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Abstract
We study inhibitory coherence (i.e. collective coherence by synaptic inhibition)
in a population of globally coupled type-I neurons, which can fire at arbitrarily
low frequency. No inhibitory coherence is observed in a homogeneous
population composed of only subthreshold neurons, which exhibit noise-
induced firings. In addition to subthreshold neurons, there exist spontaneously
firing suprathreshold neurons in a noisy environment of a real brain. To take
into consideration the effect of suprathreshold neurons on inhibitory coherence,
we consider a heterogeneous population of subthreshold and suprathreshold
neurons and investigate the inhibitory coherence by increasing the fraction of
suprathreshold neurons Psupra. As Psupra passes a threshold P∗

supra, suprathreshold
neurons begin to synchronize and play the role of coherent inhibitors for the
emergence of inhibitory coherence. Thus, regularly oscillating population-
averaged global potential appears for Psupra > P∗

supra. For this coherent case,
suprathreshold neurons exhibit sparse spike synchronization (i.e. individual
potentials of suprathreshold neurons consist of coherent sparse spikings and
coherent subthreshold small-amplitude hoppings). By virtue of their coherent
inhibition, sparsely synchronized suprathreshold neurons suppress the noisy
activity of subthreshold neurons. Thus, subthreshold neurons exhibit hopping
synchronization (i.e. only coherent subthreshold hopping oscillations without
spikings appear in the individual potentials of subthreshold neurons). We also
characterize the inhibitory coherence in terms of the ‘statistical-mechanical’
spike-based and correlation-based measures, which quantify the average
contributions of the microscopic individual spikes and individual potentials
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to the macroscopic global potential. Finally, the effect of sparse randomness of
synaptic connectivity on the inhibitory coherence is briefly discussed.

PACS numbers: 87.19.lm, 87.19.lc

(Some figures may appear in colour only in the online journal)

1. Introduction

Recently, much attention has been paid to rhythms of the brain [1]. Coherence of neural
oscillations may be used for efficient sensory and cognitive processing (e.g. feature integration,
selective attention, working memory and decision making) [2, 3]. This kind of neural coherence
is also correlated with pathological rhythms associated with neural diseases (e.g. epileptic
seizures and tremors in the Parkinson disease) [4]. Here, we are interested in these coherent
brain rhythms. A brain circuit is composed of a few types of excitatory principal cells and
diverse types of inhibitory interneurons. Interneuron diversity increases the computational
power of principal cells [1]. The effect of chemical synapses on coherent brain rhythms
has much been investigated in neural systems composed of excitatory and/or inhibitory
neurons [2, 5]. Historically, recurrent excitation between principal cells is the conventional
coherence mechanism [6]. However, when the decay time of the synaptic interaction is
enough long, mutual inhibition between interneurons (rather than excitation) may synchronize
individual neural firings [7, 8]. By providing a coherent oscillatory output to the principal
cells, interneuronal networks play the role of the backbones (i.e. pacemakers) of many brain
rhythms, such as the thalamocortical spindle rhythms [9, 10] and the fast gamma rhythms in
the hippocampus and the neocortex [11–14]. When the feedback between the excitatory and
the inhibitory populations is strong, neural coherence occurs via the ‘cross-talk’ between the
two populations [13–16]. In these computational studies of neural coherence, different types
of network architectures have been considered [2]: all-to-all networks, where every neuron is
coupled to every other neuron, sparse random networks, where synaptic connections are sparse,
and complex networks, such as small-world networks (with predominantly local connections
and rare long-distance connections) [17], scale-free networks (with a few percent of hub
neurons with an exceptionally large number of connections) [18], and a new type of networks of
subnetworks [19].

Neurons in the nervous system exhibit a variety of morphological and physiological
properties. However, close to threshold, this remarkable richness may be grouped broadly
into two basic types of excitability, often referred to as type I and type II [20]. When the
strength of a constant input current passes a threshold, type-I neurons can fire at arbitrarily
low frequency and they can smoothly encode the strength of the input into the output firing
frequency. In contrast, type-II neurons have a nonzero minimum frequency of firing and they
fire in a narrow frequency band, which is relatively insensitive to changes in the strength
of the applied current. Different types of excitability occur because neurons have different
bifurcations of resting and spiking states [21]. For the type-I neurons, oscillations emerge via
a saddle-node bifurcation on an invariant circle. As the bifurcation parameter (i.e. strength
of the injected current) passes a threshold, the stable and the unstable fixed points coalesce
and then disappear, leaving a large-amplitude stable periodic orbit. Then, the frequency of
the global loop can be arbitrarily small. On the other hand, for type-II neurons, a transition
from a resting state to a periodically spiking state occurs through Hopf bifurcations with a
finite nonzero firing frequency. According to their bifurcations, neurons may also be classified
into integrators and resonators [22]. Type-I neurons act as integrators without subthreshold
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oscillations, and they prefer high-frequency input: the higher the frequency of the input, the
sooner they fire. In contrast, type-II neurons exhibit damped subthreshold oscillations and
act as resonators: they prefer oscillatory input with the same frequency as that of damped
oscillations. According to their excitability type, neurons make distinctly different responses
to stimuli, which have important implications for their distinct roles in generating population
rhythms [23–27].

In this paper, we study inhibitory coherence (i.e. collective coherence by synaptic
inhibition) in a population of globally coupled type-I neurons. Neural models exhibiting
the type-1 excitability include the Connor model for the crab leg axons [28], the Wang–
Buzsaki model for inhibitory interneurons [11], the Hindmarsh–Rose model [29] and the
Morris–Lecar (ML) model [30] under some circumstances. Among these type-I models, we
choose the ML neuron model for our study because it is not only biologically plausible,
but also computationally efficient. In section 2, we describe the biological conductance-
based ML neuron model with voltage-gated ion channels. The ML neurons (used in our
study) exhibit the type-I excitability, and they interact via inhibitory GABAergic synapses
whose activity increases quickly and decays slowly. Inhibitory coherence (which is our
main concern) is particularly important because it plays a significant role in integration of
sensory and cognitive information; for example, impaired inhibitory coherence is believed
to be associated with schizophrenia and attention-deficit disorder [31–33]. Hence, it is
important to understand mechanisms for the emergence of inhibitory coherence. Many
works exploring mechanisms of neural coherence were done in neural systems composed
of spontaneously firing (i.e. self-oscillating) suprathreshold neurons (above the threshold)
[2, 5]. For this case, neural coherence occurs via cooperation of regular firings of suprathreshold
neurons. In addition to suprathreshold neurons, there exist subthreshold neurons below the
threshold. These subthreshold neurons exhibit noise-induced firings. Collective coherence
between noise-induced spikes of subthreshold neurons has been found to occur as follows.
Stochastic excitatory coherence (i.e. collective coherence between noise-induced spikes
by synaptic excitation) was observed in a population of excitatory subthreshold neurons
[34, 35]. Due to the stochastic excitatory coherence, synaptic current, injected into each
individual neuron, becomes temporally coherent. Hence, temporal coherence resonance of
an individual subthreshold neuron in the network may be enhanced. Furthermore, stochastic
inhibitory coherence (i.e. collective coherence between noise-induced spikes by synaptic
inhibition) was also investigated in a population of inhibitory subthreshold ML neurons
exhibiting the type-II excitability [36]. Weak stochastic inhibitory coherence was thus found
to appear via cooperation of individual irregular oscillations (i.e. a regular small-amplitude
population-averaged oscillation emerges from sparsely synchronized neurons discharging
irregularly at lower rates than the network oscillation). These sparsely synchronized neural
oscillations have been intensively investigated in other types of neural networks [2, 37] and
they are believed to be associated with cortical rhythms in cognition (e.g. ultrafast rhythm
(100–200 Hz), gamma rhythm (30–100 Hz) and beta rhythm (15–30 Hz)) with irregular and
sparse neural discharges (e.g. refer to figure 11 in [2]).

Here, we are interested in the emergence of sparse spike synchronization in an inhibitory
population of type-I neurons. In contrast to the case of inhibitory subthreshold type-II ML
neurons exhibiting stochastic inhibitory coherence [36], no stochastic inhibitory coherence is
observed in an inhibitory population of subthreshold type-I ML neurons. Hence, subthreshold
type-I integrator neurons without subthreshold oscillations seem to be much more difficult to
synchronize by inhibition than subthreshold type-II resonator neurons exhibiting subthreshold
oscillations. As mentioned above, both the subthreshold and the suprathreshold neurons
coexist in a noisy environment of a real brain. To take into consideration the effect of
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spontaneously firing suprathreshold neurons on the inhibitory coherence, in section 2, we
consider a heterogeneous inhibitory population of subthreshold and suprathreshold type-I
ML neurons. In section 3, we investigate inhibitory coherence by increasing the fraction of
suprathreshold neurons Psupra in the whole population. As Psupra passes a threshold value P∗

supra,
suprathreshold neurons begin to synchronize and they play the role of coherent inhibitors
for the emergence of inhibitory coherence in the whole heterogeneous population. Thus,
for Psupra > P∗

supra, the population-averaged global potential VG exhibits a regular small-
amplitude oscillation. For this coherent case, individual suprathreshold neurons exhibit sparse
spikings phase-locked to VG at random multiples of the period of VG. Due to the stochastic
spike skipping of suprathreshold neurons, the interspike interval (ISI) histogram has multiple
peaks and partial occupation occurs in the raster plot of neural spikes. In addition to the
coherent sparse spikings, coherent subthreshold small-amplitude hopping oscillations also
appear in the individual potentials of suprathreshold neurons. In this way, suprathreshold
neurons exhibit sparse spike synchronization as in the case of inhibitory subthreshold type-II
ML neurons [36]. By virtue of their coherent inhibition, sparsely synchronized suprathreshold
neurons suppress noisy activity of subthreshold neurons. Thus, subthreshold neurons exhibit
hopping synchronization (i.e. only coherent fast subthreshold hopping oscillations without
spikings appear in the individual potentials of subthreshold neurons). We also characterize
the inhibitory coherence in terms of ‘statistical-mechanical’ spike-based [36] and correlation-
based [38] measures, which quantify the average contributions of the microscopic individual
spikes and individual potentials to the macroscopic population-averaged global potential.
Thus, sparse spike synchronization of suprathreshold neurons and hopping synchronization of
subthreshold neurons are well characterized in terms of the spike-based and the correlation-
based coherence measures, respectively. In a real brain, each neuron is coupled to only a
certain number of neurons, which is much smaller than the total number of neurons. The
effect of sparseness of synaptic connectivity on the inhibitory coherence is briefly discussed
by varying the average number of synaptic inputs per neuron Msyn in a random network.
The emergence of inhibitory coherence is thus found to persist until Msyn is larger than a
threshold value M∗

syn. This kind of inhibitory coherence emerging from sparsely synchronized
oscillations of suprathrehold neurons might be associated with cortical rhythms with stochastic
and sparse neural discharges, which contribute to cognitive functions in the cerebral cortex
(e.g., information integration, working memory and selective attention) [2, 37]. Finally, a
summary is given in section 4.

2. Heterogeneous population of inhibitory subthreshold and suprathreshold type-I ML
neurons

In this section, we describe the biological neuron model used in our computational study.
Both the subthreshold and the suprathreshold neurons coexist in a noisy environment of a
real brain. Hence, we consider a heterogeneous inhibitory population of N globally coupled
subthreshold and suprathreshold type-I neurons in the presence of noise. As an element in our
neural system, we choose the conductance-based ML neuron model, originally proposed to
describe the time-evolution pattern of the membrane potential for the giant muscle fibers of
barnacles [30]. The population dynamics in this neural network are governed by the following
set of stochastic differential equations:

C
dvi

dt
= − Iion,i + Idc,i + Dξi − Isyn,i, (1a)

dwi

dt
= φ

(w∞(vi) − wi)

τR(vi)
, (1b)
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dsi

dt
= αs∞(vi)(1 − si) − βsi, i = 1, . . . , N, (1c)

where

Iion,i = ICa,i + IK,i + IL,i (2a)

= gCam∞(vi)(vi − VCa) + gKwi(vi − VK ) + gL(vi − VL), (2b)

Isyn,i = J

N − 1

∑
j �=i

s j(t)(vi − Vsyn), (2c)

m∞(v) = 0.5 [1 + tanh {(v − V1)/V2}] , (2d)

w∞(v) = 0.5 [1 + tanh {(v − V3)/V4}] , (2e)

τR(v) = 1/ cosh {(v − V3)/(2V4)} , (2f)

s∞(vi) = 1/[1 + e−(vi−vt )/δ]. (2g)

Here, the state of the ith neuron at a time t (measured in units of ms) is characterized
by three state variables: the membrane potential vi (measured in units of mV), the slow
recovery variable wi representing the activation of the K+ current (i.e. the fraction of open
K+ channels) and the synaptic gating variable si denoting the fraction of open synaptic ion
channels. In equation (1a), C represents the capacitance of the membrane of each neuron, and
the time evolution of vi is governed by four kinds of source currents.

The total ionic current Iion,i of the ith neuron consists of the calcium current ICa,i, the
potassium current IK,i and the leakage current IL,i. Each ionic current obeys Ohm’s law. The
constants gCa, gK and gL are the maximum conductances for the ion and the leakage channels,
and the constants VCa, VK and VL are the reversal potentials at which each current is balanced
by the ionic concentration difference across the membrane. Since the calcium current ICa,i

changes much faster than the potassium current IK,i, the gate variable mi for the Ca2+ channel
is assumed to always take its saturation value m∞(vi). On the other hand, the activation variable
wi for the K+ channel approaches its saturation value w∞(vi) with a relaxation time τR(vi)/φ,
where τR has a dimension of ms and φ is a (dimensionless) temperature-like time scale factor.

Each ML neuron is also stimulated by a dc current Idc,i and a Gaussian white
noise ξi (see the second and third terms in equation (1a)) satisfying 〈ξi(t)〉 = 0 and
〈ξi(t)ξ j(t ′)〉 = δi jδ(t − t ′), where 〈· · ·〉 denotes the ensemble average. The noise ξi is a
parametric one which randomly perturbs the strength of the applied current Idc,i, and its
intensity is controlled by the parameter D. Depending on the system parameters, the ML neuron
may exhibit either type-I or type-II excitability [21]. Throughout this paper, we consider the
case of type-I excitability, where gCa = 4 mS cm−2, gK = 8 mS cm−2, gL = 2 mS cm−2,

VCa = 120 mV, VK = −84 mV, VL = −60 mV, C = 20 μF cm−2, φ = 1/15,

V1 = −1.2 mV, V2 = 18 mV, V3 = 12 mV and V4 = 17.4 mV. Only for comparison, a
result on the order parameter is given in figure 1(c) for the type-II case, where the values of
the above parameters are the same as those in the type-I case except that gCa = 4.4 mS cm−2,
φ = 0.04, V3 = 2 mV and V4 = 30 mV. For the type-I case, a transition from a resting state
to a spiking state occurs for I∗

dc � 40 μA cm−2 via a saddle-node bifurcation on an invariant
circle [21], and firing begins at arbitrarily low frequency. On the other hand, a type-II neuron
exhibits a jump from a resting state to a spiking state through a subcritical Hopf bifurcation for
I∗
dc,h � 93.9 μA cm−2 by absorbing an unstable limit cycle born via fold limit cycle bifurcation
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(a)

(b) (c)

OO

O

Figure 1. Plots of the order parameter O versus (a) both the coupling strength J and the noise
intensity D and versus (b) D for J = 20 mS cm−2 in N globally coupled inhibitory subthreshold
type-I ML neurons. The value of Idc,i for each subthreshold type-I neuron is randomly chosen with a
uniform probability in the range of (I∗

dc −�, I∗
dc), where I∗

dc = 40 μA cm−2 and � = 10 μA cm−2.
(c) Plots of O versus D for J = 3 mS cm−2 in N globally coupled inhibitory subthreshold
type-II ML neurons. The value of Idc,i for each subthreshold type-II neuron is randomly chosen
with a uniform probability in the range of (I∗

dc,l − �, I∗
dc,l ), where I∗

dc,l = 88.3 μA cm−2 and
� = 10 μA cm−2.

for I∗
dc,l � 88.3 μA cm−2 [21], and hence, the firing frequency begins from a nonzero value.

Here, a spread in the value of the dc input current Idc is taken into consideration. For the type-I
case, the values of Idc,i for the subthreshold and the suprathreshold neurons are randomly
chosen with a uniform probability in the range of (I∗

dc −�, I∗
dc) and (I∗

dc, I∗
dc +�), respectively,

where the spread parameter � is set as � = 10 μA cm−2.
We consider a heterogeneous inhibitory population of N globally coupled subthreshold

and suprathreshold ML neurons where the fraction of suprathreshold neurons is given by
Psupra = Nsupra

N (Nsupra: number of suprathreshold neurons). The last term in equation (1a)
represents the synaptic coupling between neurons in the network. Each neuron is connected
to all the other ones through global synaptic couplings. Isyn,i of equation (2c) represents
such synaptic current injected into the ith neuron. Here, the coupling strength is controlled
by the parameter J and Vsyn is the synaptic reversal potential. We use Vsyn = −80 mV
for the inhibitory synapse. The synaptic gating variable s obeys the first-order kinetics of
equation (1c) [10, 11]. Here, the normalized concentration of neurotransmitters s∞(v),
activating the synapse, is assumed to be an instantaneous sigmoidal function of the membrane
potential with a threshold vt in equation (2g), where we set vt = 0 mV and δ = 2 mV. For
the inhibitory GABAergic synapse (involving the GABAA receptors), the synaptic channel
opening rate, corresponding to the inverse of the synaptic rise time τr, is α = 10 ms−1, and the
synaptic closing rate β, which is the inverse of the synaptic decay time τd , is β = 0.1 ms−1

[11, 16]. Hence, Isyn rises fast and decays slowly.
Numerical integration of equation (1a) is done using the Heun method for the stochastic

differential equation [39] (with the time step �t = 0.01 ms), and data for (vi, wi, si)
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(i = 1, . . . , N) are obtained with the sampling time interval �t = 1 ms. For each realization
of the stochastic process in equation (1), we choose a random initial point [vi(0), wi(0), si(0)]
for the ith (i = 1, . . . , N) neuron with uniform probability in the range of vi(0) ∈ (−70, 50),
wi(0) ∈ (0.0, 0.6) and si(0) ∈ (0.0, 1.0).

3. Inhibitory coherence emerging from sparsely synchronized oscillations of
suprathreshold neurons

In this section, we are concerned about inhibitory coherence in a heterogeneous population
of N globally coupled subthreshold and suprathreshold type-I ML neurons in the presence of
noise. By increasing the fraction of suprathreshold neurons Psupra, we investigate inhibitory
coherence that emerges from sparsely synchronized oscillations of suprathreshold neurons.
Hereafter, for convenience, we omit the dimensions of Idc, D and J.

We first consider a homogeneous population (corresponding to the case of Psupra = 0)
composed of only subthreshold type-I ML neurons and study the inhibitory coherence by
varying both the coupling strength J and the noise intensity D. The emergence of inhibitory
coherence may be well described by the population-averaged global potential

VG(t) = 1

N

N∑
i=1

vi(t). (3)

In the thermodynamic limit (N → ∞), a collective state becomes coherent if �VG(t)
(= VG(t) − VG(t)) is non-stationary (i.e. an oscillating global potential VG appears for a
coherent case), where the overbar represents the time average. Otherwise (i.e. when �VG is
stationary), it becomes incoherent. Thus, the mean-square deviation of the global potential VG

(i.e. time-averaged fluctuations of VG),

O ≡ (VG(t) − VG(t))2, (4)

plays the role of an order parameter used for describing the coherence–incoherence transition
[40]. For the coherent (incoherent) state, the order parameter O approaches a nonzero (zero)
limit value as N tends to the infinity. Figure 1(a) shows plots of the order parameter versus
both the coupling strength J and the noise intensity D. As N is increased, the order parameter
tends to decrease, independent of J and D. An example of the order parameter is shown in
figure 1(b) for J = 20. For any given D, O tends to zero as N is increased. Hence, only
incoherent states exist, irrespective of D. This is in contrast to the case of subthreshold type-II
neurons exhibiting inhibitory coherence [36]. Figure 1(c) shows plots of the order parameter
versus the noise intensity for the type-II case of J = 3. Unlike the type-I case, coherent states
exist in an intermediate range of noise intensity (D∗

l (� 10.3) < D < D∗
h(� 27.9)), where

the order parameter approaches a nonzero limit value as N increases. Hence, subthreshold
type-I neurons (used in our study) seem to be much more difficult to synchronize by synaptic
inhibition than subthreshold type-II neurons.

In addition to subthreshold neurons, spontaneously firing suprathreshold neurons also exist
in a noisy environment of a real brain. To take into consideration the effect of suprathreshold
neurons on the inhibitory coherence, we consider a heterogeneous population consisting of
subthreshold and suprathreshold type-I ML neurons for J = 20. For convenience, we set the
value of noise intensity as D = 8 and investigate the inhibitory coherence by increasing the
fraction of suprathreshold neurons Psupra. Figure 2(a1) shows the plots of the order parameter

7



J. Phys. A: Math. Theor. 45 (2012) 155102 S-Y Kim et al

(a1)

(b1)

(c1) (c2) (c3)

(b2) (b3) (b4) (b5)

(a2) (a3)

O

O O

Figure 2. Order parameters, raster plots of neural spikes and time series of global potentials in the
heterogeneous ensemble of N globally coupled inhibitory type-I ML neurons for J = 20 mS cm−2

and D = 8 μA ms1/2 cm−2; N = 103 in (b1)–(b5) and (c1)–(c3). The value of Idc,i for each
subthreshold (suprathreshold) type-I ML neuron is randomly chosen with a uniform probability in
the range of (I∗

dc −�, I∗
dc) ((I∗

dc, I∗
dc +�)), where I∗

dc = 40 μA cm−2 and � = 10 μA cm−2. Plots
of the order parameter O versus the fraction of suprathreshold neurons Psupra in (a1) the whole
population and in the two subpopulations of (a2) the suprathreshold and (a3) the subthreshold
neurons. Raster plots and time series of the global potential VG in the whole population for Psupra =
0, 0.2, 0.4, 0.6 and 1.0 in (b1)–(b5). Time series of the subpopulation-averaged potentials Vsupra
and Vsub in the two subpopulations of the suprathreshold and the subthreshold neurons for Psupra =
0.2, 0.4 and 0.6 in (c1)–(c3). Vertical dashed lines in (c1)–(c3) represent the times at which the
local minima of VG appear.

O versus Psupra in the whole population. As Psupra passes a threshold value P∗
supra(� 0.16), a

transition from an incoherent state to a coherent state occurs. As shown in figure 2(a1), it is
enough to consider only the case of N = 103 for the study of inhibitory coherence because the
values of the order parameter O for the coherent states become saturated for N = 103. Hence,
we set the number of neurons as N = 103 in all cases except the calculation of the order
parameter. For an incoherent case of Psupra = 0, the raster plot consists of randomly scattered
sparse spikes and the global potential VG exhibits a nearly stationary irregular oscillation (see
figure 2(b1)); the amplitude of VG decreases with further increase in N. However, when passing
the threshold P∗

supra, partially occupied ‘stripes’ (composed of spikes and indicating collective
coherence) appear in the raster plot together with regularly oscillating small-amplitude VG with
frequency fG (= 13.8 Hz) (see figure 2(b2) for Psupra = 0.2). As Psupra is further increased,
both the pacing degree of spikes in the raster plot and the amplitude of VG (representing the
degree of collective coherence) increase, as shown in figures 2(b3)–(b5), where fG = 14.3,
13.6 and 14.2 Hz. This kind of weak inhibitory coherence also occurs in each subpopulation
of the subthreshold and the suprathreshold neurons. As in the case of the whole population,
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the emergence of inhibitory coherence in the subpopulations may be well described by the
subpopulation-averaged potentials Vsupra and Vsub:

Vsupra(t) = 1

Nsupra

Nsupra∑
i=1

vi(t), Vsub(t) = 1

Nsub

Nsub∑
i=1

vi(t), (5)

where Nsupra (Nsub) is the number of suprathreshold (subthreshold) neurons. Then, the order
parameters Osupra and Osub, defined by the mean-square deviation of Vsupra and Vsub,

Osupra ≡ (Vsupra(t) − Vsupra(t))2, Osub ≡ (Vsub(t) − Vsub(t))2, (6)

may be used for describing the coherence–incoherence transitions in the subpopulations of
suprathreshold and subthreshold neurons, respectively. The plots of Osupra and Osub versus
Psupra are shown in figures 2(a2) and (a3), respectively. We note that the coherent transition in
each subpopulation occurs at the same threshold value P∗

supra(� 0.16). For the case of coherent
states, not only Vsupra but also Vsub exhibits regular oscillations whose amplitudes increase as
Psupra is increased (see figures 2(c1)–(c3), where vertical dashed lines in Vsupra and Vsub denote
the times at which local minima of VG appear). Both Vsupra and Vsub are phase-locked to VG.

To further understand the emergence of inhibitory coherence, we examine the individual
and the global output signals in the subpopulations of subthreshold and suprathreshold neurons.
We first consider the subpopulation of suprathreshold neurons. As explained in section 2, the
values of Idc,i for the suprathreshold neurons are randomly chosen with a uniform probability
in the range of (I∗

dc, I∗
dc+�), where the spread parameter � is set as � = 10. Then, the intrinsic

frequencies of suprathreshold neurons (in the absence of noise and coupling) are distributed in
a range of (0, 13.2) Hz, and the average value and the standard deviation from the mean value
for the distribution of intrinsic frequencies are 9.4 and 2.9 Hz, respectively [21]. Figures 3(a1)–
(a5) show the time series of the individual potential v1 of the first neuron and the time series of
the global potential Vsupra in the subpopulation of the suprathreshold neurons. For an incoherent
case, Vsupra shows a nearly stationary irregular oscillation and only stochastic intermittent
spikings occur without any coherent hoppings in the individual potential of suprathreshold
neurons, as shown in figure 3(a1) for Psupra = 0.1. However, when passing the threshold
P∗

supra (� 0.16), a coherent transition occurs, and then, Vsupra exhibits regular small-amplitude
oscillations (see figures 3(a2)–(a5)). For this coherent case, individual suprathreshold neurons
exhibit sparse spikings phase-locked to Vsupra at random multiples of the period of Vsupra (see
figures 3(a2)–(a5) where dashed lines denote the times at which the local minima of Vsupra

appear). This ‘stochastic phase locking’ leading to stochastic spike skipping is well shown
in the ISI histogram with multiple peaks (see figures 3(d2)–(d5)), which will be explained
below in details. In addition to these coherent sparse spiking phases, coherent subthreshold
small-amplitude hopping oscillations also appear in the individual potentials of suprathreshold
neurons. In this way, suprathreshold neurons exhibit sparse spike synchronization. That is,
they exhibit sparsely synchronized oscillations with two well-separated frequency scales, a
fast subthreshold hopping frequency fh imposed by the collective network oscillation with
the frequency fG (� 14 Hz) and a lower spiking frequency fs of individual suprathreshold
neurons: fs = 3.6, 2.8, 2.3 and 1.8 Hz, in figures 3(a2)–(a5), respectively. For the case of the
GABAergic synapse (we use in our study), gamma network oscillations with frequency in the
range of (30, 100) Hz occur usually in a population of inhibitory neurons with fast intrinsic
frequencies (e.g., 55–63 Hz in figure 8(A) in [11]). However, since suprathreshold neurons
for our case have slow intrinsic frequencies in a range of (0, 13.2) Hz, the network oscillation
frequency fG (� 14) Hz seems to become less than the gamma frequency. These sparsely
synchronized suprathreshold neurons play the role of coherent inhibitors for the emergence of
inhibitory coherence in the whole heterogeneous population, as shown below.
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(a1) (a2) (a3) (a4) (a5)

(c1) (c2)

(b)

(c3) (c4) (c5)

(d1) (d2) (d3) (d4) (d5)

Figure 3. Time series of the individual and the global potentials, the average firing probability
and the ISI histogram in the heterogeneous ensemble of N(= 103) globally coupled inhibitory
type-I ML neurons for J = 20 mS cm−2 and D = 8 μA ms1/2 cm−2. The value of Idc,i for each
subthreshold (suprathreshold) type-I ML neuron is randomly chosen with a uniform probability
in the range of (I∗

dc − �, I∗
dc) ((I∗

dc, I∗
dc + �)), where I∗

dc = 40 μA cm−2 and � = 10 μA cm−2.
The individual potential v1 of the first neuron and the global potential Vsupra in the subpopulation
of suprathreshold neurons for Psupra = 0.1, 0.2, 0.4, 0.6 and 1.0 in (a1)–(a5). Vertical dashed lines
in (a2)–(a5) represent the times at which the local minima of Vsupra appear. (b) The plot of the
average firing probability Pf ,sub versus the fraction of suprathreshold neurons Psupra. The individual
potential v1 of the first neuron and the global potential Vsub in the subpopulation of subthreshold
neurons for Psupra = 0, 0.1, 0.2, 0.4 and 0.6 in (c1)–(c5). Vertical dashed lines in (c3)–(c5) denote
the times at which the local minima of Vsub appear. ISI histograms in the whole population for
Psupra = 0, 0.2, 0.4, 0.6 and 1.0 in (d1)–(d5); each ISI histogram is composed of 5 × 104 ISIs and
the bin size for the histogram is 5 ms. Vertical dotted lines in (d2)–(d5) denote integer multiples of
TG (period of VG).

We now consider the subpopulation of subthreshold neurons. Figure 3(b) shows the plot
of the average firing probability Pf ,sub versus Psupra in the subpopulation of subthreshold
neurons (i.e. time-averaged fraction of firing subthreshold neurons in the subpopulation of
subthreshold neurons). Due to inhibition, Pf ,sub decreases dramatically with respect to Psupra.
For Psupra > 0.02, one can disregard spikes of subthreshold neurons because Pf ,sub(∼10−8)

becomes very small. In contrast to the case of suprathreshold neurons, subthreshold neurons
seem to be largely irrelevant for the synaptic inhibition because their spikes may be negligible.
Hence, the synaptic current Isyn,i of equation (2c) may be well approximated by taking into
consideration the synaptic effect of only the suprathreshold neurons. Then, the synaptic
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currents injected into the suprathreshold and the subthreshold neurons, i.e., I(supra)

syn,i and I(sub)
syn,i ,

are given by

I(supra)

syn,i � Jsupra

Nsupra − 1

∑
j �=i

s j(t)(vi − Vsyn), (7a)

I(sub)
syn,i � Jsupra

Nsupra

Nsupra∑
j

s j(t)(vi − Vsyn), (7b)

where Jsupra = J Psupra (J = 20 for our case) and the summations are done only in the
suprathreshold subpopulation. The time series of the individual potential v1 of the first neuron
and the time series of the global potential Vsub in the subpopulation of the subthreshold
neurons are shown in figures 3(c1)–(c5). For an incoherent case, Vsub exhibits nearly stationary
irregular oscillations as shown in figures 3(c1) and (c2) for Psupra = 0 and 0.1, respectively.
However, as Psupra passes a threshold P∗

supra, a coherent transition occurs, and then, regular
oscillations with a small amplitude appear in Vsub (see figures 3(c3)–(c5)). For the coherent
case, sparsely synchronized suprathreshold neurons suppress the noisy activity of subthreshold
neurons by virtue of their coherent inhibition, and then, individual subthreshold neurons
exhibit only coherent subthreshold hoppings without spikings. Thus, subthreshold neurons
exhibit hopping synchronization, in contrast to sparse spike synchronization of suprathreshold
neurons. By taking into consideration the fact that only the suprathreshold neurons are
practically relevant for the synaptic inhibition, we understand the coherent transition occurring
when passing a threshold P∗

supra in the following way. The increase in Psupra means the growth
of the size of the relevant spiking part for the synaptic inhibition in the whole population.
Hence, individual neurons receive more synaptic inhibition as Psupra is increased. For this
case, the threshold P∗

supra in the whole population is associated with the critical value of the
coupling strength J∗

supra in the incoherence–coherence transition that occurs by varying Jsupra

(= 20Psupra) in an inhibitory ensemble composed of only suprathreshold neurons. As Jsupra

passes a threshold J∗
supra, suprathreshold neurons begin to exhibit sparse spike synchronization

by the synaptic inhibition of equation (7a), and by virtue of their coherent inhibition of
equation (7b), subthreshold neurons show hopping synchronization. In this way, inhibitory
coherence, which emerges from sparsely synchronized oscillations of suprathreshold neurons,
occurs in the whole population. Particularly, sparse spike synchronization exhibited by
suprathreshold neurons may be seen well in the ISI histograms. Figures 3(d1)–(d5) show
the ISI histograms in the whole population. (As shown above, spiking neurons in the whole
population are just suprathreshold ones for Psupra > 0.02.) The ISI histogram for Psupra = 0
has a very long tail, and hence, the average value 〈ISI〉(� 4926 ms) of ISIs is very large.
As Psupra passes the threshold P∗

supra, multiple peaks tend to appear at integer multiples of TG

(period of VG) (i.e. n TG (n = 1, 2, 3, . . .)) (e.g., see the ISI histogram for Psupra = 0.2; vertical
dotted lines in the histogram denote integer multiples of TG (=72.4 ms)). As Psupra is further
increased, ISI histograms with more distinct multiple peaks appear due to the stochastic spike
skipping resulting from stochastic phase locking of the suprathreshold neurons, as shown in
figures 3(d3)–(d5) where TG = 69.9, 73.3 and 70.3 ms, respectively. The most probable peak
appears at 2 TG, and hence, suprathreshold neurons fire mostly in alternate global cycles.

We also characterize the inhibitory coherence that emerges from sparsely synchronized
oscillations of suprathreshold neuorns in terms of two kinds of ‘statistical-mechanical’
spike-based [36] and correlation-based [38] measures. These statistical-mechanical measures
quantify the average contributions of the microscopic individual spikes and individual
potentials to the macroscopic population-averaged global potential VG. They are in contrast to
the ‘thermodynamic’ order parameter O of equation (4), which concerns the time-averaged
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(a1) (a2) (a3)

(b1) (b2) (b3)

Figure 4. ‘Statistical-mechanical’ coherence measures in the heterogeneous ensemble of N(= 103)

globally coupled inhibitory type-I ML neurons for J = 20 mS cm−2 and D = 8 μA ms1/2 cm−2.
(a) Spike-based coherence measure Ms: (a1) the plot of the average occupation degree 〈Oi〉 versus
the fraction of suprathreshold neurons Psupra, (a2) the plot of the average pacing degree 〈Pi〉 versus
Psupra and (a3) the plot of the spiking coherence measure Ms versus Psupra. To obtain 〈Oi〉, 〈Pi〉 and
Ms, we follow the 3 × 103 stripes for each Psupra. (b) Correlation-based coherence measure Mc:
(b1) the plot of Mc versus Psupra in the whole population and plots of M(supra)

c and M(sub)
c versus

Psupra in the two subpopulations of (b2) suprathreshold and (b3) subthreshold neurons. The number
of data used for the calculation of a cross-correlation function for each Psupra is 212.

fluctuations of just the macroscopic global potential VG without considering any quantitative
relation between VG and the microscopic individual potentials. As shown in figures 2(b2)–(b5),
sparse spike synchronization may be well visualized in the raster plot of spikes. For this case,
the raster plot is composed of partially occupied stripes (indicating collective coherence).
To measure the degree of the sparse spike synchronization shown in the raster plot, a new
spike-based measure Ms was introduced by considering the occupation pattern and the pacing
pattern of neural spikes in the ‘stripes’ [36]. Particularly, the pacing degree between spikes
is determined in a statistical-mechanical way by quantifying the average contribution of
microscopic individual spikes to the global potential VG. The spiking coherence measure Mi

of the ith stripe is defined by the product of the occupation degree Oi of spikes (representing
the density of the ith stripe) and the pacing degree Pi of spikes (denoting the smearing of the
ith stripe):

Mi = Oi · Pi. (8)

The occupation degree Oi in the ith stripe is given by the fraction of spiking neurons:

Oi = N(s)
i

N
, (9)

where N(s)
i is the number of spiking neurons in the ith stripe. For the full occupation, Oi = 1,

while for the partial occupation, Oi < 1. The pacing degree Pi of each microscopic spike in
the ith stripe can be determined in a statistical-mechanical way by taking into consideration its
contribution to the macroscopic global potential VG. Each global cycle of VG begins from its
left minimum, passes the central maximum and ends at the right minimum; the central maxima
coincide with centers of stripes in the raster plot (see figures 2(b2)–(b5)). An instantaneous
global phase 	(t) of VG is introduced via linear interpolation in the two successive subregions
forming a global cycle [41] (e.g., refer to figure 4(b) in [36]). The global phase 	(t) between
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the left minimum (corresponding to the beginning point of the ith global cycle) and the central
maximum is given by

	(t) = 2π(i − 3/2) + π

(
t − t (min)

i

t (max)
i − t (min)

i

)
for t (min)

i � t < t (max)
i (i = 1, 2, 3, . . .), (10)

and 	(t) between the central maximum and the right minimum (corresponding to the beginning
point of the (i + 1)th cycle) is given by

	(t) = 2π(i − 1) + π

(
t − t (max)

i

t (min)

i+1 − t (max)
i

)
for t (max)

i � t < t (min)

i+1 (i = 1, 2, 3, . . .), (11)

where t (min)
i is the beginning time of the ith global cycle (i.e. the time at which the left minimum

of VG appears in the ith global cycle) and t (max)
i is the time at which the maximum of VG appears

in the ith global cycle. Then, the contribution of the kth microscopic spike in the ith stripe
occurring at the time t (s)

k to VG is given by cos 	k, where 	k is the global phase at the kth
spiking time (i.e. 	k ≡ 	(t (s)

k )). A microscopic spike makes the most constructive (in-phase)
contribution to VG when the corresponding global phase 	k is 2πn (n = 0, 1, 2, . . .), while
it makes the most destructive (anti-phase) contribution to VG when 	i is 2π(n − 1/2). By
averaging the contributions of all microscopic spikes in the ith stripe to VG, we obtain the
pacing degree of spikes in the ith stripe:

Pi = 1

Si

Si∑
k=1

cos 	k, (12)

where Si is the total number of microscopic spikes in the ith stripe. By averaging Mi given in
equation (8) over a sufficiently large number Ns of stripes, we obtain the spike-based coherence
measure Ms:

Ms = 1

Ns

Ns∑
i=1

Mi. (13)

By varying Psupra, we follow 3 × 103 stripes and measure the degree of collective spiking
coherence in terms of 〈Oi〉 (average occupation degree), 〈Pi〉 (average pacing degree) and Ms

for 13 values of Psupra in the coherent regime, and the results are shown in figures 4(a1)–(a3).
As Psupra is increased, the average occupation degree 〈Oi〉 (denoting the average density of
stripes in the raster plot) increases slowly, but its values are very small (〈Oi〉 < 0.05); only a
fraction (less than 1/20) of the total neurons in the whole population fire in each stripe (see
figures 2(b2)–(b5)). This partial occupation results from stochastic spike skipping of
suprathreshold neurons shown well in the multi-peaked ISI histograms (see figures 3(d2)–(d5)).
On the other hand, the average pacing degree 〈Pi〉 increases rapidly near the threshold P∗

supra,
and then, it grows slowly. This tendency may be understood from the change in the structure
of the ISI histograms. As Psupra is increased, clear well-separated multiple peaks appear, and
hence, the average pacing degree of the stripes becomes better with increasing Psupra. In most
of the coherent region, the values of 〈Pi〉 are large in contrast to 〈Oi〉. However, the spiking
measure Ms of equation (13) (representing the degree of collective spiking coherence) is very
low due to the partial occupation in the raster plot. We note that this spike-based coherence
measure Ms represents the degree of sparse spike synchronization of suprathreshold neurons
in the whole population very well.

Unlike the suprathreshold neurons, subthreshold neurons exhibit only coherent
subthreshold hoppings without spikings. Hence, they make no contribution to the spike-based
measure Ms. To measure the degree of hopping synchronization exhibited by subthreshold
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neurons, we use another statistical-mechanical measure based on the ensemble average of
cross-correlations between the macroscopic global potential VG and the microscopic individual
potentials vi [38]. The inhibitory coherence in the whole population is quantified in terms of
the coherence measure Mc given by the ensemble average of the global-individual cross-
correlations Ci(0) between VG and vi at the zero-time lag:

Mc = 1

N

N∑
i=1

Ci(0). (14)

Here, the normalized cross-correlation function Ci(τ ) between VG and vi is given by

Ci(τ ) = �VG(t + τ )�vi(t)√
�V 2

G(t)
√

�v2
i (t)

, (15)

where τ is the time lag, �VG(t) = VG(t) − VG(t), �vi(t) = vi(t) − vi(t) and the overline
denotes the time average. As mentioned above, this correlation-based measure Mc can be
regarded as a ‘statistical-mechanical’ measure because it quantifies the average contributions
of the microscopic individual potentials to the macroscopic global potential. Hence, Mc is
in contrast to the conventional microscopic measure based on the cross-correlations between
the microscopic individual potentials. As in the case of the whole population, the degree
of inhibitory coherence in each subpopulation of the subthreshold and the suprathreshold
neurons may be well quantified in terms of the coherence measures M(sub)

c and M(supra)
c based

on the cross-correlations between the global potentials (Vsub and Vsupra) and the individual
potentials vi:

M(supra)
c = 1

Nsupra

Nsupra∑
i=1

C(supra)

i (0), M(sub)
c = 1

Nsub

Nsub∑
i=1

C(sub)
i (0), (16)

where

Csupra
i (τ ) = �Vsupra(t + τ )�vi(t)√

�V 2
supra(t)

√
�v2

i (t)
(i = 1, ..., Nsupra), (17)

Csub
i (τ ) = �Vsub(t + τ )�vi(t)√

�V 2
sub(t)

√
�v2

i (t)
(i = 1, ..., Nsub). (18)

By varying Psupra, we measure the degree of inhibitory coherence in terms of the correlation-
based measures Mc, M(supra)

c and M(sub)
c not only in the whole population, but also in the

subpopulations of the subthreshold and the suprathreshold neurons, and the results are shown
in figures 4(b1)–(b3). All of the coherence measures increase rapidly near the threshold P∗

supra,
and then, they grow slowly. The values of these correlation-based measures are very large
in contrast to the spiking coherence measure Ms. We also note that the degree of hopping
synchronization M(sub)

c in the subpopulation of subthreshold neurons is higher than the degree
of sparse spike synchronization M(supra)

c in the subpopulation of suprathreshold neurons. This
can be understood from the oscillating patterns of the global and the individual potentials.
The global potentials Vsupra and Vsub exhibit small regular oscillations (see figures 3(a2)–(a5)
and figures 3(c3)–(c5)). Like the case of the global potential, the individual subthreshold
neurons exhibit only coherent subthreshold hoppings, in contrast to the case of suprathreshold
neurons exhibiting both the coherent sparse spikings and the coherent hoppings. Hence, the
cross-correlations between Vsub and the individual potentials of subthreshold neurons become
higher than those between Vsupra and the individual potentials of suprathreshold neurons. Thus,
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(a)

(b1) (b2) (b3) (b4) (b5)

(c1) (c2) (c3) (c4) (c5)

O

Figure 5. (a) Plots of the order parameter O versus the noise intensity D for Psupra = 1, (b1)–(b5)
raster plots of neural spikes and (c1)–(c5) global potentials VG for various values of Psupra and D
in a heterogeneous ensemble of N globally coupled subthreshold and suprathreshold type-I ML
neurons for J = 20 mS cm−2; N = 103 in (b1)–(b5) and (c1)–(c5). The value of Idc,i for each
subthreshold (suprathreshold) type-I ML neuron is randomly chosen with a uniform probability in
the range of (I∗

dc − �, I∗
dc) ((I∗

dc, I∗
dc + �)), where I∗

dc = 40 μA cm−2 and � = 10 μA cm−2.

the correlation-based coherence measure represents the degree of hopping synchronization of
subthreshold neurons very well.

In the above, we study the inhibitory coherence for a fixed value of D = 8, where
P∗

supra � 0.16. By varying the noise intensity D, we briefly investigate the effect of noise on
the inhibitory coherence for J = 20. For Psupra = 1, plots of the order parameter O versus D
are shown in figure 5(a). The degree of inhibitory coherence decreases monotonically with
increasing D from zero, and a transition to an incoherent state occurs when passing a threshold
D∗ (� 28). Figures 5(b1)–(b5) and (c1)–(c5) show the raster plots of spikes and the global
potentials VG for various values of D and Psupra. For Psupra = 1, with increasing D, the stripes
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in the raster plot become more smeared and the amplitude of VG decreases. Eventually, when
passing the threshold D∗, incoherent states appear (i.e. the raster plot consists of randomly
scattered spikes and VG exhibits a nearly stationary irregular oscillation). Hence, as D is
increased, the value of P∗

supra (the threshold value of the fraction of suprathreshold neurons
for the emergence of inhibitory coherence) increases; P∗

supra = 0.08 and 0.28 for D = 0 and
15, respectively. Thus, for D > D∗, no inhibitory coherence emerges, as shown in the case of
D = 40.

So far, we consider the globally coupled case. However, in a real brain, each neuron is
coupled to only a certain number of neurons, which is much smaller than the total number
of neurons. Due to the sparseness of the network architecture, the inhibitory coherence (seen
in the globally coupled case) is expected to be reduced or destroyed. It is often assumed in
models that the coupling between neurons is random [11, 16, 42–44]. We briefly investigate
the effect of sparse random connectivity on the inhibitory coherence for J = 20 and D = 8 by
varying the average number of synaptic inputs per neuron Msyn in a heterogeneous ensemble
of N randomly coupled subthreshold and suprathreshold type-I ML neurons. Figures 6(a1)–
(a5) and (b1)–(b5) show the raster plots of spikes and the global potentials VG for various
values of Msyn and Psupra when N = 103. For Psupra = 1, with decreasing Msyn, the stripes of
spikes in the raster plot become more smeared and the amplitude of VG decreases. Eventually,
incoherent states appear when passing a threshold M∗

syn (i.e. the raster plot is composed of
randomly scattered spikes and VG shows a nearly stationary irregular oscillation). Hence,
as Msyn is decreased from N − 1 (corresponding to the globally coupled case), a larger
fraction of suprathreshold neurons is necessary for the appearance of inhibitory coherence
(e.g., see the cases of Msyn =800 and 500). Thus, for Msyn < M∗

syn, inhibitory coherence
disappears, as shown in the case of Msyn = 100. As is well known, Msyn (rather than Psyn

(i.e. the connection probability per neuron)) plays an appropriate sparseness parameter for the
coherent transition because there exists a fixed threshold value M∗

syn for large N, independent
of N [2, 44]. (In contrast, the threshold value of Psyn depends on N.) When Psupra = 1, plots
of the order parameter O versus the effective average number of synaptic inputs per neuron
Msyn,eff (1/Msyn,eff = 1/Msyn − 1/N) are shown in figure 6(c) for N = 100, 300, 500, 1000
and 3000, where the correction term (∼1/N) takes into account the finite network size effect
[2, 44]. Inhibitory coherence emerges when Msyn,eff is larger than a threshold M∗

syn,eff (� 553);
for the case of N = 103, M∗

syn � 356.

4. Summary

We are concerned about inhibitory coherence in a population of type-I neurons. Both
the subthreshold and the suprathreshold neurons coexist in a noisy environment of a real
brain. Hence, we consider a heterogeneous population of globally coupled subthreshold and
suprathreshold type-I ML neurons and investigate inhibitory coherence by increasing the
fraction of suprathreshold neurons Psupra. For Psupra = 0, no inhibitory coherence has been
observed, which implies that subthreshold type-I neurons are difficult to synchronize by
synaptic inhibition. However, as Psupra passes a threshold value P∗

supra, a coherent transition
occurs in the subpopulation of suprathreshold neurons, and these synchronized suprathreshold
neurons play the role of coherent inhibitors for the emergence of inhibitory coherence in
the whole heterogeneous population. Consequently, for Psupra > P∗

supra, a regular population
rhythm with a small amplitude appears in the population-averaged global potential. For
this coherent case, suprathreshold neurons exhibit sparse spike synchronization (i.e. both
the coherent sparse spiking and the coherent subthreshold small-amplitude hopping phases
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(c)

(a1) (a2) (a3) (a4) (a5)

(b1) (b2) (b3) (b4) (b5)

O

Figure 6. (a1)–(a5) Raster plots of neural spikes and (b1)–(b5) global potentials VG for various
values of Psupra and Msyn in a heterogeneous ensemble of N (= 103) randomly coupled subthreshold
and suprathreshold type-I ML neurons for J = 20 mS cm−2 and D = 8 μA ms1/2 cm−2. (c) Plots
of the order parameter O versus the effective average number of synaptic inputs per neuron
Msyn,eff (1/Msyn,eff = 1/Msyn − 1/N) for Psupra = 1. The value of Idc,i for each subthreshold
(suprathreshold) type-I ML neuron is randomly chosen with a uniform probability in the range of
(I∗

dc − �, I∗
dc) ((I∗

dc, I∗
dc + �)), where I∗

dc = 40 μA cm−2 and � = 10 μA cm−2.

appear in the individual potentials of suprathreshold neurons). By virtue of their coherent
inhibition, sparsely synchronized suprathreshold neurons suppress the noisy activity of
subthreshold neurons. Hence, subthreshold neurons exhibit hopping synchronization (i.e.
only the coherent fast subthreshold hopping phase appears in the individual potentials of
subthreshold neurons.) We have also characterized the inhibitory coherence in terms of the
‘statistical-mechanical’ coherence measures based on spikes and correlations, which quantify
the average contributions of the microscopic individual spikes and individual potentials to the
macroscopic global potential. Thus, sparse spike synchronization of suprathreshold neurons
and hopping synchronization of subthreshold neurons have been well characterized in terms of

17



J. Phys. A: Math. Theor. 45 (2012) 155102 S-Y Kim et al

the spike-based and the correlation-based coherence measures, respectively. Finally, the effect
of sparse random synaptic connectivity on the inhibitory coherence has been investigated,
and the emergence of inhibitory coherence has thus been found to persist only if the average
number of synaptic inputs per neuron Msyn is larger than a threshold value M∗

syn. This kind of
inhibitory coherence that emerges from sparsely synchronized oscillations of suprathreshold
neurons might be associated with cortical rhythms with irregular and sparse neural firings,
which contribute to cognitive functions such as information integration, working memory and
selective attention [2, 37].
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Grosse P, Cassidy M J and Brown P 2002 Clin. Neurophysiol. 113 1523
Tass P, Rosenblum M G, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A and Freud H J 1998 Phys.

Rev. Lett. 81 3291
[5] Wang X-J 2003 Encyclopedia of Cognitive Science ed L Nadel (London: Macmillan) pp 272–80
[6] Bremer F 1958 Physiol. Rev. 38 357

Traub R D, Miles R and Wong R K S 1989 Science 243 1319
[7] van Vreewijk C, Abbott L F and Ermentrout G B 1994 J. Comput. Neurosci. 1 313
[8] Hansel D, Mato G and Meunier C 1995 Neural Comput. 7 307
[9] Wang X-J and Rinzel J 1992 Neural Comput. 4 84

[10] Golomb D and Rinzel J 1994 Physica D 72 259
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