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Sparsely-synchronized cortical rhythms, associated with diverse cognitive functions, have been
observed in electric recordings of brain activity. At the population level, cortical rhythms exhibit
small-amplitude fast oscillations while at the cellular level, individual neurons show stochastic firings
sparsely at a much lower rate than the population rate. We study the effect of network architecture
on sparse synchronization in an inhibitory population of subthreshold Morris-Lecar neurons (which
cannot fire spontaneously without noise). Previously, sparse synchronization was found to occur
for cases of both global coupling (i.e., regular all-to-all coupling) and random coupling. However,
a real neural network is known to be non-regular and non-random. Here, we consider sparse
Watts-Strogatz small-world networks which interpolate between a regular lattice and a random
graph via rewiring. We start from a regular lattice with only short-range connections and then
investigate the emergence of sparse synchronization by increasing the rewiring probability p for
the short-range connections. For p = 0, the average synaptic path length between pairs of neurons
becomes long; hence, only an unsynchronized population state exists because the global efficiency of
information transfer is low. However, as p is increased, long-range connections begin to appear, and
global effective communication between distant neurons may be available via shorter synaptic paths.
Consequently, as p passes a threshold pth (� 0.044), sparsely-synchronized population rhythms
emerge. However, with increasing p, longer axon wirings become expensive because of their material
and energy costs. At an optimal value p∗

DE (� 0.24) of the rewiring probability, the ratio of the
synchrony degree to the wiring cost is found to become maximal. In this way, an optimal sparse
synchronization is found to occur at a minimal wiring cost in an economic small-world network
through trade-off between synchrony and wiring cost.
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I. INTRODUCTION

Recently, much attention has been paid to brain
rhythms in health and disease [1, 2]. Particularly, we
are interested in cortical rhythms, observed in awake
behaving states, which are associated with diverse cog-
nitive functions (e.g., sensory perception, feature inte-
gration, selective attention, and memory formation) [3].
At the population level, local field potential recordings
show synchronous small-amplitude fast oscillations [e.g.,
beta rhythm (15 - 30 Hz), gamma rhythm (30 - 100 Hz),
and sharp-wave ripple (100 - 200 Hz)], while spike trains
of individual neurons are typically stochastic and sparse
[4–6]. Thus, single-cell behavior differs markedly from
the population behavior. These sparsely-synchronized
rhythms are in contrast to the fully-synchronized large-
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amplitude slow rhythms observed in quiet sleep states
[7,8]. Fully-synchronized oscillations may occur in a net-
work of spiking suprathreshold neurons above a thresh-
old in the absence of noise or for weak noise. As is well
known, full synchronization may be well described in the
framework of conventional models of coupled oscillators
because individual neurons behave regularly as clocklike
oscillators and fire at the population frequency [9]. How-
ever, such coupled-oscillator models are not adequate
for describing sparse synchronization because individual
neurons fire stochastically and intermittently as Geiger
counters. Brunel et al. [10] developed a framework to
describe sparse synchronization by taking an opposite
view from that of coupled oscillators. Under the con-
dition of strong external noise, suprathreshold spiking
neurons (above a threshold) discharge stochastic firings
as Geiger counters which form an asynchronous popula-
tion state. This asynchronous state may be destabilized,
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and synchronous oscillation emerges when inhibitory re-
current feedback becomes sufficiently strong. For this
case, the average total (external excitatory plus recur-
rent inhibitory) input current into individual neurons is
subthreshold, but irregular and intermittent firings are
triggered when fluctuations (due to noise in the exter-
nal and the recurrent inputs) cross a threshold. Thus, a
sparsely-synchronized rhythm with stochastic and inter-
mittent discharges appears. In addition to suprathresh-
old neurons, subthreshold neurons below the threshold
(which cannot fire spontaneously without noise) also ex-
ist. These subthreshold neurons exhibit irregular and
intermittent firings in the presence of moderate noise.
Sparsely-synchronized rhythms are also found to emerge
via cooperation of noise-induced spikings of subthreshold
inhibitory neurons [11].

So far, sparse synchronization has been studied only
in all-to-all networks where every neuron is coupled to
every other neuron and in random networks [10,11]. In
a local cortical circuit, synaptic connections are known
to be sparse, and the connectivity has a complex topol-
ogy (e.g., small-worldness and scale-freeness) that is nei-
ther regular nor completely random [12–16]. Hence,
many recent studies on diverse subjects of neurodynam-
ics have been done in complex networks [17, 18] such
as small-world networks with predominantly local con-
nections and rare long-distance connections [19–31] and
scale-free networks with a few percent of hub neurons
with an exceptionally large number of connections [32–
36]. Here, we study sparse synchronization in the Watts-
Strogatz model for small-world networks which inter-
polates between short-range regular lattice and random
network via rewiring [37]. A sparse regular lattice with
only short-range connections has high clustering (i.e.,
high cliquishness of a typical neighborhood), and hence
local efficiency of information transfer becomes high [38].
However, due to long average synaptic path length (i.e.,
typical separation between two neurons represented by
average number of synapses between two neurons along
the minimal path), global efficiency of information trans-
fer becomes low [38], and hence occurrence of global syn-
chronization becomes difficult. On the other hand, a
sparse random network with poor clustering has a short
average path length, and hence global communication
between distant neurons becomes easily available. As in
[37], we start from a local regular lattice, increase the
rewiring probability p for the short-range connections,
and then long-range short-cuts that connect distant neu-
rons begin to appear. The average path length can be
dramatically decreased only by a few short-cuts, while
the clustering coefficient remains to be high. Thus, in
a range of small p small-world networks with short path
lengths and high clustering appear. Their topology is in-
termediate between regular lattice and random network.

This paper is organized as follows. In Sec. II, we
describe the biological small-world network consisting of
inhibitory subthreshold conductance-based Morris-Lecar
neurons whose synaptic coupling is modeled in terms of

synaptic kinetics controlled by GABAergic synaptic time
constants. By increasing the rewiring probability p, we
investigate emergence of sparsely synchronized rhythm
in Sec. III. For the regular connection of p = 0, the
global efficiency of information transfer is low due to long
average path length, and hence an unsynchronized pop-
ulation state exists. However, with increasing p, long-
range connections begin to appear, and global effective
communication between distant neurons may be avail-
able via shorter synaptic paths. Consequently, the un-
synchronized state is destabilized and then sparsely syn-
chronized population rhythm emerges when p passes a
threshold pth (� 0.044). However, as p is increased, the
network axon wiring length becomes longer due to long-
range connections. Longer axonal projections are expen-
sive due to their material and energy costs. Hence, we
must take into consideration the axon wiring economy for
the dynamical efficiency because wire economy is an im-
portant constraint of the brain evolution [3,12,23,39–44].
At an optimal value p∗DE (� 0.24) of the rewiring prob-
ability, a dynamical efficiency factor given by the ratio
of the synchrony degree to the axon wiring cost is found
to become maximal. In this way, an optimal sparse syn-
chronization is found to occur via compromise between
synchrony and wiring cost at a minimal wiring cost in
an economic small-world network. Finally, a summary is
given in Section IV.

II. SMALL-WORLD NETWORK OF
INHIBITORY SUBTHRESHOLD

MORRIS-LECAR NEURONS

We consider a small-world network of N sparsely-
coupled subthreshold neurons equidistantly placed on
a one-dimensional ring of radius N/2π. Here, we em-
ploy a directed Watts-Strogatz model for small-world
network which interpolates between short-range regular
lattice and random network via rewiring [37]. As an el-
ement in our neural system, we choose the conductance-
based Morris-Lecar (ML) neuron model with voltage-
gated ion channels, originally proposed to describe the
time-evolution pattern of the membrane potential for the
giant muscle fibers of barnacles [45,46]. The population
dynamics in this small-world neural network is governed
by a set of the following differential equations:

C
dvi

dt
= −Iion,i + IDC + Dξi − Isyn,i, (1a)

dwi

dt
= φ

(w∞(vi) − wi)
τR(vi)

, (1b)

dsi

dt
= αs∞(vi)(1 − si) − βsi, i = 1, · · · , N, (1c)

where

Iion,i = ICa,i + IK,i + IL,i (2a)
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= gCam∞(vi)(vi − VCa) (2b)
+ gKwi(vi − VK) + gL(vi − VL), Isyn,i

=
J

din
i

N∑
j(�=i)

wijsj(t)(vi − Vsyn), (2c)

m∞(v) = 0.5 [1 + tanh {(v − V1)/V2}] , (2d)
w∞(v) = 0.5 [1 + tanh {(v − V3)/V4}] , (2e)
τR(v) = 1/ cosh {(v − V3)/(2V4)} , (2f)

s∞(vi) = 1/[1 + e−(vi−v∗)/δ]. (2g)

Here, the state of the ith neuron at a time t (measured in
units of ms) is characterized by three state variables: the
membrane potential vi (measured in units of mV), the
slow recovery variable wi representing the activation of
the K+ current (i.e., the fraction of open K+ channels),
and the synaptic gate variable si denoting the fraction
of open synaptic ion channels. In Eq. (1a), C represents
the capacitance of the membrane of each neuron, and the
time evolution of vi is governed by four kinds of source
currents.

The total ionic current Iion,i of the ith neuron con-
sists of the calcium current ICa,i, the potassium current
IK,i, and the leakage current IL,i. Each ionic current
obeys Ohm’s law. The constants gCa, gK , and gL are
the maximum conductances for the ion and the leakage
channels, and the constants VCa, VK , and VL are the
reversal potentials at which each current is balanced by
the ionic concentration difference across the membrane.
Since the calcium current ICa,i changes much faster than
the potassium current IK,i, the gate variable mi for the
Ca2+ channel is assumed to always take its saturation
value m∞(vi). On the other hand, the activation variable
wi for the K+ channel approaches its saturation value
w∞(vi) with a relaxation time τR(vi)/φ, where τR has a
dimension of ms and φ is a (dimensionless) temperature-
like time scale factor.

Each ML neuron is also stimulated by using the com-
mon DC current IDC and an independent Gaussian white
noise ξi [see the 2nd and the 3rd terms in Eq. (1a)] sat-
isfying 〈ξi(t)〉 = 0 and 〈ξi(t) ξj(t′)〉 = δij δ(t− t′), where
〈· · · 〉 denotes the ensemble average. The noise ξ is a
parametric one that randomly perturbs the strength of
the applied current IDC , and its intensity is controlled
by using the parameter D.

The ML neuron may exhibit either type-I or type-
II excitability, depending on the system parameters
[46]. Throughout this paper, we consider the case of
type-II excitability where gCa = 4.4 mS/cm2, gK =
8 mS/cm2, gL = 2 mS/cm2, VCa = 120 mV, VK =
−84 mV, VL = −60 mV, C = 20 µF/cm2, φ = 0.04,
V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, and V4 =
30 mV. As IDC passes a threshold in the absence of
noise, each single type-II ML neuron begins to fire with
a nonzero frequency that is relatively insensitive to the
change in IDC [46,47]. Here, we consider the subthresh-
old case of IDC = 87 µA/cm2 where single neurons can-
not fire spontaneously without noise.

The last term in Eq. (1a) represents the synaptic cou-
pling of the network. Isyn,i of Eq. (2c) represents a
synaptic current injected into the ith neuron. The synap-
tic connectivity is given by the connection weight matrix
W (={wij}) where wij = 1 if the neuron j is presynaptic
to the neuron i; otherwise, wij = 0. Then, the in-degree
of the ith neuron, din

i (i.e., the number of synaptic in-
puts to the neuron i) is given by din

i =
∑N

j(�=i) wij . The
coupling strength is controlled by the parameter J , and
Vsyn is the synaptic reversal potential. The synaptic gate
variable s obeys the 1st-order kinetics of Eq. (1c) [48,49].
Here the normalized concentration of synaptic transmit-
ters, activating the synapse, is assumed to be an instan-
taneous sigmoidal function of the membrane potential
with a threshold v∗ in Eq. (2g), where we set v∗ = 0
mV and δ = 2 mV. The transmitter release occurs only
when the neuron emits a spike (i.e., its potential v is
larger than v∗).

Here, we consider the inhibitory synaptic coupling.
When the decay time of the synaptic interaction is
enough long, mutual inhibition (rather than excitation)
may synchronize neural firing activities [50, 51]. By
providing a coherent oscillatory output to the principal
cells, interneuronal networks play the role of the back-
bones of many brain oscillations [48,49,52–56]. In this
way, interneurons temporally coordinate principal neu-
ron activity and control input and output in principal
cells [1]. A majority of locally-connected interneurons
coordinate multiple operations in principal cells, while
a smaller fraction of long-range interneurons innervate
and coordinate all interneuron classes for generation of
global synchrony in interneuronal networks [12]. For the
inhibitory GABAergic synapse (involving the GABAA

receptors), the synaptic reversal potential is given by
Vsyn = −80 mV, the synaptic channel opening rate, cor-
responding to the inverse of the synaptic rise time τr,
is α = 10 ms−1, and the synaptic closing rate β, which
is the inverse of the synaptic decay time τd, is β = 0.1
ms−1 [57]. Hence, Isyn rises fast and decays slowly.

Numerical integration of Eq. (1) is done using the
Heun method [58] (with the time step ∆t = 0.01 ms), and
data for (vi, wi, si) (i = 1, . . . , N) are obtained with the
sampling time interval ∆t = 1 ms. For each realization
of the stochastic process in Eq. (1), we choose a random
initial point [vi(0), wi(0), si(0)] for the ith (i = 1, . . . , N)
neuron with uniform probability in the range of vi(0) ∈
(−70, 50), wi(0) ∈ (0.0, 0.6), and si(0) ∈ (0.0, 1.0).

III. EMERGENCE OF SPARSELY
SYNCHRONIZED RHYTHMS ON AN

ECONOMICAL SMALL-WORLD
NETWORK

In our previous works [11] for both cases of global and
random couplings, emergence of sparse synchronization
has been investigated by varying the noise intensity D in
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Fig. 1. Unsynchronized population state for p = 0: Plots
of raster plot of spikes and the global potential VG versus
time t for N = 103 in (a1) and (a2) [magnification of (a1)]
and for N = 104 in (b1) and (b2) [magnification of (b1)].
Synchronized population state for p = 0.2: Plots of raster plot
of spikes and the global potential VG versus time t for N = 103

in (c1) and (c2) [magnification of (c1)] and for N = 104 in
(d1) and (d2) [magnification of (d1)] in small-world networks
of N inhibitory subthreshold ML neurons for k = 50, IDC =
87, D = 20, and J = 3. Vertical dashed lines in (a2), (b2),
(c2), and (d2) represent the times at which local minima of
VG occur.

neural networks of inhibitory subthreshold ML neurons
interacting via real synapses modeled in terms of synap-
tic kinetics, and sparsely synchronized rhythms have thus
been found to appear in a finite range of noise intensity.
However, synaptic connections in real neural circuits are
known to be sparse, and the connectivity has complex
topology which is neither regular nor completely random
[12–16]. Hence, we are concerned about the effect of net-
work structure on sparse synchronization in small-world
networks which interpolate between the regular lattice
and the random graph.

We start with a directed regular ring lattice with N
conductance-based ML neurons where each ML neuron
is coupled to its first k neighbors (k/2 on either side) via
outward synapses, and rewire each outward connection
at random with probability p such that self-connections

and duplicate connections are excluded. Synaptic dy-
namics between ML neurons are described in terms of ki-
netics of synaptic gate variables controlled by GABAer-
gic synaptic time constants. Here, we consider a sparse
but connected network with a fixed value of k = 50.
Then, we can tune the network between regularity
(p = 0) and randomness (p = 1). In this way, we
investigate emergence of sparsely synchronized rhythm
in the directed Watts-Strogatz small-world network of
N inhibitory subthreshold ML neurons by varying the
rewiring probability p for IDC = 87 µA/cm2, D = 20
µA · ms1/2/cm2, and J = 3 mS/cm2. (Hereafter, for
convenience we omit the dimensions of IDC , D, and J .)

The topological properties of the network architecture
has already been well characterized in terms of the clus-
tering coefficient C(p) (local property) and the average
path length L(p) (global property) [37]. Here, the clus-
tering coefficient which represents the cliquishness of a
typical neighborhood in the network characterizes the
local efficiency of information transfer, while the aver-
age path length L(p) which denotes the typical separa-
tion between two vertices in the network characterize the
global efficiency of information transfer. The regular lat-
tice (p = 0) is highly clustered but large world where L
grows linearly with N , while the random graph (p = 1)
is poorly clustered but small world where L grows log-
arithmically with N [37]. As soon as p increases from
zero, L(p) decreases dramatically, which results in the
emergence of a small-world phenomenon (as in the ran-
dom graph) which is popularized by the phrase of the
six degrees of separation [59,60]. However, during this
dramatic drop in L(p), C(p) remains almost constant at
its value for the regular lattice. Consequently, for small
p small-world networks with high clustering and short
path lengths appear [37].

By increasing p, we now investigate the effect of the
network architecture on emergence of sparsely synchro-
nized rhythm. Collective spike synchronization may be
well visualized in the raster plot of neural spikes and
well described by using the (population-averaged) global
potential

VG(t) =
1
N

N∑
i=1

vi(t). (3)

In the thermodynamic limit (N → ∞), a population
state becomes synchronized if an oscillating global po-
tential VG appears. Otherwise (i.e., when VG is station-
ary), it becomes unsynchronized. Figure 1 shows the
raster plots of spikes and the global potential VG for
p = 0 and 0.2. By increasing N , we first investigate
the population state in the regular lattice for p = 0.
As shown in Fig. 1(a1) for N = 103, the raster plot
shows a zigzag pattern intermingled with inclined par-
tial stripes of spikes with diverse inclinations and widths,
and VG is composed of coherent parts with regular large-
amplitude oscillations and incoherent parts with irregu-
lar small-amplitude fluctuations; coherent and incoher-
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Fig. 2. Synchronous Transition. Plot of log10 O versus
p in small-world networks of N inhibitory subthreshold ML
neurons for k = 50, IDC = 87, D = 20, and J = 3.

ent parts are clearly shown in the magnified Fig. 1(a2).
For p = 0, the clustering coefficient is high, and hence
partial stripes (indicating local clustering of spikes) seem
to appear in the raster plot of spikes. As N is in-
creased to 104, the amplitude of VG becomes smaller,
and the duration of incoherent parts becomes longer [see
Fig. 1(b1)]. In the magnified Fig. 1(b2), partial stripes
become more inclined from the vertical, and hence spikes
become more difficult to keep pace with each other. As
a result, VG shows a noisy fluctuations with smaller am-
plitudes. Hence the population state for p = 0 seems to
be unsynchronized because VG tends to be nearly sta-
tionary as N increases to the infinity. As p is increased,
long-range short-cuts begin to appear, and hence charac-
teristic path length becomes shorter. Consequently, for
sufficiently large p we expect emergence of synchronized
population state because global efficiency of information
transfer becomes better. As an example, we consider
the case of p = 0.2. For N = 103, VG shows a regular
oscillation, as shown in Fig. 1(c1) and 1(c2). Its ampli-
tudes are much larger than that for the case of p = 0,
although there is a little variation in the amplitude. To
understand the behavior of VG better, we look into the
magnified raster plot of spikes in Fig. 1(c2). We note that
the raster plot of spikes is composed of nearly vertically-
aligned partial stripes in each oscillating cycle (i.e., the
degree of zigzagness for partial stripes is much reduced),
in contrast to the p = 0 case. A little zigzagness is
shown in the partial stripes near t = 1300 ms, unlike
the case near t = 2000 ms, and hence the amplitude
of VG near t = 2000 ms becomes larger than that near
t = 1300 ms. We next examine the behavior of VG for
N = 104. As shown in Fig. 1(d1), VG shows regular oscil-
lations, and the amplitudes in each oscillating cycle are
nearly the same, in contrast to the case of N = 103. In
each oscillating cycle, partial stripes are nearly vertically
aligned, and hence the zigzagness degree is nearly the
same. Hence, VG displays more regular oscillations with
nearly the same amplitudes. Consequently, the popula-
tion state for p = 0.2 seems to be synchronized because
VG tend to show regular oscillations as N goes to the
infinity.

As is well known, the mean square deviation of the

Fig. 3. Sparsely synchronized states for various values of p.
Raster plots of neural spikes versus t in (a1)-(a5), plots of VG

versus t in (b1)-(b5), power spectra in (c1)-(c5) (each power
spectrum of VG is calculated with 213 data), distribution of
single cell firing rates across the population in (d1)-(d5) (fir-
ing rates of individual neurons are calculated through 104 ms
time-averaging and the bin size for the histogram is 0.5 Hz),
and interspike intervals (ISIs) histogram in (e1)-(e5) (each
ISI histogram is composed of 5×104 ISIs and the bin size for
the histogram is 5 ms) in small-world networks of N (= 103)
inhibitory subthreshold ML neurons for k = 50, IDC = 87,
D = 20, and J = 3. Vertical dashed lines in (e1)-(e5) denote
integer multiples of the global period TG (� 56 ms).

global potential VG (i.e., time-averaged fluctuations of
VG),

O ≡ (VG(t) − VG(t))2, (4)

where the overbar represents the time average, plays
the role of an order parameter used for describing the
synchrony-asynchrony transition [61]. For the synchro-
nized (unsynchronized) state, the order parameter O ap-
proaches a non-zero (zero) limit value as N goes to the
infinity. Figure 2 shows a plot of the order parameter
versus the rewiring parameter p. For p < pth (� 0.044),
unsynchronized states exist because the order parameter
O tends to zero as N → ∞. As p passes the thresh-
old pth, a synchronous transition occurs because the val-
ues of O become saturated to non-zero limit values for
N ≥ 3 · 103. These synchronized states seem to appear
because global efficiency of information transfer between
distant neurons for p > pth become enough for emergence
of population synchronization.

We now examine the population and individual behav-
iors of synchronized states for various values of p > pth.
By varying p, we characterize both the population be-
haviors in terms of their global potential VG and their



Sparsely-synchronized Brain Rhythm in a Small-world Neural Network – Sang-Yoon Kim and Woochang Lim -109-

power spectra and the individual behaviors in terms of
the firing-rate distribution of individual neurons. By
comparing the population and individual behaviors, one
can understand sparsely synchronized states well. As
shown in Figs. 3(a1)-(a5) and Figs. 3(b1)-(b5), the zigza-
gness degree of partial stripes in the raster plots of spikes
becomes reduced as p is increased, and eventually for
p = pmax (∼ 0.5), the raster plot becomes composed of
vertical stripes without zigzag, and then the pacing de-
gree between spikes becomes nearly the same. Hence,
the amplitude of VG increases up to pmax, and then its
value becomes saturated. Figures 3(c1)-(c5) show power
spectra of VG with peaks at population frequencies fp

(� 18) Hz. Hence, the population oscillations correspond
to beta rhythms. In contrast to population rhythm, in-
dividual neurons discharge intermittent and stochastic
spikings as Geiger counters. As shown in Figs. 3(d1)-
(d5) the average spiking frequency of individual neurons
is about 2 Hz, and hence each neuron makes an aver-
age firing very sparsely once during 9 population cycles.
To further investigate the individual behaviors, we col-
lect 5× 104 interspike intervals (ISIs) from all individual
neurons and get the ISI histograms which are shown in
Figs. 3(e1)-(e5). Multiple peaks appear at multiples of
the period TG (= 1/fG � 56 ms) of the global potential
VG. However, due to appearance of preparatory cycles,
the 1st peak of the histogram (which is the highest one)
appears at 2 TG (not TG) [11]. Hence, individual neurons
fire mostly in alternate global cycles. In this way, indi-
vidual neurons exhibit stochastic phase locking leading
to stochastic spike skipping (i.e., intermittent spikings
phase-locked to VG at random multiples of the period of
VG). Consequently, for p > pth sparsely synchronized
rhythms emerge.

With increasing p above pth, synchrony degree is in-
creased because global efficiency of information transfer
becomes better. However, as p is increased, the net-
work axon wiring length becomes longer due to long-
range short-cuts. Longer axonal connections are expen-
sive because of material and energy costs. Hence, in view
of dynamical efficiency we search for optimal population
rhythm emerging at a minimal wiring cost. An opti-
mal rhythm may emerge through tradeoff between the
synchrony degree and the wiring cost. We first measure
the synchrony degree by using a statistical-mechanical
spike-based synchronization measure introduced in our
previous works [11]. As shown in Figs. 3(a1)-(a5), popu-
lation synchronization may be well visualized in a raster
plot of spikes. For a synchronized case, the raster plot is
composed of partially-occupied stripes (indicating sparse
synchronization). To measure the degree of the popula-
tion synchronization seen in the raster plot, a spike-based
measure M was introduced by considering the occupa-
tion pattern and the pacing pattern of the spikes in the
stripes [11]. The spiking coherence measure Mi of the
ith stripe is defined by the product of the occupation
degree Oi of spikes (representing the density of the ith
stripe) and the pacing degree Pi of spikes (denoting the

smearing of the ith stripe):

Mi = Oi · Pi. (5)

The occupation degree Oi in the ith stripe is given by
the fraction of spiking neurons:

Oi =
N

(s)
i

N
, (6)

where N
(s)
i is the number of spiking neurons in the ith

stripe. For sparse synchronization, Oi < 1, while for full
synchronization, Oi = 1. The pacing degree Pi of each
microscopic spike in the ith stripe can be determined in
a statistical-mechanical way by taking into consideration
its contribution to the macroscopic global potential VG.
Each global cycle of VG begins from its left minimum,
passes the central maximum, and ends at the right mini-
mum; the central maxima coincide with centers of stripes
in the raster plot [see Figs. 3(a1)-(a5)]. An instantaneous
global phase Φ(t) of VG is introduced via linear interpo-
lation in the two successive subregions forming a global
cycle. The global phase Φ(t) between the left minimum
(corresponding to the beginning point of the ith global
cycle) and the central maximum is given by

Φ(t) = 2π(i − 3/2) + π

(
t − t

(min)
i

t
(max)
i − t

(min)
i

)
(7)

for t
(min)
i ≤ t < t

(max)
i (i = 1, 2, 3, . . . ),

and Φ(t) between the central maximum and the right
minimum (corresponding to the beginning point of the
(i + 1)th cycle) is given by

Φ(t) = 2π(i − 1) + π

(
t − t

(max)
i

t
(min)
i+1 − t

(max)
i

)
(8)

for t
(max)
i ≤ t < t

(min)
i+1 (i = 1, 2, 3, . . . ),

where t
(min)
i is the beginning time of the ith global cycle

(i.e., the time at which the left minimum of VG appears
in the ith global cycle) and t

(max)
i is the time at which the

maximum of VG appears in the ith global cycle. Then,
the contribution of the kth microscopic spike in the ith
stripe occurring at the time t

(s)
k to VG is given by cos Φk,

where Φk is the global phase at the kth spiking time
[i.e., Φk ≡ Φ(t(s)k )]. A microscopic spike makes the most
constructive (in-phase) contribution to VG when the cor-
responding global phase Φk is 2πn (n = 0, 1, 2, . . . ) while
it makes the most destructive (anti-phase) contribution
to VG when Φi is 2π(n − 1/2). By averaging the contri-
butions of all microscopic spikes in the ith stripe to VG,
we obtain the pacing degree of spikes in the ith stripe:

Pi =
1
Si

Si∑
k=1

cos Φk, (9)
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Fig. 4. Emergence of optimally sparsely synchronized
rhythm in an economic small-world network. (a) Plot of the
average occupation degree 〈Oi〉 versus p. (b) Plot of the av-
erage pacing degree 〈Pi〉 versus p. (c) Plot of the synchrony
measure M and normalized wiring length λ versus p. (d) Dy-
namical efficiency η versus p. (e) Raster plot of neural spikes
and plot of VG versus t at an optimal value p∗

DE (� 0.24) in
small-world networks of N (= 103) inhibitory subthreshold
ML neurons for k = 50, IDC = 87, D = 20, and J = 3.

where Si is the total number of microscopic spikes in the
ith stripe. By averaging Mi of Eq. (5) over a sufficiently
large number Ns of stripes, we obtain the spike-based
coherence measure M :

M =
1

Ns

Ns∑
i=1

Mi. (10)

By varying p, we follow 3× 103 stripes and character-
ize sparse synchronization in terms of 〈Oi〉 (average oc-
cupation degree), 〈Pi〉 (average pacing degree), and the
spiking measure M for 14 values of p in the sparsely syn-
chronized region, and the results are shown in Figs. 4(a)-
(c). We note that the average occupation degree 〈Oi〉
(denoting the average density of stripes in the raster
plot) is nearly the same (〈Oi〉 � 0.11), independently
of p; only a fraction (about 1/9) of the total neurons
fire in each stripe [see Figs. 3(a1)-(a5)]. This partial
occupation in the stripes results from stochastic spike
skipping of individual neurons and is seen well in the
multi-peaked ISI histograms [see Figs. 3(e1)-(e5)]. The
average occupation degree (〈Oi〉 � 0.11) implies that in-
dividual neurons fire about once during the nine global
cycles, which agrees well with the average firing rates
(� 2 Hz) of individual neurons shown in Figs. 3(d1)-(d5).

Hence, the average occupation degree 〈Oi〉 characterize
the sparseness degree of population synchronization well.
On the other hand, with increasing p, the average pac-
ing degree 〈Pi〉 increases rapidly due to appearance of
long-range connections. However, the value of 〈Pi〉 sat-
urates for p = pmax (∼ 0.5) because long-range short-
cuts which appear up to pmax play sufficient role to get
maximal pacing degree. Figure 4(c) shows the spiking
measure M (taking into consideration both the occupa-
tion pattern and the pacing pattern of spikes) versus p.
As in the case of 〈Pi〉, M makes a rapid increase up to
p = pmax, because 〈Oi〉 is nearly independent of p. M(p)
is nearly equal to 〈Pi〉 /9 because of the sparse occupa-
tion [〈Oi〉 � 0.11]. We next calculate the wiring length
by varying p on a ring of radius R (=N/2π) where neu-
rons are placed equidistantly. The axonal wiring length,
Λij , between neuron i and neuron j is given by the arc
length between two vertices i and j on the ring:

Λij =
{ |j − i| for |j − i| ≤ N

2
N − |j − i| for |j − i| > N

2 .
(11)

Then, the total wiring length is:

Λtotal =
N∑

i=1

N∑
j=1(j �=i)

aij · Λij , (12)

where aij is the ij element of the adjacency matrix A
of the network. The connection between vertices in the
network is represented by its N ×N adjacency matrix A
(= {aij}) whose element values are 0 or 1. If aij = 1,
then an edge from the vertex i to the vertex j exists;
otherwise no such edges exists. This adjacency matrix
A corresponds to the transpose of the connection weight
matrix W in Sec. II. We get a normalized wiring length λ

by dividing Λtotal with Λ(global)
total [=

∑N
i=1

∑N
j=1(j �=i) Λij ]

which is the total wiring length for the global-coupled
case:

λ =
Λtotal

Λ(global)
total

. (13)

Plot of λ versus p is shown in Fig. 4(c). It increases
linearly with respect to p. Hence, with increasing p,
the wiring cost becomes expensive, while the synchrony
degree increases. An optimal rhythm may emerge via
tradeoff between the synchrony degree M and the wiring
cost. To this end, a dynamical efficiency η is introduced
in [12]:

η =
Synchrony Degree (M)

Normalized Wiring Length (λ)
. (14)

Figure 4(d) shows plot of η versus p. For p = p∗DE
(� 0.24), an optimal rhythm is found to emerge at a
minimal wiring cost in an economic small-world net-
work. Optimally sparsely synchronized rhythm is shown
in Fig. 4(e). Since the economical small-world network
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Fig. 5. Sparsely synchronized states for various values of
D when p = 0.24. Raster plots of neural spikes versus t in
(a1)-(a5), plots of VG versus t in (b1)-(b5), power spectra in
(c1)-(c5) (each power spectrum of VG is calculated with 213

data), and distribution of single cell firing rates across the
population in (d1)-(d5) (firing rates of individual neurons are
calculated through 104 ms time-averaging and the bin size for
the histogram is 0.5 Hz) in small-world networks of N (= 103)
inhibitory subthreshold ML neurons for k = 50, IDC = 87,
J = 3, and p = 0.24.

has a moderate clustering coefficient C(p∗DE) (= 0.31),
the raster plot of spikes shows a zigzag pattern due to
local clustering of spikes, and VG exhibits a regular os-
cillation at a population frequency fG (= 18 Hz).

So far, we consider the case of noise intensity of
D = 20. To examine the robustness of the sparsely syn-
chronized rhythm for D = 20, we fix the value of the
rewiring probability p at p = p∗DE (= 0.24), and study
emergence of sparsely synchronized rhythm by varying
D. Through calculation of the order parameter O of
Eq. 4, sparsely synchronized is found to exist in a finite
range of intermediate noise intensity (8.5 < D < 37), as
in our previous works [11] for both cases of global and
random couplings. When passing the lower threshold
value (D � 8.5) population synchronization occurs due
to a constructive role of noise, while such population
synchronization breaks up due to a destructive role of
noise when passing the higher threshold value (D � 37).
Figures 5 (a1)-(a2) and Figs. 5(b1)-(b2) show the raster
plots of spikes and the global potentials VG for various
values of D in the synchronized region. Stripes in the
raster plots and oscillating VG show sparsely synchro-
nized states. The population frequencies of the synchro-
nized rhythms for D = 10, 15, 20, 25, and 30 are 16, 17,
18, 19, and 19Hz, respectively, as shown in Figs. 5(c1)-
(c5). On the other hand, average firing rates of indi-
vidual neurons for D = 10, 15, 20, 25, and 30 are 1.4, 2,
2, 2.3, and 2.6Hz, respectively, as shown in Figs. 5(d1)-
(d5), which are much less than the population frequen-
cies. Consequently, sparsely synchronized rhythms ap-

pear in a finite range of noise intensity D, as in both
cases of global and random couplings [11].

IV. SUMMARY

We have investigated the effect of network architec-
ture on emergence of sparsely synchronized rhythm by
increasing the rewiring probability p in a small-world
network of inhibitory subthreshold conductance-based
ML neurons interacting via real synapses modeled in
terms of kinetics coordinated by the GABAergic synap-
tic time constants. For p = 0, global efficiency of in-
formation transfer is low because of long synaptic path
length, and hence an unsynchronized state appears. As
p is increased, long-range connections begin to appear,
and then average path length becomes shorter. When
passing a critical value pth (= 0.044), the unsynchro-
nized state becomes destabilized and a sparsely synchro-
nized rhythm emerges. This dynamical critical value,
pth, is determined through calculation of the dynami-
cal order parameter. For a synchronized case, the raster
plot of neural spikes shows a zigzag pattern intermingled
with inclined partial stripes which seem to appear due
to high local clustering, and an ensemble-averaged small-
amplitude potential VG is found to oscillate with popu-
lation frequency of 18 Hz. However, individual neurons
discharge spikes irregularly at low rates (∼ 2 Hz) which
is much lower than the population frequency. With in-
creasing p, the zigzag degree of partial stripes decreases
in the raster plot (i.e., the inclination of partial stripes
from the vertical line becomes smaller), and hence the
synchrony degree between spikes (i.e., amplitude of VG)
increases. For p = pmax (∼ 0.5), the raster plot becomes
composed of vertical stripes without zigzag, and then the
synchrony degree reaches a saturated peak value. This
kind of sparse synchronization is well characterized in
terms of the average occupation degree, the pacing de-
gree, and the synchrony degree introduced in our pre-
vious works [11]. On the other hand, as p is increased
network axon wiring length becomes longer because more
long-range connections appear. Hence, wiring economy
must be taken into consideration for dynamical efficiency.
A ratio of the synchrony degree to the geometrical wiring
cost is found to be maximal at a dynamical-efficiency
critical value p∗DE (� 0.24) (less than pmax). For this
case, an optimally sparsely synchronized rhythm is found
to emerge at a minimal wiring cost in an economic small-
world network. Finally, we also examined the noise effect
on sparse synchronization for p = p∗DE . Thus, partially
synchronized rhythms are found to appear in a finite
range of intermediate noise intensity, as in both cases
of global and random couplings [11].
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