown in Fig. 2b2. As D is

further increased and passes a spiking noise threshold

D�
s ð’0:032Þ, complete loss of spike synchronization occurs

in each bursting band. Then, only the burst synchronization

(without spike synchronization) occurs, as shown in the

case of D ¼ 0:04 in Fig. 2a3, b3. For this case, RðtÞ shows
a slow-wave oscillation without spikes. With increase in D,

such ‘‘incoherent’’ bursting bands become more and more

smeared, and hence the degree of burst synchronization

decreases (e.g., see the case of D ¼ 0:06 in Fig. 2a4). As a

result, the amplitude of RðtÞ is further decreased, as shown
in Fig. 2b4 for D ¼ 0:06. With further increasing D, in-

coherent bursting bands begin to overlap, which eventually

results in the complete loss of burst synchronization as D

passes another larger bursting noise threshold D�
bð’0:068Þ.

Consequently, for D[D�
b, completely unsynchronized

states with nearly stationary RðtÞ appear, as shown in the

case of D ¼ 0:08 in Fig. 2a5, b5.

The (above) IPFR kernel estimate RðtÞ is a population

quantity describing the ‘‘whole’’ combined collective be-

haviors of bursting neurons with both the slow bursting and

the fast spiking timescales. Through frequency filtering, we

separate the slow and the fast timescales, and decompose the

IPFR kernel estimate RðtÞ into the IPBR RbðtÞ and the IPSR
RsðtÞ for more clear investigation of the burst and spike

synchronizations. Through band-pass filtering of RðtÞ [with
the lower and the higher cut-off frequencies of 3 Hz (high-

pass filter) and 7 Hz (low-pass filer)], we get the regularly-

oscillating IPBR RbðtÞ (containing only the slow wave

Fig. 2 Population bursting states for various values of D and

determination of the bursting noise threshold D�
b in an inhibitory

ensemble of N globally-coupled bursting HR neurons for IDC ¼ 1:3
and J ¼ 0:3: synchronized bursting states for D ¼ 0; 0.01, 0.04, and

0.06, and unsynchronized bursting state for D ¼ 0:08. N ¼ 103 except

for the case of (e). a1–a5 Raster plots of neural spikes, b1–b5 time

series of IPFR kernel estimate RðtÞ (the band width h of the Gaussian

kernel function is 1 ms), c1–c5 time series of band-pass filtered IPBR

RbðtÞ [lower and higher cut-off frequencies of 3 Hz (high-pass filter)

and 7 Hz (low-pass filter)], and d1–d5 one-sided power spectra of

DRbðtÞ½¼ RbðtÞ � RbðtÞ� with mean-squared amplitude normalization.

Each power spectrum in d1–d5 is made of 215 data points and it is

smoothed by the Daniell filters of lengths 3 and 5. e Plots of realistic

frequency-domain bursting order parameter hbbir versus D:hbbir is

obtained through average over 20 realizations for each D

Cogn Neurodyn (2015) 9:411–421 415
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without spikes) in Fig. 2c1–c5 for D ¼ 0, 0.01, 0.04, 0.06,

and 0.08. AsD is increased, the amplitude of RbðtÞ decreases
gradually, and eventually RbðtÞ becomes nearly stationary

whenD passes the bursting noise thresholdD�
bð’0:068Þ. We

note that synchronous oscillations of RbðtÞ in the time do-

main are characterized by the bursting peaks in the power

spectral densities of DRbðtÞ½¼ RbðtÞ � RbðtÞ�, where the

overline represents the time average. Figure 2d1–d5 shows

distinct bursting peaks in the power spectra of DRbðtÞ; each
power spectrum is made of 215 data points and smoothed

through the Daniell filters of length 3 and 5 (Bloomfield

2000). Then, each bursting peak may be analyzed well in

terms of a bursting coherence factor bb defined by the

product of the height Hp and the Q factor of the peak

(Neiman 2007; Gang et al. 1993; Longtin 1997):

bb ¼ Hp Q; Q ¼ fp=Dfp: ð10Þ

Here, fp and Dfp are the frequency of the bursting peak and

the width of the bursting peak at the height of e�1=2h, re-

spectively. For more accurate results, we repeat the process

to get the bursting coherence factor bb for multiple real-

izations. Thus, we obtain hbbir (average bursting coherence
factor) through average over 20 realizations. Figure 2e

shows plots of the average bursting coherence factor hbbir
versus D. ForD\D�

bð’0:068), synchronized bursting states
exist because the values of hbbir become saturated to non-

Fig. 3 Population intraburst spiking states for various values of D

and determination of the bursting noise threshold D�
s in an inhibitory

ensemble of N globally-coupled bursting HR neurons for IDC ¼ 1:3
and J ¼ 0:3: synchronized spiking states for D ¼ 0; 0.005, 0.01, and

0.02, and unsynchronized spiking state for D ¼ 0:06. N ¼ 103 except

for the case of (d). a1–a5 Raster plots of neural spikes and b1–b5 time

series of the band-pass filtered IPSR RðtÞ [lower and higher cut-off

frequencies of 30 Hz (high-pass filter) and 90 Hz (low-pass filter)] in

the 1st global bursting cycle of the IPBR RbðtÞ (after the transient

time of 2� 103 ms) for each D. c1–c5 One-sided power spectra of

DRsðtÞ½¼ RsðtÞ � RsðtÞ� with mean-squared amplitude normalization.

Each power spectrum in c1–c5 is made of 28 data points for each

global bursting cycle of RbðtÞ and it is smoothed by the Daniell filters

of lengths 3 and 5. d Plots of realistic frequency-domain spiking order

parameter hhbsibir versus D; hhbsibir is obtained through double-

averaging over the 20 bursting cycles and the 20 realizations

416 Cogn Neurodyn (2015) 9:411–421
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zero limit values in the thermodynamic limit of N ! 1
(i.e., bursting peaks persist, independently of N). However,

as D passes the bursting noise threshold D�
b, the average

bursting coherence factor hbbir tends to zero as N ! 1
(i.e., eventually bursting peaks disappear in the thermody-

namic limit), and hence a transition to unsynchronized

bursting states occurs because the noise spoils the burst

synchronization completely. In this way, the average

bursting coherence factor hbbir describes the burst syn-

chronization transition well in the frequency domain, and

hence it plays the role of the realistic frequency-domain

bursting order parameter for the bursting transition (i.e., one

can determine the bursting noise threshold D�
b through

calculation of hbbir). This frequency-domain bursting order

parameter hbbir is in contrast to the time-domain bursting

order parameter, based on the time-averaged fluctuation of

the IPBR RbðtÞ (Kim and Lim 2014b). In spite of their

difference, calculations of both the frequency-domain and

the time-domain bursting order parameters result in the

same bursting noise threshold D�
b [compare Fig. 2e with

Fig. 3(a) in Kim and Lim (2014b)]. Consequently, the fre-

quency-domain bursting order parameter may be used ef-

fectively to determine D�
b for the bursting transition, like the

case of the time-domain bursting order parameter.

From now on, we investigate the intraburst spike syn-

chronization transition of bursting HR neurons in the fre-

quency domain by varying the noise intensity D. Figure

3a1–a5, b1–b5 shows the raster plots of intraburst spikes

and the corresponding (band-pass filtered) IPSR RsðtÞ
during the 1st global bursting cycle of the IPBR RbðtÞ,
respectively for various values of D: synchronized spiking

states for D ¼ 0, 0.005, 0.01, and 0.02, and unsynchronized

spiking state for D ¼ 0:06. Here, the IPSRs RsðtÞ are ob-

tained through band-pass filtering of the IPFR kernel esti-

mate RðtÞ [with the lower and the higher cut-off

frequencies of 30 Hz (high-pass filter) and 90 Hz (low-pass

filer)]. Then, the intraburst spike synchronization may be

well described in terms of RsðtÞ. For D ¼ 0, clear 8 spiking

stripes (composed of spikes and indicating population spike

synchronization) appear in the intraburst band of the 1st

global bursting cycle of RbðtÞ in Fig. 3a1, and the band-

pass filtered IPSR RsðtÞ shows only the fast spiking oscil-

lations (without a slow wave) with the population spiking

frequency fsð’68:5 Hz) in Fig. 3b1. However, as D is in-

creased, spiking stripes in the intraburst band become more

and more smeared (e.g., see the cases of D ¼ 0:005, 0.01,

and 0.02). Consequently, the amplitude of RsðtÞ decreases
due to loss of spike synchronization. Eventually, when D

passes the spiking noise threshold D�
s ð’0:032Þ, spikes be-

come completely scattered within the intraburst band, and

RsðtÞ becomes nearly stationary. Consequently, for

D[D�
s , complete loss of spike synchronization occurs in

the intraburst band, as shown in Fig. 3b5 for D ¼ 0:06.

Figure 3c1–c5 shows the power spectra of DRsðtÞ½¼
RsðtÞ � RsðtÞ� in the 1st global bursting cycle of RbðtÞ: each
power spectrum is made of 28 data points and smoothed

through the Daniell filters of length 3 and 5. Spiking peaks

in their power spectra are analyzed in terms of the spiking

coherence factors bs (defined by the product of the height

Hp and the Q factor of the peak). For more accurate results,

we repeat the process to get bs for multiple realizations. In

each realization we follow the 20 global bursting cycles of

RbðtÞ, and get the double-averaged spiking coherence fac-

tor hhbsibir through average over 20 realizations. Figure 3d

shows plots of the double-averaged spiking coherence

factor hhbsibir versus D. For D\D�
s ð’0:032), synchro-

nized spiking states exist because the values of hhbsibir
become saturated to non-zero limit values as N ! 1 (i.e.,

spiking peaks persist, irrespectively of N). However, when

D passes the spiking noise threshold D�
s , hhbsibir tends to

zero in the thermodynamic limit of N ! 1 (i.e., eventu-

ally spiking peaks disappear in the thermodynamic limit),

and hence a transition to unsynchronized spiking states

occurs because the noise spoils the intraburst spike syn-

chronization completely. In this way, the double-averaged

spiking coherence factor hhbsibir describes the intraburst

spike synchronization transition well in the frequency do-

main, and hence it plays the role of the realistic frequency-

domain spiking order parameter for the spiking transition

(i.e., one can determine the spiking noise threshold D�
s

through calculation of hhbsibir). This frequency-domain

spiking order parameter is also in contrast to the time-

domain spiking order parameter, based on the time-aver-

aged fluctuation of the IPSR RsðtÞ (Kim and Lim 2014b).

We also note that both the frequency-domain and the time-

domain spiking order parameters yield the same spiking

noise threshold D�
s [compare Fig. 3d with Fig. 6(d) in Kim

and Lim (2014b)]. Consequently, the frequency-domain

spiking order parameter may also be used effectively to

determine D�
s for the spiking transition, as in the case of the

time-domain spiking order parameter.

Finally, we consider another raster plot of bursting onset

or offset times for more direct visualization of bursting

behavior. [At the onset (offset) times of the ith bursting HR

neuron, its individual potential xi passes the threshold of

x�b ¼ �1 from below (above)]. Without frequency filtering,

we can directly obtain the IPBR kernel estimate, R
ðonÞ
b ðtÞ

[R
ðoff Þ
b ðtÞ] from the raster plot of the bursting onset (offset)

times. Figure 4a1–a5 shows the raster plots of the bursting

onset times for various values of D, while the raster plots of

the bursting offset times are shown in Fig. 4c1–c5. From

these raster plots of the bursting onset (offset) times, we
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obtain smooth IPBR kernel estimates, R
ðonÞ
b ðtÞ [Rðoff Þ

b ðtÞ], of
band width h ¼ 50 ms in Fig. 4b1(d1)–b5(d5) for D ¼ 0,

0.01, 0.04, 0.06, and 0.08. For D ¼ 0, clear bursting

‘‘stripes’’ [composed of bursting onset (offset) times and

indicating burst synchronization] appear successively at

nearly regular time intervals; the bursting onset and offset

stripes are time-shifted (see Fig. 4a1, c1). The corre-

sponding IPBR kernel estimates, R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ, for

D ¼ 0 show regular oscillations with the same population

bursting frequency fbð’4:7 Hz), although they are phase-

shifted (see Fig. 4b1, d1). With increasing D, the bursting

onset and offset stripes in the raster plots become smeared

and begin to overlap, and thus the degree of the burst

synchronization decreases. As a result, the amplitudes of

both R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ decrease gradually (e.g., see the

cases of D ¼ 0:01, 0.04, and 0.06). Eventually, as D passes

the bursting noise threshold D�
bð’0:068Þ, bursting onset

and offset times become completely scattered in the raster

plots, and the corresponding IPBR kernel estimates,

R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ, become nearly stationary, as shown

in Fig. 4b5, d5 for D ¼ 0:08. Figure 4e1–e5 shows the

power spectra of DRðonÞ
b ðtÞ½¼ R

ðonÞ
b ðtÞ � R

ðonÞ
b ðtÞ�, while

Figure 4f1–f5 shows the power spectra of

Fig. 4 Population bursting

states represented by the

bursting onset and offset times

for various values of D and

determination of the bursting

noise threshold D�
b in an

inhibitory ensemble of N

globally-coupled bursting HR

neurons for IDC ¼ 1:3 and

J ¼ 0:3: synchronized bursting

states for D ¼ 0; 0.01, 0.04, and
0.06, and unsynchronized

bursting state for D ¼ 0:08.

N ¼ 103 except for the cases of

(g1) and (g2). a1–a5 Raster

plots of the bursting onset times

and b1–b5 time series of the

IPBR R
ðonÞ
b ðtÞ (the band width h

of the Gaussian kernel function

is 50 ms). c1–c5 Raster plot of

the bursting offset times and

d1–d5 time series of the IPBR

R
ðoff Þ
b ðtÞ (the band width h of the

Gaussian kernel function is 50

ms). e1–e5 One-sided power

spectra of DRðonÞ
b ðtÞ½¼

R
ðonÞ
b ðtÞ � R

ðonÞ
b ðtÞ� with mean-

squared amplitude

normalization and f1–f5 one-

sided power spectra of

DRðoff Þ
b ðtÞ½¼ R

ðoff Þ
b ðtÞ � R

ðoff Þ
b ðtÞ�

with mean-squared amplitude

normalization. Each power

spectrum is made of 215 data

points and it is smoothed by the

Daniell filters of lengths 3 and

5. Plots of realistic frequency-

domain bursting order

parameters g1 hbonÞb i
r
and g2

hboff Þb ir versus D: hb
ðonÞ
b ir and

hbðoff Þb ir are obtained through

average over 20 realizations for

each D
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DRðoff Þ
b ðtÞ½¼ R

ðoff Þ
b ðtÞ � R

ðoff Þ
b ðtÞ�; each power spectrum is

made of 215 data points and smoothed through the Daniell

filters of length 3 and 5. Bursting onset and offset peaks in

these power spectra are analyzed in terms of the bursting

onset and offset coherence factors bðonÞb and bðoff Þb (each

coherence factor of a peak is defined by the product of the

height h and the Q factor of the peak). For more accurate

results, we repeat the process to obtain bðonÞb and bðoff Þb for

multiple realizations. Thus, we obtain hbðonÞb ir (average

bursting onset coherence factor) and hbðoff Þb ir (average

bursting offset coherence factor) through average over 20

realizations. Figure 4g1, g2 shows plots of the average

bursting onset and offset coherence factor hbðonÞb ir and

hbðoff Þb ir versus D, respectively. As in the case of the

(above) average bursting coherence factor hbbir, when

passing the same bursting noise threshold D�
bð’0:068Þ,

both the average bursting onset and offset coherence fac-

tors hbðonÞb ir and hbðoff Þb ir go to zero as N ! 1 (i.e.,

eventually bursting onset and offset peaks disappear in the

thermodynamic limit), and hence a transition to burst un-

synchronization occurs for D[D�
b, because the noise

breaks up the burst synchronization completely. In this

way, both the average bursting onset and offset coherence

factors, hbðonÞb ir and hbðoff Þb ir, describe the burst synchro-

nization transition well in the frequency domain, and hence

they also play the role of the realistic frequency-domain

bursting order parameters for the bursting transition to-

gether with hbbir. These frequency-domain bursting order

parameters are also in contrast to the time-domain bursting

order parameters, based on the time-averaged fluctuations

of R
ðonÞ
b ðtÞ and R

ðoff Þ
b ðtÞ (Kim and Lim 2014b). We note that

both the frequency-domain and the time-domain bursting

order parameters yield the same bursting noise threshold

D�
b [compare Fig. 4g1, g2 with Fig. 3(b) and (c) in Kim and

Lim (2014b)]. Consequently, along with hbbir, the fre-

quency-domain bursting order parameters, hbðonÞb ir and

hbðoff Þb ir, may also be used effectively to determine D�
b for

the bursting transition, as in the case of the time-domain

bursting order parameters.

Summary

We have extended the realistic time-domain order pa-

rameter of spiking neurons to the case of bursting neurons.

Their usefulness for characterization of the burst and spike

synchronization transitions in the frequency domain has

been shown in explicit examples of bursting HR neu-

rons by varying the noise intensity D. Population

synchronization may be well visualized in the raster plot of

neural spikes which may be obtained in experiments. The

IPFR kernel estimate RðtÞ, which is obtained from the

raster plot of spikes, is a realistic collective quantity de-

scribing the whole combined population behaviors with the

slow bursting and the fast spiking timescales. Through

frequency filtering, we have decomposed the IPFR kernel

estimate RðtÞ into the IPBR RbðtÞ and the IPSR RsðtÞ. We

note that both RbðtÞ and RsðtÞ may be used to effectively

characterize the burst and spike synchronizations, respec-

tively. For synchronous cases, oscillations of Rb and Rs in

the time domain are characterized by the bursting and

spiking peaks in their power spectral densities. Similar to

the case of coherence resonance, each spectral resonance

(i.e., peak) may be well analyzed in terms of the coherence

factor b, defined by a ‘‘signal to noise’’ ratio of the spectral

peak height and its relative width. The average bursting

and spiking coherence factors hbbir and hhbsibir of the

bursting and spiking peaks in the power spectral densities

of DRb and DRs have been found to play the role of the

frequency-domain bursting and spiking order parameters

for the burst and spike synchronization transitions, re-

spectively. Through calculation of hbbir and hhbsibir, we
have determined the noise bursting and spiking thresholds,

D�
b and D�

s , beyond which the burst and spike synchro-

nizations break up, respectively. For more direct visual-

ization of bursting behavior, we consider another raster plot

of bursting onset or offset times, from which the IPBR,

R
ðonÞ
b ðtÞ or R

ðoff Þ
b ðtÞ, can be directly obtained without fre-

quency filtering. Then, the average bursting onset and

offset coherence factors, hbðonÞb ir and hbðoff Þb ir of the

bursting onset and offset peaks in the power spectral den-

sities of DRðonÞ
b ðtÞ and DRðoff Þ

b ðtÞ have also been shown to

play the role of the frequency-domain bursting order pa-

rameters for the bursting transition. These frequency-do-

main order parameters hbðonÞb ir and hbðoff Þb ir yield the same

bursting noise threshold D�
b which is obtained via calcu-

lation of hbbir, and they are more direct ones than hbbir
because they may be directly obtained without frequency

filtering. We also note that all these bursting and spiking

noise thresholds are the same as those obtained through

calculations of the time-domain bursting and spiking order

parameters (Kim and Lim 2014b). Consequently, the fre-

quency-domain bursting and spiking order parameters may

be usefully used for characterizing the burst and spike

synchronization transitions of the bursting neurons, as in

the case of the time-domain bursting and spiking order

parameters.
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Buzsáki G (2006) Rhythms of the brain. Oxford University Press,

Oxford

Coombes S, Bressloff PC (eds) (2005) Bursting: the genesis of rhythm

in the nervous system. World Scientific, Singapore

Dhamala M, Jirsa V, Ding M (2004) Transitions to synchrony in

coupled bursting neurons. Phys Rev Lett 92:028101

Duan L, Fan D, Lu Q (2013) Hopf bifurcation and bursting

synchronization in an excitable systems with chemical delayed

coupling. Cogn Neurodyn 7:341–349

Gang H, Ditzinger T, Ning CZ, Haken H (1993) Stochastic resonance

without external periodic force. Phys Rev Lett 71:807–810

Geisler C, Brunel N, Wang XJ (2005) The contribution of intrinsic

membrane dynamics to fast network oscillations with irregular

neuronal discharges. J Neurophysiol 94:4344–4361

Golomb D (2007) Neuronal synchrony measures. Scholarpedia

2(1):1347

Golomb D, Rinzel J (1994) Clustering in globally coupled inhibitory

neurons. Phys D 72:259–282

Hindmarsh JL, Rose RM (1982) A model of the nerve impulse using

two first-order differential equations. Nature 296:162–164

Hindmarsh JL, Rose RM (1984) A model of neuronal bursting using

three coupled first order differential equations. Proc R Soc Lond

Ser B 221:87–102

Itovich GR, Moiola JL (2001) Characterization of static bifurcations

in the frequency domain. Int J Bifurc Chaos 11:677–688

Itovich GR, Moiola JL (2002) Characterization of dynamic bifurca-

tions in the frequency domain. Int J Bifurc Chaos 12:87–101

Ivanchenko MV, Osipov GV, Shalfeev VD, Kurths J (2004) Phase

synchronization in ensembles of bursting oscillators. Phys Rev

Lett 93:134101

Izhikevich EM (2006) Bursting. Scholarpedia 1(3):1300

Izhikevich EM (2007) Dynamical systems in neuroscience. MIT

Press, Cambridge

Kaper TJ, Kramer MA, Rotstein HG (2013) Introduction to focus

issue: rhythms and dynamic transitions in neurological disease:

modeling, computation, and experiment. Chaos 23:046001

Kim SY, Lim W (2013) Coupling-induced population synchroniza-

tion in an excitatory population of subthreshold Izhikevich

neurons. Cogn Neurodyn 7:495–503

Kim SY, Lim W (2014a) Realistic thermodynamic and statistical-

mechanical measures for neural synchronization. J Neurosci

Methods 226:161–170

Kim SY, Lim W (2014b) Thermodynamic order parameters and

statistical-mechanical measures for characterization of the burst

and spike synchronizations of bursting neurons. arXiv:1403.3994

[q-bio.NC]

Kim SY, Kim Y, Hong DG, Kim J, Lim W (2012) Stochastic bursting

synchronization in a population of subthreshold Izhikevich

neurons. J Korean Phys Soc 60:1441–1447

Lameu EL, Batista CAS, Batista AM, Larosz K, Viana RL, Lopes SR,

Kurths J (2012) Suppression of bursting synchronization in

clustered scale-free (rich-club) neural networks. Chaos 22:043149

Liang X, Tang M, Dhamala M, Liu Z (2009) Phase synchronization of

inhibitory bursting neurons induced by distributed time delays in

chemical coupling. Phys Rev E 80:066202

Longtin A (1997) Autonomous stochastic resonance in bursting

neurons. Phys Rev E 55:868–876

Meng P, Wang Q, Lu Q (2013) Bursting synchronization dynamics of

pancreatic b-cells with electrical and chemical coupling. Cogn

Neurodyn 7:197–212

Neiman A (2007) Coherence resonance. Scholarpedia 2(11):1442

Omelchenko I, Rosenblum M, Pikovsky A (2010) Synchronization of

slow-fast systems. Eur Phys J Spec Top 191:3–14

Pereira T, Baptista M, Kurths J (2007) Multi-time-scale synchroniza-

tion and information processing in bursting neuron networks.

Eur Phys J Spec Top 146:155–168

Rinzel J (1985) Bursting oscillations in an excitable membrane

model. In: Sleeman BD, Jarvis RJ (eds) Ordinary and partial

differential equations (Lecture notes in mathematics), vol 1151.

Springer, Berlin, pp 304–316

Rinzel J (1987) A formal classication of bursting mechanisms in

excitable systems. In: Teramoto E, Yamaguti M (eds) Mathe-

matical topics in population biology, morphogenesis, and

neurosciences (Lecture notes in biomathematics), vol 71.

Springer, Berlin, pp 267–281

Rose RM, Hindmarsh JL (1985) A model of a thalamic neuron. Proc
R Soc Lond Ser B 225:161–193

Rubin JE (2007) Burst synchronization. Scholarpedia 2(10):1666

San Miguel M, Toral R (2000) Stochastic effects in physical systems.

In: Martinez J, Tiemann R, Tirapegui E (eds) Instabilities and

nonequilibrium structures VI. Kluwer Academic Publisher,

Dordrecht, pp 35–130

Schultz SR (2007) Signal-to-noise ratio in neuroscience. Scholarpedia

2(6):2046

Shi X, Lu Q (2005) Firing patterns and complete synchronization of

coupled Hindmarsh–Rose neurons. Chin Phys 14:77–85

Shi X, Lu Q (2009) Burst synchronization of electrically and

chemically coupled map-based neurons. Phys A 388:2410–2419

Shilnikov A, Kolomiets M (2008) Methods of the qualitative theory

for the Hindmarsh–Rose model: a case study—a toturial. Int J

Bifurc Chaos 18:2141–2168

Shimazaki H, Shinomoto S (2010) Kernel band width optimization in

spike rate estimation. J Comput Neurosci 29:171–182

Sun X, Lei J, Perc M, Kurths J, Chen G (2011) Burst synchronization

transitions in a neuronal network of subnetworks. Chaos

21:016110

420 Cogn Neurodyn (2015) 9:411–421

123

Author's personal copy



Tanaka G, Ibarz B, Sanjuan MA, Aihara K (2006) Synchronization

and propagation of bursts in networks of coupled map neurons.

Chaos 16:013113

Torresi AM, Calandrini GL, Bonfili PA, Moiola JL (2012) Gener-

alized Hopf bifurcation in a frequency domain formulation. Int J

Bifurc Chaos 22:1250197

Traub RD, Whittington MA (2010) Cortical oscillations in health and

diseases. Oxford University Press, Oxford

Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders:

relevance for cognitive dysfunctions and pathophysiology.

Neuron 52:155–168

van Vreeswijk C, Hansel D (2001) Patterns of synchrony in neural

networks with adaptation. Neural Comput 13:959–992

Wang XJ (2003) Neural oscillations. In: Nadel L (ed) Encyclopedia of

cognitive science. MacMillan, London, pp 272–280

Wang XJ (2010) Neurophysiological and computational principles of

cortical rhythms in cognition. Physiol Rev 90:1195–1268
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