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Abstract
We are concerned about burst synchronization (BS), related to neural information processes in health and disease, in the

Barabási–Albert scale-free network (SFN) composed of inhibitory bursting Hindmarsh–Rose neurons. This inhibitory

neuronal population has adaptive dynamic synaptic strengths governed by the inhibitory spike-timing-dependent plasticity

(iSTDP). In previous works without considering iSTDP, BS was found to appear in a range of noise intensities for fixed

synaptic inhibition strengths. In contrast, in our present work, we take into consideration iSTDP and investigate its effect

on BS by varying the noise intensity. Our new main result is to find occurrence of a Matthew effect in inhibitory synaptic

plasticity: good BS gets better via LTD, while bad BS get worse via LTP. This kind of Matthew effect in inhibitory

synaptic plasticity is in contrast to that in excitatory synaptic plasticity where good (bad) synchronization gets better

(worse) via LTP (LTD). We note that, due to inhibition, the roles of LTD and LTP in inhibitory synaptic plasticity are

reversed in comparison with those in excitatory synaptic plasticity. Moreover, emergences of LTD and LTP of synaptic

inhibition strengths are intensively investigated via a microscopic method based on the distributions of time delays between

the pre- and the post-synaptic burst onset times. Finally, in the presence of iSTDP we investigate the effects of network

architecture on BS by varying the symmetric attachment degree l� and the asymmetry parameter Dl in the SFN.
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Introduction

Recently, population synchronization of bursting neurons

has attracted much attention in many aspects (Elson et al.

1998; Stern et al. 1998; Varona et al. 2001; van Vreeswijk

and Hansel 2001; Dhamala et al. 2004; Ivanchenko et al.

2004; Shilnikov and Cymbalyuk 2005; Shi and Lu

2005, 2009; Tanaka et al. 2006; Pereira et al. 2007; Batista

et al. 2007, 2009, 2010, 2012; Lameu et al. 2012; Wang

et al. 2009, 2011a, b, 2013; Sun et al. 2011; Yu et al. 2011;

Duan et al. 2013; Meng et al. 2013; Hrg 2013; Prado et al.

2014; Ferrari et al. 2015; Ngouonkadi et al. 2016; Rostami

and Jafari 2018). There are several representative examples

of bursting neurons such as intrinsically bursting neurons

and chattering neurons in the cortex (Connors and Gutnick

1990; Gray and McCormick 1996), thalamic relay neurons

and thalamic reticular neurons in the thalamus (Llinás and

Jahnsen 1982; McCormick and Huguenard 1992; Lee et al.

2007), hippocampal pyramidal neurons (Su et al. 2001),

Purkinje cells in the cerebellum (Womack and Khodakhah

2002), pancreatic b-cells (Chay and Keizer 1983; Pernar-

owski et al. 1992; Kinard et al. 1999), and respiratory

neurons in pre-Botzinger complex (Del Negro et al. 1998;

Butera et al. 1999). As is well known, burstings occur

when neuronal activity alternates, on a slow timescale,

between a silent phase and an active (bursting) phase of

fast repetitive spikings (Rinzel 1985, 1987; Izhikevich

2000; Coombes and Bressloff 2005; Izhikevich

2006, 2007). Due to a repeated sequence of spikes in the

bursting, there are many hypotheses on the importance of

bursting activities in neural computation (Lisman 1997;

Izhikevich et al. 2003; Krahe and Gabbian 2004;
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Izhikevich 2004, 2006); for example, (a) bursts are nec-

essary to overcome the synaptic transmission failure,

(b) bursts are more reliable than single spikes in evoking

responses in post-synaptic neurons, (c) bursts evoke long-

term potentiation/depression (and hence affect synaptic

plasticity much greater than single spikes), and (d) bursts

can be used for selective communication between neurons.

Here, we are interested in burst synchronization (BS)

(i.e., synchrony on the slow bursting timescale) which

characterizes temporal coherence between the (active

phase) burst onset times (i.e., times at which burstings start

in active phases). This type of BS is associated with neural

information processes in health and disease. For example,

large-scale BS (called the sleep spindle oscillation of

7–14 Hz) has been found to occur through interaction

between the excitatory thalamic relay cells and the inhi-

bitory thalamic reticular neurons in the thalamus during the

early stage of slow-wave sleep (Steriade et al. 1993; Baz-

henov and Timofeev 2006). These sleep spindle oscilla-

tions are involved in memory consolidation (Gais et al.

2000; Sejnowski and Destexhe 2000). On the other hand,

BS is also correlated to abnormal pathological rhythms,

associated with neural diseases such as movement disorder

(Parkinson’s disease and essential tremor) (Bevan et al.

2002; Uhlhaas and Singer 2006; Brown 2007; Hammond

et al. 2007; Park et al. 2010) and epileptic seizure (Fisher

et al. 2005; Uhlhaas and Singer 2006). For the case of the

Parkinson’s disease hypokinetic motor symptoms (i.e.,

slowness and rigidity of voluntary movement) are closely

associated with BS occurring in the beta band of 10–30 Hz

range in the basal ganglia, while the hyperkinetic motor

symptom (i.e., resting tremor) is related to BS in the theta

band of 3–10 Hz.

In real brains, synaptic strengths may change for adap-

tation to the environment [i.e., they can be potentiated

(Kornoski 1948; Hebb 1949; Shatz 1992) or depressed

(Stent 1973; von der Malsburg 1973; Sejnowski 1977;

Bienenstock et al. 1982)]. These adjustments of synapses

are called the synaptic plasticity which provides the basis

for learning, memory, and development (Abbott and Nel-

son 2000). Such synaptic plasticity is taken into consider-

ation in the present work. As to the synaptic plasticity, we

consider a spike-timing-dependent plasticity (STDP) (Song

et al. 2000; Bi and Poo 2001; Kepecs et al. 2002; Dan and

Poo 2004, 2006; Caporale and Dan 2008; Feldman 2012;

Markram et al. 2012). For the STDP, the synaptic strengths

vary via an update rule depending on the relative time

difference between the pre- and the post-synaptic burst

onset times. Many models for STDP have been employed

to explain results on synaptic modifications occurring in

diverse neuroscience topics for health and disease such as

temporal sequence learning (Abbott and Blum 1996),

temporal pattern recognition (Feldman 2000), coincidence

detection (Gerstner et al. 1996), navigation (Blum and

Abbott 1996), direction selectivity (Mehta and Wilson

2000), memory consolidation (Ji and Wilson 2007), com-

petitive/selective development (Song and Abbott 2001),

and deep brain stimulation (Lourens et al. 2015; Grado

et al. 2015). Recently, the effects of STDP on population

synchronization in ensembles of coupled neurons were also

studied in various aspects (Popovych and Tass 2012;

Popovych et al. 2013; Borges et al. 2016, 2017a; Kim and

Lim 2018a, b, c, d).

Here, we study emergence of BS in a scale-free network

(SFN) of inhibitory bursting neurons. In the absence of

synaptic plasticity (i.e., coupling strengths are static), BS

has been found to appear in a range of noise intensity D for

a fixed coupling strength (Kim and Lim 2016). As D is

increased from 0, the degree of BS decreases due to a

destructive role of noise to spoil the BS, and when passing

a threshold a transition from BS to desynchronization

occurs. In contrast to the previous work, we now take into

consideration the synaptic plasticity, and then the inhibi-

tory population has adaptive dynamic synaptic strengths

governed by the inhibitory spike-timing-dependent plas-

ticity (iSTDP). Studies of synaptic plasticity have been

mainly focused on excitatory-to-excitatory (E-to-E)

synaptic connections between excitatory pyramidal cells

(Gerstner et al. 1996; Markram et al. 1997; Bi and Poo

1998; Debanne et al. 1998; Zhang et al. 1998; Egger et al.

1999; Feldman 2000; Tzounopoulos et al. 2004; Witten-

berg and Wang 2006). An asymmetric Hebbian time win-

dow was employed for the excitatory STDP (eSTDP)

update rule (Song et al. 2000; Bi and Poo 2001; Kepecs

et al. 2002; Dan and Poo 2004, 2006; Caporale and Dan

2008; Feldman 2012; Markram et al. 2012). When a pre-

synaptic spiking precedes a post-synaptic spiking, long-

term potentiation (LTP) occurs; otherwise, long-term

depression (LTD) appears. On the other hand, plasticity of

inhibitory connections has attracted less attention mainly

due to experimental obstacles and diversity of inhibitory

interneurons (Gaiarsa et al. 2002; Lamsa et al. 2010;

Kullmann et al. 2012; Vogels et al. 2013; Froemke 2015).

Along with the advent of fluorescent labeling and optical

manipulation of neurons according to their genetic types

(Deisseroth et al. 2006; Cardin 2012), inhibitory plasticity

has also begun to be focused. Particularly, studies on

iSTDP of inhibitory-to-excitatory (I to E) connections have

been made. Thus, iSTDP has been found to be diverse and

cell-specific (Soto-Trevino et al. 2001; Gaiarsa et al. 2002;

Woodin et al. 2003; Haas et al. 2006; Talathi et al. 2008;

Lamsa et al. 2010; Vogels et al. 2011, 2013; Castilo et al.

2011; Kullmann et al. 2012; Froemke 2015; Borges et al.

2017b).

In this paper, we consider an inhibitory Barabási–Albert

SFN consisting of bursting neurons (Barabási and Albert
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1999; Albert and Barabási 2002), and investigate the effect

of iSTDP [of inhibitory-to-inhibitory (I to I) connections]

on BS by varying the noise intensity D. As mentioned

above, previous studies on iSTDP have been focused

mainly on the case of inhibitory-to-excitatory (I to E)

connections. Even in this case of I to E iSTDP, time

windows for the iSTDP rule vary depending on the target

pyramidal cells [e.g., delayed Hebbian time window (Haas

et al. 2006; Talathi et al. 2008) for the pyramidal cells in

the entorhinal cortex and symmetric time window (Woodin

et al. 2003) for the pyramidal cells in the CA1 hip-

pocampus]. In our present work, we consider the I to I

iSTDP; the target neuron is inhibitory, in contrast to the

above excitatory case. Recently, such I to I iSTDP has been

studied in works (Popovych and Tass 2012; Lourens et al.

2015; Grado et al. 2015) where the anti-Hebbian time

window was used for the I to I iSTDP. Following them, we

also employ the anti-Hebbian time window for studying the

effect of I to I iSTDP on BS. As the time is increased,

strengths of synaptic inhibition fJijg are changed, and

eventually, they approach saturated limit values after a

sufficiently long time. Depending on D, mean values of

saturated synaptic inhibition strengths fJ�ijg are potentiated

[long-term potentiation (LTP)] or depressed [long-term

depression (LTD)], in comparison with the initial mean

value of synaptic inhibition strengths. In contrast, standard

deviations from the mean values of LTP/LTD are much

increased, when compared with the initial dispersion,

independently of D. Both the mean value and the standard

deviation (for the distribution of synaptic inhibition

strengths) may affect BS. The LTD (LTP) tends to increase

(decrease) the degree of BS due to decrease (increase) in

the mean value of synaptic inhibition strengths, and the

increased standard deviations have a tendency to decrease

the degree of BS. In most range of D with LTD, good BS

(with higher bursting measure) gets better because the

effect of mean LTD is dominant in comparison with the

effect of increased standard deviation. In contrast, in the

range of D with LTP, bad BS (with lower bursting mea-

sure) gets worse due to the effects of both LTP and

increased standard deviation. We note that this effect is

similar to the Matthew effect in the sociology of science

(Merton 1968); the rich get richer and the poor get poorer.

Hence, for our case, we call the effect of iSTDP on BS as

the Matthew effect in inhibitory synaptic plasticity (Kim

and Lim 2018d), in addition to the Matthew effect in

excitatory synaptic plasticity in previous works (Kim and

Lim 2018a, b, c). This type of Matthew effect in inhibitory

synaptic plasticity is in contrast to that in excitatory

synaptic plasticity where good (bad) synchronization gets

better (worse) via LTP (LTD) (Kim and Lim 2018a, b, c).

We note that the role of LTD (LTP) in the case of iSTDP is

similar to that of LTP (LTD) for the case of eSTDP.

Emergences of LTD and LTP of synaptic inhibition

strengths are also investigated through a microscopic

method based on the distributions of time delays between

the nearest burst onset times of the pre- and the post-sy-

naptic neurons. Furthermore, in the presence of iSTDP we

study the effects of network architecture on BS for a fixed

value of D by varying the symmetric attachment degree l�

and the asymmetry parameter Dl in the SFN. Like the

above case of variation in D, Matthew effects in inhibitory

synaptic plasticity are also found to occur by varying l� and

Dl.
For the sake of clearness, we also make a brief summary

of new main results in our present work. In a previous work

(Kim and Lim 2016), BS was found to occur in a range of

noise intensities for static synaptic inhibition strengths.

However, in real brains, synaptic strengths may change for

adaptation to the environment (i.e., they may be potentiated

or depressed); these adjustments of synapses are called the

synaptic plasticity. In our present work, we take into con-

sideration the iSTDP and investigate its effect on BS by

varying the noise intensity, in contrast to the previous

works without considering iSTDP. Our new main finding is

occurrence of the Matthew effect in inhibitory synaptic

plasticity: good BS gets better via LTD, while bad BS get

worse via LTP. This type of Matthew effect in inhibitory

synaptic plasticity is in contrast to the Matthew effect in

excitatory synaptic plasticity (Kim and Lim 2018a, b, c)

where good (bad) synchronization gets better (worse) via

LTP (LTD). We note that, due to inhibition, the roles of

LTD and LTP in inhibitory synaptic plasticity are reversed

in comparison with those in excitatory synaptic plasticity.

Furthermore, our results on the effect of iSTDP on BS are

also expected to be useful for understanding the basis for

not only the fundamental brain function (e.g., learning,

memory, and development) (Abbott and Blum 1996; Ji and

Wilson 2007; Song and Abbott 2001), but also neural

diseases (e.g., Parkinsons disease and epilepsy) (Bevan

et al. 2002; Fisher et al. 2005; Uhlhaas and Singer 2006;

Brown 2007; Hammond et al. 2007; Park et al. 2010).

This paper is organized as follows. In ‘‘Scale-free net-

work of inhibitory bursting Hindmarsh–Rose neurons’’

section, we describe an inhibitory Barabási–Albert SFN of

bursting neurons with inhibitory synaptic plasticity. Then,

in ‘‘Effects of inhibitory STDP on burst synchronization’’

section we investigate the effects of iSTDP on BS. Finally,

a summary is given in ‘‘Summary’’ section.
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Scale-free network of inhibitory bursting
Hindmarsh–Rose neurons

Synaptic connectivity in brain networks has been found to

have complex topology which is neither regular nor com-

pletely random (Sporns et al. 2000; Buzsáki et al. 2004;

Chklovskii et al. 2004; Song et al. 2005; Bassett and

Bullmore 2006; Sporns and Honey 2006; Larimer and

Strowbridge 2008; Bullmore and Sporns 2009; Sporns

2011). Particularly, brain networks have been found to

exhibit power-law degree distributions (i.e., scale-free

property) in the rat hippocampal networks (Morgan and

Soltesz 2008; Bonifazi et al. 2009; Wiedemann 2010; Li

et al. 2010) and the human cortical functional network

(Eguı́luz et al. 2005). Furthermore, robustness against

simulated lesions of mammalian cortical anatomical net-

works (Felleman and Van Essen 1991; Young 1993; Young

et al. 1994; Scannell et al. 1995, 1999; Sporns et al. 2004)

has also been found to be most similar to that of an SFN

(Kaiser et al. 2007). Many recent works on various subjects

of neurodynamics (e.g., coupling-induced BS, delay-in-

duced BS, and suppression of BS) have been done in SFNs

with a few percent of hub neurons with an exceptionally

large number of connections (Batista et al.

2007, 2009, 2010; Wang et al. 2009, 2011b; Ferrari et al.

2015).

We consider an inhibitory SFN composed of N bursting

neurons equidistantly placed on a one-dimensional ring of

radius N=2p. We employ a directed Barabási–Albert SFN

model (i.e. growth and preferential directed attachment)

(Barabási and Albert 1999; Albert and Barabási 2002). At

each discrete time t, a new node is added, and it has lin
incoming (afferent) edges and lout outgoing (efferent) edges

via preferential attachments with lin (pre-existing) source

nodes and lout (pre-existing) target nodes, respectively. The

(pre-existing) source and target nodes i (which are con-

nected to the new node) are preferentially chosen

depending on their out-degrees d
ðoutÞ
i and in-degrees d

ðinÞ
i

according to the attachment probabilities PsourceðdðoutÞi Þ and

PtargetðdðinÞi Þ, respectively:

Psource d
ðoutÞ
i

� �
¼ d

ðoutÞ
iPNt�1

j¼1 d
ðoutÞ
j

and

Ptarget d
ðinÞ
i

� �
¼ d

ðinÞ
iPNt�1

j¼1 d
ðinÞ
j

;

ð1Þ

where Nt�1 is the number of nodes at the time step t � 1.

Hereafter, the cases of lin ¼ loutð� l�Þ and lin 6¼ lout will be

referred to as symmetric and asymmetric preferential

attachments, respectively. For generation of an SFN with N

nodes, we begin with the initial network at t ¼ 0,

consisting of N0 ¼ 50 nodes where the node 1 is connected

bidirectionally to all the other nodes, but the remaining

nodes (except the node 1) are sparsely and randomly

connected with a low probability p ¼ 0:1. The processes of

growth and preferential attachment are repeated until the

total number of nodes becomes N. For this case, the node 1

will be grown as the head hub with the highest degree.

Then, the grown network via the above process becomes

scale free, because the distributions for the in- and the out-

degrees dðinÞ and dðoutÞ exhibit power-law decays with the

same exponent c ¼ 3, PðdðinÞÞ � dðinÞ
�c

and

PðdðoutÞÞ � dðoutÞ
�c

(Barabási and Albert 1999; Albert and

Barabási 2002).

As an element in our SFN, we choose the representative

bursting HR neuron model which was originally introduced

to describe the time evolution of the membrane potential

for the pond snails (Hindmarsh and Rose 1982, 1984; Rose

and Hindmarsh 1985); this HR neuron model was studied

in many aspects (Duan et al. 2013; Hrg 2013; Wang et al.

2013; Jun et al. 2014; Kim and Lim 2015a, b, 2016;

Ngouonkadi et al. 2016; Rostami and Jafari 2018; Zhu and

Liu 2018). We consider the Barabási–Albert SFN com-

posed of N HR bursting neurons. The following Eqs. (2)–

(4) govern the population dynamics in the SFN:

dxi

dt
¼ yi � ax3

i þ bx2
i � zi þ IDC;i þ Dni � Isyn;i; ð2Þ

dyi

dt
¼ c� dx2

i � yi; ð3Þ

dzi

dt
¼ r sðxi � xoÞ � zi½ �; ð4Þ

where

Isyn;i ¼
1

d
ðinÞ
i

XN

j¼1ðj 6¼iÞ
JijwijgjðtÞ xi � Xsyn

� �
; ð5Þ

gjðtÞ ¼
XFj

f¼1

E t � t
ðjÞ
f � sl

� �
;

EðtÞ ¼ 1

sd � sr
e�t=sd � e�t=sr

� �
HðtÞ:

ð6Þ

Here, the state of the ith neuron at a time t (measured in

units of milliseconds) is characterized by three state vari-

ables: the fast membrane potential xi, the fast recovery

current yi; and the slow adaptation current zi. The param-

eter values used in our computations are listed in Table 1.

More details on external stimulus on the single HR neuron,

synaptic currents and synaptic plasticity, and numerical

integration of the governing equations are given in the

following subsections.
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External stimulus to each HR neuron

Each bursting HR neuron [whose parameter values are in

the 1st item of Table 1 (Longtin 1997)] is stimulated by a

DC current IDC;i and an independent Gaussian white noise

ni [see the 5th and the 6th terms in Eq. (2)] satisfying

hniðtÞi ¼ 0 and hniðtÞ njðt0Þi ¼ dij dðt � t0Þ, where h� � �i
denotes the ensemble average. The intensity of noise ni is

controlled by the parameter D. Figure 1a shows a resting

state of a single HR neuron for IDC ¼ 1:23 in the absence

of noise (i.e., D ¼ 0). As IDC passes a threshold

I�DCð’ 1:26Þ, each single HR neuron exhibits a transition

from a resting state to a bursting state. For the

suprathreshold case of IDC ¼ 1:35, deterministic bursting

occurs when neuronal activity alternates, on a slow time

scale ð’ 578 ms), between a silent phase and an active

(bursting) phase of fast repetitive spikings, as shown in

Fig. 1b. The dotted horizontal line (x�b ¼ � 1) denotes the

bursting threshold (the solid and open circles denote the

active phase onset and offset times, respectively), while the

dashed horizontal line (x�s ¼ 0) represents the spiking

threshold within the active phase. An active phase of the

bursting activity begins (ends) at a burst onset (offset) time

when the membrane potential x of the bursting HR neuron

passes the bursting threshold of x�b ¼ �1 from below

(above). For this case, the HR neuron exhibits bursting

activity with the slow bursting frequency fbð’ 1:7 Hz)

[corresponding to the average inter-burst interval (IBI)

(’ 578 ms)]. Throughout this paper, we consider a

suprathreshold case such that the value of IDC;i is chosen

via uniform random sampling in the range of [1.3, 1.4], as

shown in the 2nd item of Table 1.

Synaptic currents and plasticity

The last term in Eq. (2) represents the synaptic couplings

of HR bursting neurons. Isyn;i of Eq. (5) represents a

synaptic current injected into the ith neuron, and Xsyn is the

synaptic reversal potential. The synaptic connectivity is

given by the connection weight matrix W ð¼ fwijg) where

wij ¼ 1 if the bursting neuron j is presynaptic to the

bursting neuron i; otherwise, wij ¼ 0. Here, the synaptic

connection is modeled in terms of the Barabási–Albert

SFN. Then, the in-degree of the ith neuron, d
ðinÞ
i (i.e., the

number of synaptic inputs to the interneuron i) is given by

d
ðinÞ
i ¼

PN
j¼1ðj 6¼iÞ wij. The fraction of open synaptic ion

channels at time t is denoted by g(t). The time course of

gjðtÞ of the jth neuron is given by a sum of delayed double-

exponential functions Eðt � t
ðjÞ
f � slÞ [see Eq. (6)], where

sl is the synaptic delay, and t
ðjÞ
f and Fj are the fth spike and

the total number of spikes of the jth neuron at time t,

respectively. Here, E(t) [which corresponds to contribution

of a presynaptic spike occurring at time 0 to gjðtÞ in the

absence of synaptic delay] is controlled by the two synaptic

time constants: synaptic rise time sr and decay time sd, and

HðtÞ is the Heaviside step function: HðtÞ ¼ 1 for t� 0 and

0 for t\0. For the inhibitory GABAergic synapse (in-

volving the GABAA receptors), the values of sl, sr, sd, and

Xsyn are listed in the 3rd item of Table 1 (Brunel and Wang

2003).

The coupling strength of the synapse from the jth pre-

synaptic neuron to the ith post-synaptic neuron is Jij. Here,

Table 1 Parameter values used

in our computations
(1) Single HR bursting neurons (Longtin 1997)

a ¼ 1 b ¼ 3 c ¼ 1 d ¼ 5 r ¼ 0:001 s ¼ 4 x0 ¼ �1:6

(2) External stimulus to HR bursting neurons

IDC;i 2 ½1:3; 1:4� D: Varying

(3) Inhibitory synapse mediated by the GABAA neurotransmitter (Brunel and Wang 2003)

sl ¼ 1 sr ¼ 0:5 sd ¼ 5 Xsyn ¼ �2

(4) Synaptic connections between neurons in the Barabási–Albert SFN

l�: Varying (symmetric preferential attachment)

Dl: Varying (asymmetric preferential attachment)

J0 ¼ 12 r0 ¼ 0:1 Jij 2 ½0:0001; 20�
(5) Anti-Hebbian STDP rule

d ¼ 0:08 Aþ ¼ 1:0 A� ¼ 1:3 sþ ¼ 410 s� ¼ 330

(a) (b)

Fig. 1 Single bursting HR neuron for D ¼ 0. a Time series of x(t) for

the resting state when IDC ¼ 1:23. b Time series of x(t) for the

bursting state when IDC ¼ 1:35. The dotted horizontal line (x�b ¼ �1)

and the dashed horizontal line (x�s ¼ 0) represent the bursting and

spiking thresholds, respectively. The solid and open circles denote the

burst onset and offset times, respectively
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we consider a multiplicative iSTDP (dependent on states)

for the synaptic strengths fJijg (Popovych et al. 2013;

Rubin et al. 2001). To avoid unbounded growth and

elimination of synaptic connections, we set a range with

the upper and the lower bounds: Jij 2 ½Jl; Jh�, where Jl ¼
0:0001 and Jh ¼ 20. Initial synaptic strengths are normally

distributed with the mean J0ð¼ 12Þ and the standard

deviation r0ð¼ 0:1Þ. With increasing time t, the synaptic

strength for each synapse is updated with a nearest-burst

pair-based STDP rule (Morrison et al. 2007):

Jij ! Jij þ d J� � Jij
� �

DJij Dtij
� ��� ��; ð7Þ

where d ð¼ 0:08Þ is the update rate, J� ¼ Jh ðJlÞ for the

LTP (LTD), and DJijðDtijÞ is the synaptic modification

depending on the relative time difference Dtij ð¼ t
ðpostÞ
i �

t
ðpreÞ
j Þ between the nearest burst onset times of the post-

synaptic neuron i and the pre-synaptic neuron j. We use an

asymmetric anti-Hebbian time window for the synaptic

modification DJijðDtijÞ (Popovych and Tass 2012; Lourens

et al. 2015; Grado et al. 2015):

DJijðDtijÞ ¼
�Aþ e�Dtij=sþ forDtij [ 0

�A�
Dtij
s�

eDtij=s� forDtij 	 0

8<
: ; ð8Þ

where Aþ ¼ 1:0, A� ¼ 1:3, sþ ¼ 410 ms, and

s� ¼ 330 ms (these values are also given in the 5th item of

Table 1). Figure 2 shows an asymmetric anti-Hebbian time

window for DJijðDtijÞ of Eq. (8) (i.e., plot of DJij vs. Dtij).
DJijðDtijÞ changes depending on the relative time differ-

ence Dtij ð¼ t
ðpostÞ
i � t

ðpreÞ
j Þ between the nearest burst onset

times of the post-synaptic neuron i and the pre-synaptic

neuron j. In contrast to the case of a Hebbian time window

for the eSTDP (Kim and Lim 2018a, b, c), when a post-

synaptic burst follows a pre-synaptic burst (i.e., Dtij is

positive), LTD of synaptic strength appears in the black

region; otherwise (i.e., Dtij is negative), LTP occurs in the

gray region.

Numerical integration

Numerical integration of stochastic differential equations

(2)–(4) is done using the Heun method (San Miguel and

Toral 2000) (with the time step Dt ¼ 0:01 ms). For each

realization of the stochastic process, we choose a random

initial point ½xið0Þ; yið0Þ; zið0Þ� for the ith ði ¼ 1; . . .;NÞ
neuron with uniform probability in the range of

xið0Þ 2 ð� 1:5; 1:5Þ, yið0Þ 2 ð� 10; 0Þ, and

zið0Þ 2 ð1:2; 1:5Þ.

Effects of inhibitory STDP on burst
synchronization

BS in the absence of iSTDP

First, we are concerned about the BS (i.e., population

synchronization on the slow bursting timescale) in the

absence of iSTDP for the case of symmetric attachment

with lin ¼ lout ¼ l� ¼ 15 in the SFN of N inhibitory Hind-

marsh–Rose bursting neurons. The coupling strengths fJijg
are static, and their values are chosen from the Gaussian

distribution where the mean J0 is 12 and the standard

deviation r0 is 0.1. We investigate emergence of BS by

varying the noise intensity D.

BS may be well visualized in the raster plot of burst

onset times which corresponds to a collection of all trains

of burst onset times of individual bursting neurons. Fig-

ure 3a1–a5 show such raster plots for various values of

D. To see emergence of BS, we employ an (experimen-

tally-obtainable) instantaneous population burst rate

(IPBR) which is often used as a collective quantity show-

ing bursting behaviors. This IPBR may be obtained from

the raster plot of burst onset times (Kim and Lim

2015a, b, 2016). To obtain a smooth IPBR, we employ the

kernel density estimation (kernel smoother) (Shimazaki

and Shinomoto 2010). Each burst onset time in the raster

plot is convoluted (or blurred) with a kernel function KhðtÞ
to obtain a smooth estimate of IPBR RbðtÞ:

RbðtÞ ¼
1

N

XN
i¼1

Xni
b¼1

Kh t � t
ðiÞ
b

� �
; ð9Þ

where t
ðiÞ
b is the bth burst onset time of the ith neuron, ni is

the total number of burst onset times for the ith neuron, and

we use a Gaussian kernel function of band width h:
Fig. 2 Time window for the Anti-Hebbian iSTDP. Plot of synaptic

modification DJij versus Dtij ð¼ t
ðpostÞ
i � t

ðpreÞ
j Þ for Aþ ¼ 1, A� ¼ 1:3,

sþ ¼ 410 ms and s� ¼ 330 ms. t
ðpostÞ
i and t

ðpreÞ
j are burst onset times

of the ith post-synaptic and the jth pre-synaptic neurons, respectively
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KhðtÞ ¼
1ffiffiffiffiffiffi
2p

p
h
e�t2=2h2

; �1\t\1 ð10Þ

Throughout the paper, the band width h of KhðtÞ is 20 ms.

Figure 3b1–b5 show IPBR kernel estimates RbðtÞ for var-

ious values of D. For the synchronous case, ‘‘bursting

stripes’’ (composed of burst onset times and indicating BS)

are formed in the raster plot of burst onset times (see

Fig. 3a1–a4), and the corresponding IPBR kernel estimates

RbðtÞ exhibit oscillations, as shown in Fig. 3b1–b4. As an

example, we consider the case of D ¼ 0:05. The bursting

frequency fb [i.e., the oscillating frequency of RbðtÞ] is

6.09 Hz (see Fig. 3c1), while the population-averaged

mean bursting rate (MBR) hf ðbÞi i of individual bursting

neurons is 1.56 Hz (see Fig. 3c2). For this type of BS,

individual bursting neurons fire at lower rates f
ðbÞ
i than the

bursting frequency fb, and hence only a smaller fraction of

bursting neurons fire in each bursting stripe in the raster

plot (i.e., each stripe is sparsely occupied by burst onset

times of a smaller fraction of bursting neurons). In this

way, sparse BS occurs, in contrast the full BS where

individual neurons show bursting at every global cycle of

RbðtÞ (Kim and Lim 2018b). On the other hand, in the

desynchronized case for D[D�ð’ 0:072Þ, burst onset

times are completely scattered in the raster plot, and RbðtÞ
is nearly stationary, as shown in Fig. 3a5, b5 for D ¼ 0:08.

Recently, we introduced a realistic bursting order

parameter, based on RbðtÞ, for describing transition from

BS to desynchronization (Kim and Lim 2015b). The mean

square deviation of RbðtÞ,

Ob � RbðtÞ � RbðtÞ
� �2

; ð11Þ

plays the role of an order parameter Ob; the overbar rep-

resents the time average. This bursting order parameter

may be regarded as a thermodynamic measure because it

concerns just the macroscopic IPBR kernel estimate RbðtÞ
without any consideration between RbðtÞ and microscopic

individual burst onset times. In the thermodynamic limit of

N ! 1, the bursting order parameter Ob approaches a

non-zero (zero) limit value for the synchronized (desyn-

chronized) state. Hence, the bursting order parameter can

determine synchronized and desynchronized states. Fig-

ure 3d shows plots of log10hObir versus D. In each real-

ization, we discard the first time steps of a stochastic

trajectory as transients for 103 ms, and then we numerically

compute Ob by following the stochastic trajectory for

3 
 104 ms. Hereafter, h� � �ir denotes an average over 20

realizations. For D\D�ð’ 0:072Þ, the bursting order

parameter hObir approaches a non-zero limit value, and

hence BS appears. On the hand hand, when passing D� a

transition from BS to desynchronization occurs, because

hObir tends to zero with increasing N.

Fig. 3 Burst synchronization in the absence of iSTDP for the case of

symmetric attachment with l� ¼ 15; N ¼ 103 except for the case of

the bursting order parameter in d. Raster plots of burst onset times in

a1–a5 and IPBR kernel estimates RbðtÞ in b1–b5 for various values of

D ¼ 0, 0.03, 0.05, 0.06, and 0.08. c1 One-sided power spectrum of

DRbðtÞ½¼ RbðtÞ � RbðtÞ� (the overbar represents the time average)

with mean-squared amplitude normalization and c2 distribution of

mean bursting rates (MBRs) of individual neurons for D ¼ 0:05. d
Plots of the thermodynamic bursting order parameter hObir versus D.

Plots of e1 the average occupation degree hhOðbÞ
i iir , e2 the average

pacing degree hhPðbÞ
i iir , and e3 the statistical–mechanical bursting

measure hMbir versus D
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In the absence of noise (i.e., D ¼ 0), sparse bursting

stripes (indicating sparse BS) appear successively in the

raster plot of burst onset times, and the IPBR kernel esti-

mate RbðtÞ exhibits an oscillatory behavior. However, as D

is increased, sparse bursting stripes become smeared

gradually, as shown in the cases of D ¼ 0:03; 0.05, and

0.06, and hence the amplitudes of RbðtÞ decrease in a slow

way. Eventually, as D passes D�; desynchronization occurs

due to overlap of smeared bursting stripes. Then, burst

onset times are completely scattered without forming any

bursting stripes, and hence the IPBR kernel estimate RbðtÞ
becomes nearly stationary, as shown for the case of

D ¼ 0:08.

We characterize sparse BS in the range of 0	D\D� by

employing a statistical–mechanical bursting measure Mb

(Kim and Lim 2015b). For the case of BS, bursting stripes

appear regularly in the raster plot of burst onset times. The

bursting measure M
ðbÞ
i of the ith bursting stripe is defined

by the product of the occupation degree O
ðbÞ
i of burst onset

times (denoting the density of the ith bursting stripe) and

the pacing degree P
ðbÞ
i of burst onset times (representing

the smearing of the ith bursting stripe):

M
ðbÞ
i ¼ O

ðbÞ
i � PðbÞ

i : ð12Þ

The occupation degree O
ðbÞ
i of burst onset times in the ith

bursting stripe is given by the fraction of bursting neurons:

O
ðbÞ
i ¼ N

ðbÞ
i

N
; ð13Þ

where N
ðbÞ
i is the number of bursting neurons in the ith

bursting stripe. For the case of full BS, all bursting neurons

exhibit burstings in each bursting stripe in the raster plot of

burst onset times, and hence the occupation degree O
ðbÞ
i of

Eq. (13) in each bursting stripe becomes 1. On the other

hand, in the case of sparse BS, only some fraction of

bursting neurons show burstings in each bursting stripe,

and hence the occupation degree O
ðbÞ
i becomes less than 1.

In our case of BS, O
ðbÞ
i \1 in the range of 0	D\D�, and

hence sparse BS occurs. The pacing degree P
ðbÞ
i of burst

onset times in the ith bursting stripe can be determined in a

statistical–mechanical way by taking into account their

contributions to the macroscopic IPBR kernel estimate

RbðtÞ. Central maxima of RbðtÞ between neighboring left

and right minima of RbðtÞ coincide with centers of bursting

stripes in the raster plot. A global cycle starts from a left

minimum of RbðtÞ, passes a maximum, and ends at a right

minimum. An instantaneous global phase UðbÞðtÞ of RbðtÞ
was introduced via linear interpolation in the region

forming a global cycle [for details, refer to Eqs. (14) and

(15) in Kim and Lim (2015b)]. Then, the contribution of

the kth microscopic burst onset time in the ith bursting

stripe occurring at the time t
ðbÞ
k to RbðtÞ is given by cosUðbÞ

k ,

where UðbÞ
k is the global phase at the kth burst onset time

[i.e., UðbÞ
k � UðbÞðtðbÞk Þ]. A microscopic burst onset time

makes the most constructive (in-phase) contribution to

RbðtÞ when the corresponding global phase UðbÞ
k is 2pn

(n ¼ 0; 1; 2; . . .), while it makes the most destructive (anti-

phase) contribution to RbðtÞ when UðbÞ
k is 2pðn� 1=2Þ. By

averaging the contributions of all microscopic burst onset

times in the ith bursting stripe to RbðtÞ, we obtain the

pacing degree of burst onset times in the ith stripe:

P
ðbÞ
i ¼ 1

Bi

XBi

k¼1

cosUðbÞ
k ; ð14Þ

where Bi is the total number of microscopic burst onset

times in the ith stripe.

By averaging M
ðbÞ
i of Eq. (12) over a sufficiently large

number Nb of bursting stripes, we obtain the realistic sta-

tistical–mechanical bursting measure Mb, based on the

IPBR kernel estimate RbðtÞ:

Mb ¼
1

Nb

XNb

i¼1

M
ðbÞ
i : ð15Þ

We follow 3 
 103 bursting stripes in each realization and

get hMbir via average over 20 realizations. Figure 3e1–e3

show the average occupation degree hhOðbÞ
i iir, the average

pacing degree hhPðbÞ
i iir, and the statistical–mechanical

bursting measure hMbir, respectively. With increasing D

from 0 to D�, hhOðbÞ
i iir (denoting the density of bursting

stripes in the raster plot) decreases very slowly from 0.27 to

0.25 (i.e., hhOðbÞ
i iir is nearly constant). The average pacing

degree hhPðbÞ
i iir represents well the smearing degree of

bursting stripes in the raster plot of burst onset times

(shown in Fig. 3a1–a4). With increasing D from 0 to D�,

hhPðbÞ
i iir decreases to zero smoothly due to complete

overlap of sparse bursting stripes. Through product of the

average occupation and pacing degrees of burst onset

times, the statistical–mechanical bursting measure hMbir is

obtained. Since hhOðbÞ
i iir is nearly constant, hMbir behaves

like the case of hhPðbÞ
i iir.

We now fix the value of D at D ¼ 0:05 where BS occurs

for the case of symmetric attachment with l� ¼ 15 (see

Fig. 3a3, b3), and investigate the effect of scale-free con-

nectivity on BS by varying the degree of symmetric

attachment l� (i.e., lin ¼ lout ¼ l�) and the asymmetry

parameter Dl of asymmetric attachment [i.e., lin ¼ l� þ Dl
and lout ¼ l� � Dl (l� ¼ 15)].
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We first consider the case of symmetric attachment, and

study its effect on BS by varying the degree l�. Figure 4a1–

a5 show the raster plots of burst onset times for various

values of l�. Their corresponding IPBR kernel estimates

RbðtÞ are also shown in Fig. 4b1–b5. With increasing l�

from 15 (i.e., the case studied above), bursting stripes in the

raster plots of burst onset times become clearer (e.g., see

the cases of l� ¼ 23 and 30), which also leads to increase in

the oscillating amplitudes of RbðtÞ, in comparison with that

for the case of l� ¼ 15. In this way, as l� is increased from

15, the degree of BS becomes better. On the other hand,

with decreasing l� from 15, bursting stripes become more

smeared (e.g., see the case of l� ¼ 12), and hence the

oscillating amplitude of RbðtÞ decreases. Thus, as l� is

decreased from 15, the degree of BS becomes worse.

Eventually, the population state becomes desynchronized

for l� 	 7, as shown in Fig. 4a1, b1 where burst onset times

are completely scattered and RbðtÞ becomes nearly

stationary.

Fig. 4 Effect of network architecture on BS in the absence of iSTDP

for D ¼ 0:05; N ¼ 103. Symmetric preferential attachment with

lin ¼ lout ¼ l�. Raster plots of burst onset times in a1–a5 and IPBR

kernel estimates RbðtÞ in b1–b5 for various values of l�. Plots of c1

population-averaged MBRs hhf ðbÞi iir and c2 standard deviations hrf ir
from hf ðbÞi i versus l�. Plots of d1 the average occupation degree

hhOðbÞ
i iir , d2 the average pacing degree hhPðbÞ

i iir , and d3 the

statistical–mechanical bursting measure hMbir versus l�. Asymmetric

preferential attachment with lin ¼ l� þ Dl and lout ¼ l� � Dl (l� ¼ 15).

Raster plots of burst onset times in e1–e5 and IPBR kernel estimates

RbðtÞ in f1–f5 for various values of Dl. Plots of g1 population-

averaged MBRs hhf ðbÞi iir and g2 standard deviations hrf ir from hf ðbÞi i
versus Dl. Plots of h1 the average occupation degree hhOðbÞ

i iir , h2 the

average pacing degree hhPðbÞ
i iir , and h3 the statistical–mechanical

bursting measure hMbir versus Dl
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Effects of l� on network topology were characterized in

Kim and Lim (2016), where the group properties of the

SFN were studied in terms of the average path length Lp
and the betweenness centralization Bc by varying l�. The

average path length Lp represents typical separation

between two nodes in the network, and it characterizes

global efficiency of information transfer between distant

nodes (Albert and Barabási 2002; Kim and Lim 2016). The

group betweenness centralization Bc denotes how much the

load of communication traffic is concentrated on the head

hub (with the highest degree) (Freeman 1977, 1978; Kim

and Lim 2016). Large Bc implies that load of communi-

cation traffic is much concentrated on the head hub, and

hence the head hub tends to become overloaded by the

communication traffic passing through it (Nishikawa et al.

2003). With increasing l�, both the average path length Lp
and the betweenness centralization Bc become smaller, due

to increase in the total number of connections [see

Fig. 11c, e in Kim and Lim (2016)]. Hence, typical sepa-

ration between neurons becomes shorter, and load of

communication traffic concentrated on the head neuron

also becomes smaller. As a result, as l� is increased, effi-

ciency of global communication between neurons (i.e.,

global transfer of neural information between neurons via

synaptic connections) becomes better, which may con-

tribute to increase in the degree of BS.

Along with network topology, we also consider indi-

vidual dynamics which change depending on the synaptic

inputs with the in-degree dðinÞ of Eq. (6). The in-degree

distribution affects MBRs of individual bursting neurons

[e.g., see Fig. 11g1–g5 in Kim and Lim (2016)]. As l� is

increased, the average in-degree hdðinÞi ð¼ 1
N

PN
i¼1 d

ðinÞ
i )

increases, which favors the pacing between bursting neu-

rons. Consequently, with increasing l�, the population-av-

eraged MBR hhf ðbÞi iir increases, and the standard deviation

hrf ir decreases (i.e., population-averaged individual

dynamics become better), as shown in Fig. 4c1, c2, which

may also contribute to increase in the degree of BS. Fig-

ure 4d1–d3 show the average occupation degree hhOðbÞ
i iir,

the average pacing degree hhPðbÞ
i iir, and the statistical–

mechanical bursting measure hMbir , respectively. With

increasing l�, hhPðbÞ
i iir increases markedly due to decrease

in the standard deviation hrf ir . On the other hand, hhOðbÞ
i iir

increases a little due to a slight increase in the population-

averaged MBR hhf ðbÞi iir. Then, hMbir (given by the product

of hhOðbÞ
i iir and hhPðbÞ

i iir) increases distinctly as in the case

of hhPðbÞ
i iir. Consequently, as l� is increased from 15, the

degree of BS increases due to both better individual

dynamics and better efficiency of global communication

between nodes (resulting from the increased number of

total connections). On the other hand, with decreasing l�

from 15, both individual dynamics and effectiveness of

communication between nodes become worse (resulting

from the decreased number of total connections), and hence

the degree of BS decreases.

As the second case of network architecture, we consider

the case of asymmetric attachment; lin ¼ l� þ Dl and

lout ¼ l� � Dl ðl� ¼ 15). For the case of asymmetric

attachment, the total number of inward and outward con-

nections is fixed (i.e., lin þ lout ¼ 30 ¼ constant), in con-

trast to the case of symmetric attachment where with

increasing l� the number of total connections increases. We

investigate the effect of asymmetric attachment on BS by

varying the asymmetry parameter Dl.
Figure 4e1–e5 show the raster plots of burst onset times

for various values of Dl. Their corresponding IPBR kernel

estimates RbðtÞ are also shown in Fig. 4f1–f5. As Dl is

increased from 0, bursting stripes in the raster plots of burst

onset times become clearer (e.g., see the cases of Dl ¼ 3

and 6), and hence the oscillating amplitudes of RbðtÞ
become larger than that for the case of Dl ¼ 0. In this way,

with increasing Dl from 0, the degree of BS becomes

better. On the other hand, with decreasing Dl from 0,

bursting stripes become more smeared (e.g., see the case of

Dl ¼ � 3), which results in decrease in the oscillating

amplitudes of RbðtÞ. Hence, as Dl is decreased from 0, the

degree of BS becomes worse. Eventually, the population

state becomes desynchronized for Dl	 � 6, as shown in

Fig. 4e1, f1 where burst onset times are completely scat-

tered and RbðtÞ becomes nearly stationary.

As jDlj (the magnitude of Dl) is increased, both Lp and

Bc increase symmetrically, independently of the sign of Dl,
due to increased mismatching between the in- and the out-

degrees [see Fig. 13c, d in Kim and Lim (2016)]. The

values of Lp and Bc for both cases of different signs but the

same magnitude (i.e., Dl and �Dl) become the same

because both inward and outward connections are involved

equally in computations of Lp and Bc. Due to the effects of

Dl on Lp and Bc, with increasing jDlj, efficiency of global

communication between nodes becomes worse, indepen-

dently of the sign of Dl, which may contribute to decrease

in the degree of BS.

However, individual dynamics change depending on the

sign of Dl because of different average in-degrees hdðinÞi.
Particularly, the distribution of MBRs of individual burst-

ing neurons vary depending on Dl [e.g., see Fig. 13g1–g5

in Kim and Lim (2016)]. As Dl is increased from 0, hdðinÞi
increases, which tends to favor the pacing between bursting

neurons. Hence, the standard deviation hrf ir (for the dis-

tribution of MBRs ff ðbÞi g) decreases, as shown in Fig. 4g2.

In addition, with increasing Dl from 0, the population-av-

eraged MBR hhf ðbÞi iir also decreases, because of increase in
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average inhibition given to individual neurons (resulting

from increased population-averaged in-degrees) (see

Fig. 4g1). In contrast, with decreasing Dl from 0, the

average in-degree hdðinÞi decreases, which tends to disfavor

the pacing between bursting neurons. Therefore, the stan-

dard deviation hrf ir increases (see Fig. 4g2). Moreover, as

Dl is decreased from 0, the population-averaged MBR

hhf ðbÞi iir also increases, due to decrease in average inhibi-

tion given to individual neurons (resulting from decreased

population-averaged in-degrees) (see Fig. 4g1). In this

way, as Dl is increased (decreased) from 0, individual

dynamics become better (worse), which may contribute to

increase (decrease) in the degree of BS. Figure 4h1–h3

show the average occupation degree hhOðbÞ
i iir, the average

pacing degree hhPðbÞ
i iir, and the statistical–mechanical

bursting measure hMbir, respectively. With increasing Dl,

hhPðbÞ
i iir increases distinctly, mainly due to decrease in the

standard deviation hrf ir (which overcomes worse effi-

ciency of communication). In contrast, as Dl is increased,

hhOðbÞ
i iir decreases a little due to a slight decrease in the

population-averaged MBR hhf ðbÞi iir. However, hhPðbÞ
i iir

increases more rapidly than decrease in hhOðbÞ
i iir. Hence,

with increasing Dl hMbir (given by the product of hhOðbÞ
i iir

and hhPðbÞ
i iir) also increases. Consequently, as Dl is

decreased from 0, the degree of BS decreases because both

individual dynamics and efficiency of communication

between nodes are worse. On the other hand, with

increasing Dl from 0, the degree of BS increases mainly

because of better individual dynamics overcoming worse

efficiency of communication.

Effects of iSTDP on BS

In this subsection, we study the effect of iSTDP on BS

[occurring for 0	D\D�ð’ 0:072Þ in the absence of

iSTDP]. The initial values of synaptic strengths fJijg are

chosen from the Gaussian distribution with the mean J0 ð¼
12Þ and the standard deviation r0 ð¼ 0:1Þ. Here, we

employ an anti-Hebbian time window for the synaptic

modification DJijðDtijÞ of Eq. (8). Then, Jij for each

synapse is updated according to a nearest-burst pair-based

STDP rule of Eq. (7).

We first consider the case of symmetric attachment with

l� ¼ 15, and investigate the effect of iSTDP on BS by

varying D. Figure 5a shows time-evolutions of population-

averaged synaptic strengths hJiji for various values of D;

h� � �i represents an average over all synapses. For each case

of D ¼ 0, 0.03, and 0.05, hJiji decreases monotonically

below its initial value J0 ð¼ 12Þ, and it approaches a sat-

urated limit value hJ�iji nearly at t ¼ 1000 s. Consequently,

LTD occurs for these values of D. On the other hand, for

D ¼ 0:06 hJiji increases monotonically above J0, and

approaches a saturated limit value hJ�iji. As a result, LTP

occurs for the case of D ¼ 0:06. Histograms for fraction of

synapses versus J�ij (saturated limit values of Jij at

t ¼ 1000 s) are shown in black color for various values of

D in Fig. 5b1–b4; the bin size for each histogram is 0.1.

For comparison, initial distributions of synaptic strengths

fJijg (i.e., Gaussian distributions whose mean J0 and

standard deviation r0 are 12 and 0.1, respectively) are also

shown in gray color. For the cases of LTD (D ¼ 0, 0.03,

and 0.05), their black histograms lie on the left side of the

initial gray histograms, and hence their population-aver-

aged values hJ�iji become smaller than the initial value J0.

On the other hand, the black histogram for the case of LTP

(D ¼ 0:06) is shifted to the right side of the initial gray

histogram, and hence its population-averaged value hJ�iji
becomes larger than J0. For both cases of LTD and LTP,

their black histograms are wider than the initial gray his-

tograms [i.e., the standard deviations rJ are larger than the

initial one r0]. Figure 5c1 shows a plot of population-av-

eraged limit values of synaptic strengths hhJ�ijiir versus D.

Here, the horizontal dotted line represents the initial

average value of coupling strengths J0, and the threshold

value Dth ð’ 0:0558Þ for LTD/LTP (where hhJ�ijiir ¼ J0) is

represented by a solid circle. Hence, LTD occurs in a range

of BS (0	D\Dth); BS in the absence of iSTDP appears in

the range of 0	D\D�. As D is decreased from Dth,

hhJ�ijiir decreases monotonically. In contrast, LTP takes

place in a smaller range of BS (i.e., Dth\D\D�), and with

increasing D from Dth hhJ�ijiir increases monotonically.

Figure 5c2 shows plots of standard deviations hrJir versus

D. With increasing D from 0 to D�, hrJir increases, and all

the values of hrJir are larger than the initial value

r0 ð¼ 0:1Þ.
The LTD (LTP) has a tendency to increase (decrease)

the degree of BS because of decrease (increase) in the

mean value of synaptic inhibition strengths, and the

increased standard deviations tend to decrease the degree

of BS. The effects of LTD and LTP on BS after the satu-

ration time (t ¼ 1000 s) may be well shown in the raster

plot of burst onset times and the corresponding IPBR

kernel estimate RbðtÞ, which are given in Fig. 6a1–a4, b1–

b4 for various values of D, respectively. When compared

with Fig. 3a1–a3, b1–b3 in the absence of iSTDP, the

degrees of BS for the case of D ¼ 0, 0.03, and 0.05 are

increased [i.e., the amplitudes of RbðtÞ are increased] due to

dominant effect of LTD (overcoming the effect of

increased standard deviation). On the other hand, in the

case of D ¼ 0:06 the population state becomes desyn-

chronized [i.e., RbðtÞ becomes nearly stationary] due to the
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effects of both LTP and increased standard deviation

(compare Fig. 6a4, b4 with Fig. 3a4, b4). Due to inhibition,

the roles of LTD and LTP in inhibitory synaptic plasticity

are reversed in comparison with those in excitatory

synaptic plasticity where the degree of population syn-

chronization is increased (decreased) via LTP (LTD) (Kim

and Lim 2018a, b, c).

In the presence of iSTDP, we also characterize popu-

lation behaviors for BS after the saturation time

(t ¼ 1000 s) in the range of 0	D\D��ð’ 0:0565Þ (where

BS persists in the presence of iSTDP). For comparison,

corresponding quantities for BS in the absence of iSTDP

are also shown in the range of 0	D\D�ð’ 0:072Þ (where

BS appears in the absence of iSTDP). Figure 6c1, c2 show

the average occupation degree hhOðbÞ
i iir and the average

pacing degree hhPðbÞ
i iir (represented by open circles),

respectively; for comparison, hhOðbÞ
i iir and hhPðbÞ

i iir (de-

noted by crosses) are also shown in the case without

iSTDP. In the region of 0	D\Dthð’ 0:0558Þ, the values

Fig. 5 Effect of iSTDP on BS for the case of symmetric attachment

with l� ¼ 15; N ¼ 103. a Time-evolutions of population-averaged

synaptic strengths hJiji for various values of D. b1–b4 Histograms for

the fraction of synapses versus J�ij (saturated limit values of Jij at

1000 s) are shown in black color for various values of D; for

comparison, initial distributions of synaptic strengths fJijg are also

shown in gray color. Plots of c1 population-averaged limit values of

synaptic strengths hhJ�ijiir and c2 standard deviations hrJir versus D

Fig. 6 Characterization of BS

after the saturation time

(t ¼ 1000 s) for the case of

symmetric attachment with

l� ¼ 15; N ¼ 103. Raster plots

of burst onset times in a1–a4
and IPBR kernel estimates RbðtÞ
in b1–b4 for various values of D

after the saturation time, where

t ¼ t� (saturation time ¼ 1000

s) þ et. Plots of c1 the average

occupation degree hhOðbÞ
i iir

(open circles), c2 the average

pacing degree hhPðbÞ
i iir (open

circles), and c3 the statistical–

mechanical bursting measure

hMbir (open circles) versus D.

For comparison, hhOðbÞ
i iir ,

hhPðbÞ
i iir , and hMbir versus D in

the absence of iSTDP are also

denoted by crosses
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of hhOðbÞ
i iir (open circles) are larger than those (crosses) in

the absence of iSTDP, due to LTD (decreased mean

synaptic inhibition). In most region of LTD, the values of

hhPðbÞ
i iir (open circles) are also larger than those (crosses)

in the absence of iSTDP, because of dominant effect of

LTD (overcoming the effect of increased standard devia-

tion). In the region of Dth\D\D��, hhOðbÞ
i iir (open cir-

cles) decreases just a little. However, for the case of

hhPðbÞ
i iir (open circles), a rapid transition to the case of

hhPðbÞ
i iir ¼ 0 occurs due to the effects of both LTP and

increased standard deviation, in contrast to the smooth

decrease in hhPðbÞ
i iir (crosses) in the absence of iSTDP.

The statistical–mechanical bursting measure hMbir (com-

bining the effect of both the average occupation and pacing

degrees) is shown in open circles in Fig. 6c3. Behaviors of

hMbir are similar to those of hhPðbÞ
i iir, because the values

of hhOðbÞ
i iir are nearly constant. A Matthew effect is found

to occur in the presence of iSTDP. In most range of D with

LTD, good BS (with higher bursting measure) gets better

since the effect of mean LTD is dominant in comparison to

the effect of increased standard deviation. On the other

hand, in the range of D with LTP, bad BS (with lower

bursting measure) gets worse because of the effects of both

LTP and increased standard deviation. Thus, near the

threshold Dth a rapid transition to desynchronization (i.e.

the case of hMbir ¼ 0) occurs via LTP, in contrast to a

smooth transition in the absence of iSTDP.

From now on, we make an intensive investigation on

emergences of LTD and LTP of synaptic strengths via a

microscopic method based on the distributions of time

delays fDtijg between the pre- and the post-synaptic burst

onset times. For understanding time-evolution of the dis-

tribution of fDtijg, we first study the time-evolutions of the

IBI histograms for D ¼ 0:05 (LTD) and 0.06 (LTP), which

are shown in Fig. 7a1–a5, b1–b5, respectively. Here, we

consider 5 stages, represented by I (starting from 0 s), II

(starting from 100 s), III (starting from 250 s), IV (starting

from 500 s), and V (starting from 800 s). For each stage,

we get the IBI histogram from IBIs obtained from all

bursting neurons during 3 s, and the bin size is 2.5 ms. For

the case of D ¼ 0:05 (LTD), the IBI histogram at the stage

I consists of two peaks; the 1st lower peak and the 2nd

higher peak, located at 3 TG and 4 TG [TG (denoted by the

vertical dotted lines): global period of the IPBR RbðtÞ],
respectively. Hence, individual neurons exhibit burstings

intermittently at every 3rd or 4th global cycle of RbðtÞ.
Since the amplitude of the 2nd peak is larger, occurrence of

burstings at every 4th global cycle is more probable.

However, as the time t is increased (i.e., with increase in

the level of stage) the amplitude of the 1st peak increases,

while that of the 2nd peak is reduced. In the stages IV and

V, extremely small 2nd peaks are shown in the insets.

Hence, eventually individual neurons show burstings

nearly at every 3rd global cycle of RbðtÞ. In the case of

D ¼ 0:06 (LTP), the IBI histogram at the stage I is also

composed of the 1st lower peak and the 2nd higher peak,

located at 3 TG and 4 TG, respectively. However, with

increasing the stage, peaks become wider, and merging

between them occurs. Eventually, at the stage V a single

broad peak appears. These distributions of IBIs for D ¼
0:05 and 0.06 affect the distribution of fDtijg, as shown

below.

Figure 7c1–c5, d1–d5 show time-evolutions of normal-

ized histograms HðDtijÞ for the distributions of time delays

fDtijg for D ¼ 0:05 and 0.06, respectively; the bin size in

each histogram is 2.5 ms. Like the above case, we also

consider 5 stages, represented by I (starting from 0 s), II

(starting from 100 s), III (starting from 250 s), IV (starting

from 500 s), and V (starting from 800 s). At each stage,

we get the distribution of fDtijg for all synaptic pairs

during 0.5 s and obtain the normalized histogram by

dividing the distribution with the total number of synapses.

Here, LTD and LTP occur in the black (Dt[ 0) and the

gray (Dt\0) parts, respectively. For D ¼ 0:05 (LTD), at

the stage I, 9 peaks [the central 1st-order peak and each

pair of left and right higher ith-order peaks (i ¼ 2; 3; 4, and

5)] appear in each histogram of fDtijg, in contrast to the

case of full BS where just 3 peaks (the main central peak

and a pair of minor left and right peaks) appear [see

Fig. 8c1–c6 in Kim and Lim (2018b)]. Due to sparse

burstings at every 3rd or 4th global cycle of RbðtÞ, nearest-

neighboring pre- and post-synaptic burst onset times may

appear in the following separate stripes in the raster plot of

burst onset times, such as the nearest-neighboring, the

next-nearest-neighboring, the next-next-nearest-neighbor-

ing, and the next-next-next-nearest-neighboring stripes, as

well as in the same stripe. As a result, 9 peaks appear in the

distribution of HðDtijÞ. For the case of stage I, the right

black part (LTD) is dominant, in comparison with the left

gray part (LTP), and hence the overall net LTD begins to

emerge. As the stage is increased, the peaks from the 1st to

the 4th order become intensified (i.e., peaks become nar-

rowed, and then they become sharper), because the

amplitude of the 1st peak at 3 TG in the IBI histogram is

getting dominantly increased. On the other hand, the last

5th-order peaks become very small (see the insets in the

stages IV and V where the right 5th-order peak is shown),

since the amplitude of the 2nd peak at 4 TG in the IBI

histogram is getting very small. At the stage V, the effect of

LTD in the black part tends to nearly cancel out the effect

of LTP in the gray part. For the case of D ¼ 0:06 (LTP), at

the 1st stage, 9 peaks also appear in the histogram of fDtijg,
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as in the case of D ¼ 0:05. In this case of stage I, the left

gray part (LTP) is dominant, in comparison with the right

black part (LTD), and hence the overall net LTP begins to

occur. However, as the level of stage is increased, peaks

become wider, and merging tendency between the peaks is

intensified. At the stage V, only one broad central peak

seems to appear. At the stage V, the effect of LTP in the

gray part tends to nearly cancel out the effect of LTD in the

black part.

We now consider successive time intervals

Ik � ðtk; tkþ1Þ, where tk ¼ 0:5 � ðk � 1Þ s (k ¼ 1; 2; 3; . . .).

As the time t is increased, we get the kth normalized his-

togram HkðDtijÞ (k ¼ 1; 2; 3; . . .) in each kth time interval

Ik, through the distribution of fDtijg for all synaptic pairs

during 0.5 s. Then, from Eq. (7), we get the population-

averaged synaptic strength hJijik recursively:

hJijik ¼ hJijik�1 þ d � gDJijðDtijÞ
D E

k
; ð16Þ

where hJiji0 ¼ J0ð¼ 12Þ and h� � �ik means the average over

the distribution of time delays fDtijg for all synaptic pairs

in the kth time interval. Here, the multiplicative synaptic

modification gDJijðDtijÞ is given by the product of the

multiplicative factor (J� � Jij) [Jij : synaptic coupling

strength at the ðk � 1Þth stage] and the absolute value of

synaptic modification jDJijðDtijÞj:

gDJijðDtijÞ ¼ J� � Jij
� �

jDJijðDtijÞj: ð17Þ

Then, we get the population-averaged multiplicative

synaptic modification hgDJijðDtijÞik at the kth stage through

Fig. 7 Microscopic investigations on emergences of LTD and LTP

for the case of symmetric attachment with l� ¼ 15; N ¼ 103. Time-

evolutions of the IBI histograms for D ¼ 0:05 in a1–a5 and D ¼ 0:06

in b1–b5; 5 stages are shown in I (starting from 0 s), II (starting from

100 s), III (starting from 250 s), IV (starting from 500 s), and V

(starting from 800 s). Vertical dotted lines represent multiples of the

global period TG of the IPBR RbðtÞ. Time-evolutions of the

normalized histogram HðDtijÞ for the distributions of time delays

fDtijg between the pre- and the post-synaptic burst onset times for

D ¼ 0:05 in c1–c5 and D ¼ 0:06 in d1–d5; 5 stages are shown in I

(starting from 0 s), II (starting from 100 s), III (starting from 250 s),

IV (starting from 500 s), and V (starting from 800 s). Time-

evolutions of e multiplicative synaptic modification hgDJiji and f
population-averaged synaptic strength hJiji (obtained by an approx-

imate method); gray solid and dashed lines represent ones (obtained

by direct calculations) for D ¼ 0:05 and 0.06 in Fig. 5a, respectively
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a population-average approximation where Jij is replaced

by its population average hJijik�1 at the ðk � 1Þth stage:

gDJijðDtijÞ
D E

k
’ J� � hJijik�1

� �
DJijðDtijÞ
�� ��� 	

k
: ð18Þ

Here, hjDJijðDtijÞjik can be easily obtained from the kth

normalized histogram HkðDtijÞ:

DJijðDtijÞ
�� ��� 	

k
’

X
bins

HkðDtijÞ � DJijðDtijÞ
�� ��: ð19Þ

By using Eqs. (16), (18) and (19), we get approximate

values of hgDJijik and hJijik in a recursive way. Figure 7e

shows time-evolutions of hgDJiji for D ¼ 0:05 (black curve)

and D ¼ 0:06 (gray curve). hgDJiji for D ¼ 0:05 is negative.

On the other hand, hgDJiji for D ¼ 0:06 is positive. For both

cases they converge toward nearly zero near the saturation

time (t ¼ 1000 s) since the effects of LTD and LTP in the

normalized histograms are nearly cancelled out. The time-

evolutions of hJiji for D ¼ 0:05 (solid circles) and D ¼
0:06 (open circles) are also given in Fig. 7f. The approxi-

mately-obtained values for hJiji are found to agree well

with directly-obtained ones [denoted by the gray solid

(dashed) line for D ¼ 0:05 (0.06)] in Fig. 5a. In this way,

LTD (LTP) emerges for D ¼ 0:05 (0.06).

Finally, in the presence of iSTDP, we investigate the

effect of network architecture on BS for D ¼ 0:05 by

varying the symmetric attachment degree l� and the

asymmetry parameter Dl. We first consider the case of

symmetric attachment (i.e., lin ¼ lout ¼ l�). Figure 8a

shows time-evolutions of population-averaged synaptic

strengths hJiji for various values of l�. For each case of

l� ¼ 15, 23, and 30, hJiji decreases monotonically below its

initial value J0 ð¼ 12Þ, and it approaches a saturated limit

value hJ�iji nearly at t ¼ 1000 s. As a result, LTD occurs for

these values of l�. On the other hand, for l� ¼ 12 hJiji
increases monotonically above J0, and converges toward a

saturated limit value hJ�iji. As a result, for this case LTP

takes place. Figure 8b1 shows a plot of population-aver-

aged limit values of synaptic strengths hhJ�ijiir versus l�; the

horizontal dotted line represents the initial average value of

coupling strengths J0 ð¼ 12Þ. For l� � 14 LTD occurs,

while for l� 	 13 LTP takes place. Figure 8b2 also shows

plots of standard deviations hrJir versus l�. With increasing

l�, hrJir decreases, but all the values of hrJir are larger

than the initial value r0 ð¼ 0:1Þ The LTD (LTP) tends to

increase (decrease) the degree of BS due to decrease (in-

crease) in the mean value of synaptic inhibition strengths,

and increased standard deviations have a tendency to

decrease the degree of BS. We consider the effects of LTD/

LTP on BS after the saturation time t� ð¼ 1000 s). Fig-

ure 8c1–c4, d1–d4 show raster plots of burst onset times

and the corresponding IPBR kernel estimates RbðtÞ for

various values of l�, respectively. Due to the dominant

effect of LTD (overcoming the effect of increased standard

deviation), the degrees of BS for the case of l� ¼ 15; 23,

and 30 are increased so much when compared with

Fig. 4a3–a5, b3–b5 in the absence of iSTDP. In contrast,

for the case of l� ¼ 12 the population states become

desynchronized because of the effects of LTP and

increased standard deviation.

We also characterize population behaviors for the BS in

terms of the average occupation degree hhOðbÞ
i iir, the

average pacing degree hhPðbÞ
i iir, and the statistical–me-

chanical bursting measure hMbir. Figure 8e1, e2 show plots

of hhOðbÞ
i iir and hhPðbÞ

i iir (denoted by open circles) versus

l�, respectively; for comparison, hhOðbÞ
i iir and hhPðbÞ

i iir in

the absence of iSTDP are also shown in crosses. For

l� � 14, the values of hhOðbÞ
i iir and hhPðbÞ

i iir (open circles)

are larger than those (crosses) in the absence of iSTDP,

because of dominant effect of LTD (overcoming the effect

of increased standard deviation). However, in the region of

l� 	 13, a rapid transition to desynchronization (i.e. the

case of hhPðbÞ
i iir ¼ 0) occurs due to the effects of LTP and

increased standard deviation, in contrast to the smooth

decrease in hhPðbÞ
i iir (crosses) in the absence of iSTDP.

The statistical–mechanical bursting measure hMbir (com-

bining the effect of both the average occupation and pacing

degrees) is shown in open circles in Fig. 8e3; for com-

parison, hMbir in the absence of iSTDP is also shown in

crosses. As in the case in Fig. 6c3, a Matthew effect in

inhibitory synaptic plasticity occurs. For l� � 14, good BS

with higher Mb gets better because the effect of LTD is

dominant in comparison with the effect of increased stan-

dard deviation). In contrast, for l� 	 13, bad BS with lower

Mb gets worse via the effects of both LTP and increased

standard deviation. Accordingly, a rapid step-like transition

to desynchronization occurs, in contrast to the relatively

smooth transition in the absence of iSTDP.

Next, we also consider the case of asymmetric attachment

[i.e., lin ¼ l� þ Dl and lout ¼ l� � Dl (l� ¼ 15)]. Time-evo-

lutions of population-averaged synaptic strengths hJiji for

various values of Dl are shown in Fig. 8f. In each case of

Dl ¼ 0, 3, and 6, hJiji decreases monotonically below its

initial value J0ð¼ 12Þ, and it converges toward a saturated

limit value hJ�iji nearly at t ¼ 1000 s. Consequently, LTD

occurs for these values of Dl. In contrast, for Dl ¼ �3; hJiji
increases monotonically above J0, and approaches a saturated

limit value hJ�iji. As a result, for this case LTP takes place. A

plot of population-averaged limit values of synaptic strengths

hhJ�ijiir versus Dl is shown in Fig. 8g1; the horizontal dotted

line represents the initial average value of coupling strengths
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Fig. 8 Effect of network architecture on BS in the presence of iSTDP for

D ¼ 0:05; N ¼ 103. Symmetric preferential attachment with

lin ¼ lout ¼ l�. a Time-evolutions of population-averaged synaptic

strengths hJiji for various values of l�. Plots of b1 population-averaged

limit values of synaptic strengths hhJ�ijiir (J�ij : saturated limit values of Jij

at t ¼ 1000 s) and b2 standard deviations hrJir versus l�. Raster plots of

burst onset times in c1–c4 and IPBR kernel estimates RbðtÞ in d1–d4 for

various values of l� after the saturation time, where t ¼ t� (saturation time:

1000 s) ? et. Plots of e1 the average occupation degree hhOðbÞ
i iir (open

circles), e2 the average pacing degree hhPðbÞ
i iir (open circles), and e3 the

statistical–mechanical bursting measure hMbir (open circles) versus l�. For

comparison, hhOðbÞ
i iir , hhP

ðbÞ
i iir , and hMbir versus l� in the absence of

iSTDP are also denoted by crosses. Asymmetric preferential attachment

with lin ¼ l� þ Dl and lout ¼ l� � Dl (l� ¼ 15). f Time-evolutions of

population-averaged synaptic strengths hJiji for various values ofDl. Plots

of g1 population-averaged limit values of synaptic strengths hhJ�ijiir (J�ij :

saturated limit values of Jij at t ¼ 1000 s) andg2 standard deviations hrJir
versus Dl. Raster plots of burst onset times in h1–h4 and IPBR kernel

estimates RbðtÞ in i1–i4 for various values of Dl after the saturation time,

where t ¼ t� (saturation time: 1000 s) þ et. Plots of j1 the average

occupation degree hhOðbÞ
i iir (open circles), j2 the average pacing degree

hhPðbÞ
i iir (open circles), and j3 the statistical–mechanical bursting measure

hMbir (open circles) versus Dl. For comparison, hhOðbÞ
i iir , hhP

ðbÞ
i iir , and

hMbir versus Dl in the absence of iSTDP are also denoted by crosses
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J0ð¼ 12Þ. ForDl� � 1 LTD occurs, while forDl	 � 2 LTP

takes place. Plots of standard deviations hrJir versus Dl are

also shown in Fig. 8g2. As Dl is increased, hrJir decreases,

but all these values of hrJir are larger than the initial value

r0ð¼ 0:1Þ. We also consider the effects of LTD (increasing

the degree of BS), LTP (decreasing the degree of BS), and

increased standard deviation (decreasing the degree of BS) on

BS after the saturation time t�ð¼ 1000 s). Figure 8h1–h4, i1–

i4 show raster plots of burst onset times and the corresponding

IPBR kernel estimates RbðtÞ for various values of Dl,
respectively. Due to the dominant effect of LTD (overcoming

the effect of increased standard deviation) the degrees of BS

for the case of Dl ¼ 0, 3, and 6 are increased much when

compared with Fig. 4e3–e5, f3–f5 in the absence of iSTDP.

On the other hand, in the case ofDl ¼ �3 the population state

becomes desynchronized because of the effects of both LTP

and increased standard deviation.

We characterize population behaviors for the BS in terms

of the average occupation degree hhOðbÞ
i iir, the average pac-

ing degree hhPðbÞ
i iir, and the statistical–mechanical bursting

measure hMbir. Plots of hhOðbÞ
i iir and hhPðbÞ

i iir (denoted by

open circles) versusDl are shown in Fig. 8j1, j2, respectively;

for comparison, hhOðbÞ
i iir and hhPðbÞ

i iir in the absence of

iSTDP are also shown in crosses. For Dl� � 1, the values of

hhOðbÞ
i iir and hhPðbÞ

i iir (open circles) are larger than those

(crosses) in the absence of iSTDP, due to the dominant effect

of LTD (overcoming the effect of increased standard devia-

tion). However, in the region of Dl	 � 2, a rapid step-like

transition to the case of hhPðbÞ
i iir ¼ 0 takes place because of

the effects of both LTP and increased standard deviation, in

contrast to the smooth decrease in hhPðbÞ
i iir (crosses) in the

absence of iSTDP. Figure 8j3 shows the statistical–mechan-

ical bursting measure hMbir (combining the effect of both the

average occupation and pacing degrees) in open circles; for

comparison, hMbir in the absence of iSTDP is shown in

crosses. Like the above case in Fig. 8e3, a Matthew effect in

inhibitory synaptic plasticity occurs. For Dl� � 1, good BS

with higher Mb gets better via the dominant effect of LTD

(overcoming the effect of increased standard deviation), while

for Dl	 � 2 bad BS with lower Mb gets worse via the effects

of LTP and increased standard deviation. Consequently, a

rapid transition to desynchronization occurs, in contrast to the

relatively smooth transition in the absence of iSTDP.

Summary

We are concerned about BS, associated with neural infor-

mation processes in health and disease, in the Barabási–

Albert SFN of inhibitory bursting Hindmarsh–Rose neu-

rons. In previous works on BS, inhibitory synaptic

plasticity was not considered (i.e., synaptic inhibition

strengths were static). On the other hand, in the present

work, adaptive dynamics of synaptic inhibition strengths

are governed by the iSTDP. An anti-Hebbian time window

has been used for the iSTDP update rule, in contrast to the

Hebbian time window for the case of eSTDP. The effects

of iSTDP on BS have been investigated by varying the

noise intensity D for the case of symmetric preferential

attachment with l� ¼ 15.

Due to inhibition, the roles of LTD (increasing the

degree of BS) and LTP (decreasing the degree of BS) for

the case of iSTDP are reversed in comparison with those in

excitatory synaptic plasticity where the degree of popula-

tion synchronization is increased (decreased) via LTP

(LTD). Increased standard deviations for both cases of

LTD and LTP tend to decrease the degree of BS. A Mat-

thew effect has been found in inhibitory synaptic plasticity.

In most region of LTD, good BS (with higher bursting

measure Mb) gets better due to the dominant effect of LTD

(overcoming the effect of increased standard deviation). In

contrast, in the region of LTP bad BS (with lower Mb) gets

worse because of the effects of both LTP and increased

standard deviation. Consequently, near the threshold Dth a

rapid transition from BS to desynchronization occurs via

LTP, in contrast to the relatively smooth transition in the

absence of iSTDP.

Emergences of LTD and LTP of synaptic inhibition

strengths were investigated via a microscopic method

based on the distributions of time delays fDtijg between the

nearest burst onset times of the pre- and the post-synaptic

neurons. Time evolutions of normalized histograms HðDtijÞ
were followed for both cases of LTD and LTP. For the case

of LTD with D ¼ 0:05, 9 peaks appear in HðDtijÞ due to

sparse BS, in contrast to the case of full BS where only 3

peaks appear. On the other hand, in the case of LTP with

D ¼ 0:06 merging of such multiple peaks occurs. Based on

the normalized histogram at each stage, we recursively

obtained population-averaged synaptic inhibition strength

hJiji at successive stages by using an approximate recur-

rence relation. These approximate values of hJiji were

found to agree well with directly-calculated ones. In this

way, one can understand clearly how microscopic distri-

butions of fDtijg contribute to hJiji.
Futhermore, in the presence of iSTDP, we have also

studied the effect of network architecture on BS for a fixed

value of D ¼ 0:05 by varying the symmetric attachment

degree l� and the asymmetry parameter Dl. As in the above

case of variation in D for l� ¼ 15, Matthew effects have

also been found to occur for both cases of variations in l�

and Dl. For l� � 14 and Dl� � 1, good BS with higher

bursting measure Mb gets better because the effect of LTD

is dominant in comparison with the effect of increased
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standard deviation. On the other hand, for l� 	 13 and

Dl	 � 2, bad BS with lower bursting measure Mb gets

worse via the effects of both LTP and increased standard

deviation.

Finally, we discuss limitations of our present work and

future works. In our present work, we consider only a

scale-free complex network. As a future work, it would be

interesting to study the effect of iSTDP on BS in other

networks with different topology (e.g., small-world or all-

to-all networks). In our previous work (Kim and Lim

2018d), we studied the effect of iSTDP on fast sparse

synchronization (FSS) in the small-world neuronal network

of inhibitory fast spiking interneurons, and found the same

kind of Matthew effect in inhibitory synaptic plasticity;

good FSS gets better via LTD, while bad FSS gets worse

via LTP. Hence, for our present case of BS, the same kind

of Matthew effect in iSTDP is also expected to occur in

neuronal networks with different topology. In the real

brain, structural synaptic plasticity (i.e. disappearance,

appearance, or rewiring of synapses) also occurs (Engert

and Bonhoeffer 1999; Butz et al. 2007, 2008, 2014; Caroni

et al. 2012; Ganguly and Poo 2013; Gafarov 2016, 2018),

in addition to the case of functional synaptic plasticity

where only synaptic strengths change without any struc-

tural changes. In our present work, we do not consider this

kind of structural synaptic plasticity. Hence, the study on

effect of structural plasticity on BS would be interesting as

a future work. In our work, we consider inhibitory synaptic

plasticity in the network consisting of just inhibitory

bursting neurons. We note that the iSTDP rule may be

applicable to spiking neurons as well as bursting neurons,

because a spike may be regarded as a burst with a single

spike. Hence, as a future work, it would be interesting to

study the effect of iSTDP on population synchronization in

the network composed of both spiking and bursting

neurons.
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