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We study a class of twist maps where the function g{8) =&(1 — |{26|°~") is non-
analytic {C') and endowed with a varying degree of inflection z. When = > 3,
reappearance of a KAM torus after its breakup has been observed. We intro-
duce an “inverse residue criterion” to determine the reappearance point. Scaling
behavior at the transition points is also studied. For 2<z <3 the scaling
exponents are found to vary with -, whereas for z = 3 they are independent of
z. In this sense z=3 plays a role quite similar to that of the upper critical
dimension in phase transitions.

KEY WORDS: Invariant circles; KAM tori; twist map; recurrence; scaling;
universality; critical exponent; phase transition; nonanalyticity.

1. INTRODUCTION

The basic methodology in the study of the breakup of KAM tori was intro-
duced by Greene in his 1979 paper.!"’ However, even to this date, it is not
clear how general the conclusions are beyond the standard map. Never-
theless, the methodology seems to have worked amazingly well in a wide
range of problems.

In the context of the standard map the picture for the breakup of
KAM tori is relatively simple. Each rotational torus is characterized by an
irrational winding number. These tori serve as barriers to locally stochastic
motion. However, as the perturbation strength is increased, more and more
of these tori break up. At a critical perturbation value, the last KAM torus
characterized by the “golden-mean” winding number breaks up, and global
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stochasticity will set in. The famous residue criterion was introduced by
Greene to determine very precisely the transition point.

In many aspect the breakup of KAM torn is analogous to a phase
transition. By utilizing concepts and techniques used in the study of phase
transitions, remarkable progress has been made in the understanding of the
breakup of KAM tori. In particular, universal scaling exponents'®?’
characterizing the transition have been discovered.

In phase transitions diverse physical system can be divided into
equivalence classes according to certain criteria. These universality criteria
are well known in phase transitions. However, in contradistinction to phase
transitions, much less is known about universality in chaotic transitions.
Nevertheless, we know, for example, in the case of period doubling, the
critical-point ordert*’ is one of the universality criteria on which the scaling
exponents depend.

To gain a better understanding of universality, we have recently
studied the circle map, which can be viewed as the dissipative limit of the
standard map. The circle map is generally used to model the quasiperiodic
transition to chaos. In this case the degree of inflection z serves a univer-
sality criterion. The sine function in the circle map possesses a cubic inflec-
tion point (z=3). To generalize it to any arbitrary degree of inflection, a
polynomial function which is nonanalytic (C') was invented.”® The scaling
exponents are found to depend monotonically on z, and thetr asymptotic
limits as - — = have also been found.'”

To examine the problem of universality in the conservative case, we
similarly replace the sine function in the standard map by this polynomial
function. To our amusement we found that z=3 plays a role quite similar
to that of the upper critical dimension in phase transitions, i.€., the scaling
exponents are dependent on z for 2<z <3, and yet independent of = for
o X

The most interesting part of this investigation was, however, the
phenomenon of the recurrence of KAM tori."” ) The “golden-mean” KAM
torus is found to reappear after it has broken up. However, this is true only
for z > 3; no such reappearance has been observed for z < 3. Although we
have only observed a finite number of reappearances, it can conceivably
recur infinitely many times. We have proposed an “inverse residue
criterion” for the determination of the reappearance point, which is com-
plementary to the “residue criterion” for the determination of the disap-
pearance point.

This paper is organized as follows. In Section 2 we write down the
class of nonanalytic twist maps and discuss their symmetry properties. In
Section 3 we study the breakup of KAM tori. In Section 4 the problem of
scaling and universality is investigated. In Section 5 a summary is given.
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2. NONANALYTIC TWIST MAPS

In this paper, we study a class of twist maps

T {ri+1 =r,—kg(0,)

1
G|'+l:H:'+rf+l ( )

where 6,€ [ —1/2, 1/2) and r,€ [0, 1]. We choose>® g(6) =8(1 — 26"~ "),
where z denotes the degree of inflection at 6=0. g(8) is periodically
extended by defining 6 modulo 1. Hence,

gl0+3)=g(6—3) (2)
g(3)=g(—3)=0 (3)

Since g(f) is a C'-function, 7 represents a class of nonanalytic twist maps.
Figure 1 plots g(6) for some values of z and the function (1/27) sin(276).
Since the extrema of g(6) are no longer symmetrically located at § = 1/4 or
0= —1/4 for z#2, T is not invariant under a change of sign of k¥ and a
shift of 0. Therefore, we have to study both parameter regions k >0 and
k <.

The periodic orbits have rational winding numbers w,=P,/Q,, ie.,
0o, =0+ P, and r, =r,. The stability properties of the periodic orbits can
be characterized by the residue,

R,=3[2~Tr(DT?)] (4)
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Fig. 1. The function g(#). (a) z=2; (b) {(1/2n) sin(278); (¢) z = 3: (d)=z=6.
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where DT9 is the linearized matrix of 7. An elliptic orbit has 0 < R, < 1,
and a hyperbolic orbit has R, <0 or R, > 1. Since g(#) is an odd function,
the map is reversible, i.e., it can be written as a product of two involutions

T=]211 (5)
where
- (F=r—kg(0)
Iy; {8,:_9 (6)
. {r*:r )
P00 =r—0

Since each involution possesses two symmetry lines, therc are altogether
four symmetry lines:

a. 0= -1/ (8)
b. =0 (9)
c. O=(r—1)72 (10)
d. 8=r2 (11)

For a particular rational winding number, each orbit (elliptic or hyper-
bolic) has two points on two of these four lines. One line will be mapped
to another at the halfway point of the orbit. The pattern of how these lines
map into each other is called a routing pattern.

A KAM torus with an irrational winding number @ can be
approximated numerically by a sequence of periodic orbits whose winding
numbers are the successive convergents of the continued fraction expansion
of w. The particular KAM torus we will focus our attention on is the
one whose winding number is the inverse of the “golden-mean,”
w=(/5—-1)/2. Its convergents are w,=F,/F,,,, where F, is the ith
Fibonacci number, which satisfies F,, ,=F,+F,_; with F,=0, F, =1
Using this approximation, we found that T still has a dominant symmetry
line within a certain interval of £.

In two-dimensional area-preserving maps which model two-degree-of-
freedom Hamiltonian systems, KAM tori act as one-dimensional barriers
that prevent the trajectories from diffusing from one region to another.
When the parameter exceeds a certain critical value, the last KAM torus
breaks up and becomes a cantorus. A cantorus acts as a partial barrier,
and diffusion occurs. The theory of transport based on the action varia-
tional principle can be used not only to predict the diffusion rate, but also
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to examine the existence of a KAM torus. For the map (1) the generating
function is

i 1 2
F(6, 9’):5(9—9')2+§k92(__+1 |29F‘1—1) (12)

The action of the orbit with winding number P,/Q, is

o —1
Weo= 2 Fl6,0,,) (13)
j=0

For each winding number P;/Q,, there are at least two orbits: one minimax
(R;>0) orbit and one minimizing (R,<0) orbit. The action difference
between these two orbits

AW, = W3t — Wi, >0 (14)

gives the area that is transported under one iteration of the map.

3. BREAKUP OF KAM TORI

In this work, we use the following two criteria to study the breakup
of a KAM torus.

1. Greene’'s Residue Criterion. This criterion postulates a close
relation between the existence of a KAM torus with an irrational winding
number @ and the stability property of the period-Q, orbits as P,/Q,
approaches w. If a KAM torus exists for k < k,, and disappears for k >k,
then

lim R (k)={ R*, k=k, (15)
o +oo,  k>k,

R (k) are, respectively, the residues of the minimax (+) and minimizing
(—) period-Q; orbits at a given value of the parameter &. The R* are two
constants, and |[R*| < 1.

2. Mather’s Action-Difference Criterion. Mather proved'®
that the necessary and sufficient condition for the existence of a KAM
torus is AW, =0. For the standard map, as P,/Q; approaches w, 4W,
decreases to zero for k <k, and tends to a nonzero constant for k > k.

In most cases Greene’s criterion is a very effective numerical method
to make a precise determination of & ,. Unfortunately, due to the lack of
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The residue R as a function of & for z=2. The number on the curve indicates the

period ;. The curves bunch into two groups for small k. The upper group has odd O, the
lower one, even Q.. Both groups tend to zero as £ — 0.

a rigorous proof, the necessary and sufficient conditions for its validity is
not known. Mather’s criterion, on the other hand, was rigorously proved;
and yet in practice 1t is very difficult to employ to make a precise deter-
mination of &k ,. Nevertheless, Mather’s criterion still serves as a very useful
criterion to test the existence of a KAM torus. One can prove that no
rotational invariant tori exist for k =2 and £ < —2/(z — 1). In the following,

Fig. 3.
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Plot of log(dW,) vs. log{Q,). (a)z=2, k=03; (bjz=2.1, k=01; (c)z=2.
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we will discuss the behavior of the “golden-mean™ KAM torus for different
values of z. All computations were done in quadruple precision with 36
significant figures.

(1) k<O or z<£2. Here we found that the dependence of the
residues on the parameter k is different from that of the standard map: for
k#0, R — o« as Q; — oo (see Fig. 2 for a typical case). It is similar to the
supercritical case (k> k,) in the standard map. We have computed the
action difference for several values of k. Figure 3 shows that the action dif-
ference tends to a nonzero constant as Q, — ac, It suggests that there are
no KAM tori when k£ #0. As in the case of the sawtooth map, k£, =0 1s the
critical point for the breakup of the KAM torus. This is similar to a zero-
temperature phase transition.

For z <2 and k& > 0 the dominant symmetry line is b, and for k <0 the
dominant symmetry line is . These are the same as in the standard map.
The residues are monotonic functions of &, and we did not observe any
reappearance of KAM torl.

(2) 2<z<3. Using Greene's criterion, we found k, # 0; however,
no reappearance of KAM tori has been observed. From Fig. 4 we see that
k tends to zero monotonically as z decreases from 3 to 2 (see Table I1I).
This suggests that k =0 is the critical point for z=2. For & in the vicinity
of k,, the dominant symmetry line is b.

(3) z>3. In this case the behavior of the “golden-mean” KAM
torus is significantly different. We found that there is more than one value

of k which satisfies Greene's criterion. For example, for z =4, two disap-
pearance points k)= 1.4129353 and k'3’ = 1.4261557 have been found. If a
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Fig. 4. The critical value &, as a function of z for 2<z<3.



KAM torus disappears at two points, there must be a point k., &% <
kr<k'5’, at which it reappears. To find k ., we propose an “inverse residue
criterion” for the reappearance of a KAM torus:

A KAM torus that has disappeared ar k,, will reappeai at k 5 if

i, k <kg
lim R*(k)={ R*, k=k, (16)
T 0%, k> kg

Using this “inverse residue criterion,” we are able to make a precise
determination of k.. For z=38, kY’ =138760367; for z=4, k'l'=
1.42173415. The superscript (i) in k%', refers to the ith time the KAM

torus disappears (D) or reappears (R). We have also computed the action
difference and found (see Fig. 5)

AW 50 it ded k' orkieahad Y

. , . (17)
AW —sconst>0 il kD <k<kQPork>kU+D
These results together with the scaling behavior to be discussed in the next

section suggest that k. is the point at which the “golden-mean” KAM
torus reappears. Figure 6 shows the evolution of the phase portrait from
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Fig. 5. The action difference 41 as a function of k for z=4 and (Q,, P,) = (1597, 987).
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Fig. 6. Phase portraits from disappearance to reappearance of the KAM torus for the case
-=6. Here 1, 2, and G indicate, respectively, the period-1 resonance, period-2 resonance, and
the “golden-mean” KAM torus. (a)k =0.704 <k}, (b)ki}'<k=09<ky’; (c) k@ <k =
1.35 < k2.
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disappearance to reappearance of the KAM torus for the case -=6. In
Fig. 6a, k <k'}’, the chaotic regions near the period-1 resonance and the
period-2 resonance are separated by the KAM torus. In Fig. 6b, &'}’ <
k< k%', the KAM torus has disappeared and the chaotic regions become
connected. In Fig. 6c, k%' <k <k'3", the KAM torus has reappeared and
the chaotic regions become separated again.
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Fig. 7. The residue R, for (Q;, P;)=(610,377). (a}z=6; (b)z=6.1; (c)z=6.2.
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It should be emphasized that a KAM torus can recur more than one
time. For exampile, for z=6 we have observed that it recurs at least twice.
The residues are no longer monotonic functions of k. They tend to infinity
right after the KAM torus has broken up, and become finite again as the
KAM torus reappears. Since we cannot ascertain the existence of a “final”
breakup, the KAM torus can conceivably recur infinitely many times.
When - is a fraction, the dependence of the residues on & is more com-
plicated. From Fig. 7 we observe that as - varies, there is a “bifurcation”
of the regions in which KAM tori exist. This “bifurcation” is caused by the
emergence of a pair of disappearance and reappearance points.

When the system makes the transition from z=3 to z > 3, the situa-
tion 1s much more complicated. Take z = 3.1 as an example. Figures 8 and
9 show how the residue of the orbits with different periods varies as a func-
tion of £. All these orbits have a common symmetry line b. Near &£ =0,
R, <0 for even-period orbits, and R, > 0 for odd-period orbits. It can be
seen that the residue of any orbit decreases to the lowest negative value and
then goes to positive infinity. As the period Q, is increased, the minimum
of the residue moves to the right and its absolute value increases. From
Table I we see that for a given & the residue will change from positive to
negative as the period is increased. The larger the value of k, the higher the
period at which R, changes sign. We cannot find a point that satisfies
Greene’s criterion here. However, the results of the action difference (see
Fig. 3) show that the “golden-mean™ KAM torus exists as long as k is small
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Fig. 8. The residues R, vs. k for z=3.1. The number on the curve indicates the period.

enough, but ceases to exist when k is sufficiently large. It is not clear how
to apply Greene’s criterion here.

It should be noted that when there is a reappearance of the KAM
torus the dominant symmetry lines may be different if k is in the vicinity
of k. A pair of disappearance and reappearance points have the same
dominant symmetry line. For example, for z=4, d is the dominant sym-
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Fig. 9. A blowup of the upper right-hand corner of Fig. 8.
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Fig. 10. The residues R, of the initially elliptic orbits for z=35. (a) (Q,, P,) = (233, 144);
{b) (377, 233); (c) (610, 377). The residues of the initially hyperbolic orbits are symmetrically
located. and are not shown. Stability exchange occurs before the first breakup of the KAM
torus for (a), but not for (b) and (c).

its stability as k is increased from zero to the vicinity of k%)’ Figure 10
shows the variation of the residues with k. It is evident here that stability
exchange does not necessarily entail the reappearance of a KAM torus.

4. SCALING AND UNIVERSALITY

We first summarize the definitions of various scaling exponents. For a
pair of minimax and minimizing orbits with winding number P;/Q,, we
relabel and order the orbit elements as follows:

0o (1)<Bq(2)< -~ <B8,(20,-1)<8,(20,) (18)

where 0, (1) is minimax for 7 odd, and minimizing for  even. The distance
between two neighboring points s

di(t)=0,,(1)—085,(1 +1) (19)
Period-1 scaling is defined by

di(t) ( 0, )”“’“’
d; (1) Qi

ri(t)_ril(t)N( 0, )*)"”m
r1'+1(t)-r,:(t) Qi+1

(20)




and period-3 scaling is defined by

1,(1) ( Qi)-”“’
d|+3 t) Q:‘+3

(
r(t)—ri_s(1) ( Q,)—“””
|+"4{t)_rz([) Qr—4—3

where x'’(1) and y'’(t) with i=1 or 3 are the scaling exponents. For
convenience, the exponents on the dominant symmetry line are denoted
by x!" and y!”; and the exponents on the symmetry line 7 (/= g, b, ¢, d) are
denoted by x}" and yp!". For the standard map'*’ it was found
that x!V=0.721, ¥V =2329, xV=1.093, y»=2329, and x{"+ V=
x4+ y3'=3.05 at the critical point of the breakup of the “golden-mean”
KAM torus.

We have calculated the scaling exponents on the symmetry lines at the
critical points of disappecarance and reappearance of the “golden-mean”
KAM torus for several values of z. For £ <0 or z <2 the critical point is
k,=0, and the system is integrable. The scaling exponents can be
calculated analytically: x"(ry=1 and y'"/(1)=2. This is just the scaling
behavior of a linear system. For 2<z<3, we found that the scaling
exponents at the critical point k, vary with z (see Table IIl and Figs. 11
and 12). For z =3 the scaling behavior is the same as that of the standard
map. Therefore, the scaling behavior changes smoothly from that of a
linear system to that of the standard map as z varies from 2 to 3. The sum
of the exponents, x''+ y'“, which is 2 more useful quantity in the study of
transport, shows a slightly increasing trend. However, the increase is too

(21)

Table lll. Disappearance Points &k, and the Scaling
Exponents for 2<z<3

z kD x([]] V[\,j) I‘I+ 'v(“ xi,}] }_53) .x£.31+'1’:,3)
2.0 0 1 2 3 1 2 3

21 0.219 0.965 2036 3.001 1.005 1.996 3.001
22 0.391 0935 2.067 3.002 1.013 1.989 3.002
2.3 0.5375 0.507 2.098 3.005 1.021 1.984 3.005
24 0.6617 0.881 2127 3.008 1.030 1.978 3.008
2.5 0.76828 0.858 2155 3.013 1.038 1.975 3.013
2.6 0.86037 0835 2.181 3.016 1.046 1.970 3.016
2.7 0.94034 0.810 2.211 3.021 1.055 1.967 3.022
28 L.o1o114 0.788 2.239 3.027 1.063 1.964 3.027
29 1.071375 0.763 2271 3.034 1.073 1.961 3.034

30 1.125454 0.721 2.330 3.051 1.092 1.959 3.051




i mu &L afl.

(3)
X

Fig. 11. The scaling exponents x'* and x'*’ as a function of z for 2<z<3.

small to exclude the possibility that it is in fact a constant. When z > 3, it
was found that the exponents at the disappearance and reappearance
points are equal and the same as those in the standard map. They are also
independent of = (see Table IV). Thus z =3 plays a role similar to that of
the upper critical dimension in phase transitions. It is, however, not clear
what causes this change in behavior in the transition from z <3 to z > 3.
For all cases of z there are two common points to be noted. The first
point is that the scaling exponents on the various nondominant symmetry
lines are the same approximately, yet they are different from those on the
dominant symmetry line. The sum of the two scaling exponents seems to be
a constant (see Table V). The second point is that the convergence of

2.3
2.2
OPY

20

Fig. 12. The scaling exponents »!*' and y!

/3% as a function of z for 2 <z < 3.
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Table IV. Disappearance (k,;}) and Reappearance (k,) Points
and the Scaling Exponents for 2> 3

- k Xi‘_Sl vi‘,"l x‘_l’ + },\31 Bkl }.(3_1 xl3)+ pidt
18 k‘D‘ '=1,38253450 0.7284 23261 3.0545 1.0990 1.944% 3.0438
k‘,ﬁ-’ =1.38760367 0.7226 2.3293 30521 L1018 1.9512 3.0530
4 k}_§'= 1.41293530 07219 2.3287 3.0506 1.1045 1.9419 3.0464
k'W'=1.42173415 07223 23281 3.0504 1.1015  1.9466 3.0481
k'3'=142615570 0.7203 23329 3.0533 1.0986  1.9425 3.0412
5 k')'=0.80993000 0.7234 2.3281 30515 1.1030 1.9432 3.0462
k'3 =1.05287350 0.7216 2.3288 30504 1.1040 19432 10472
k}f} = 1.39647420 0.7221 2.3285 3.0505 1.1044 1.9422 31.0466
6 k1 =0.70400046  0.7218  2.3289 3.0507 1.1046 19421 3.0467
kia)=1.29946540 0.7227 2.3284 30511 1.1037  1.9432 3.0470
k2 =143731867 0.7228 2.3304 3.0532 11121 19327 3.0448
ki3 =1.45296340 0.7229 23303 3.0533 L1121 1.9326 3.0447
kﬁ) =1.51257548 0.7221 2.3293 3.0513 1.1024 1.9454 3.0478
11 k3'=0.27830553 0.7211 23303 3.0515 1.1021  1.9462 3.0483

period-3 scaling is better than that of period-1 scaling (see Table VI). As a
matter of fact, since the even and odd combinations of (Q,, P,} in the
Fibonacci sequence have period 3, period-3 scaling scems more natural.
Further evidence is that at the critical values of & the residues intersect at
different values of R* according to the even and odd combinations of
(Q:, P;). On the nondominant symmetry line it was believed'® that the
scaling behavior is period-3. But on the dominant symmetry line it cannot
be affirmed whether the scaling behavior is period-1 or period-3 from our

Table V. Scaling Exponents on the Nondominant Symmetry
Line at k) =1.4129353 for z=4

0. T LI DFRNE LD p kB3 3 P Xt
4181 11105 1.9390  3.0495 1.0892 19620 30512 1.0888 19630  3.0518
6765 1.1090 1.9367 3.0457 1.0886 1.9642  3.0528 1.0887 19634  3.0521
10946 1.1067 1.9400 3.0467 1.0902 19603 | 3.0505 1.0881 19636  3.0517
L7711 1.1050 1.9415  3.0465 1.0913 19623 3.0536 1.0904 19592 3.0496
28657 1.1037 19414 3.0451 1.0902 1.9633 3.0535 1.0900 1.9637 3.0537
46368 1.1027 19448  3.0475 1.0912 1.9581 3.0493 1.0905 19622  3.0526




Table VI. Period-1 and Period-3 Scaling Exponents on the Dominant
Symmetry Line o at k' =1.4129353 for z=4

Q; xy! xg' ry' vy’ A PAE D RN S
377 0.6998 0.7349 2.3325 2.3378 3.0323 3.0727
610 0.7373 0.7363 2.3812 2.3550 3.1185 3.0912
987 0.7332 0.7234 2.2788 2.3417 3.0120 3.0652
1597 0.7125 0.7277 23322 23249 3.0447 3.0526
2584 0.7243 0.7233 2.3609 2.3300 3.0852 3.0533
4181 0.7317 0.7228 2.2969 2.3334 3.0286 3.0562
6765 0.7127 0.7229 2.3301 23221 3.0428 3.0450
10946 0.7241 0.7228 23512 2.3298 3.0752 3.0526
17711 0.7270 0.7213 23072 23307 3.0342 3.0520
28657 0.7152 0.7221 23305 2.3251 3.0457 3.0472
46368 0.7218 0.7213 2.3451 23292 3.0669 3.0505

numerical data. It seems that both of them tend to the same limit, and dif-
ferent values of R may eventually tend to the same limit as Q,— oc. In
Fig. 2, the residue curves for z =2 first bunch into two groups according to
the type of (Q,;, P;), and both of them then tend to zero as £ — 0. However,
no matter what the scaling behavior is, period-3 scaling still has the advan-
tage of giving faster convergence.

5. SUMMARY

The study of KAM tori in nonanalytic twist maps has revealed a sur-
prisingly rich set of novel features. The behavior of KAM tori can change
abruptly as one smoothly changes the degree of inflection z. Our results
suggest that for £ >0, z =3 is a major transition point in functional space,
similar to that of the upper critical dimension in phase transitions. At this
point the behavior of the “golden-mean” KAM torus is basically the same
as that in the standard map. This is not surprising, since the algebraic
function used here is merely the lowest order polynomial approximation to
the sine function. For z < 3, there is no recurrence of KAM tori, and the
scaling exponents vary with z. As z i1s decreased from 3 to 2, the critical
point decreases to zero, and the scaling exponents change smoothly from
those of the standard map to those of a linear system. For z > 3 the KAM
torus experiences a sequence of disappearance and reappearance as k is
increased. This recurrence may happen many, even infinitely many, times.
The scaling exponents at the disappearance and reappearance points are
the same as those in the standard map, and they are independent of :-.
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The many novel features observed in this work suggest that the
behavior of KAM tori may in fact be much more complicated than we
have been accustomed to think. It is thus worthwhile to conduct a more
thorough study of the KAM theorem as well as the Greene criterion.
Hopefully, the necessary conditions for their validity can also be found.
The value of such a study lies not only in its intrinsic importance, but also
its potential applications.
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