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Abstract
We numerically study dynamical behaviors of the quasiperiodically forced
Hodgkin–Huxley neuron and compare the dynamical responses with those for
the case of periodic stimulus. In the periodically forced case, a transition from
a periodic to a chaotic oscillation was found to occur via period doublings in
previous numerical and experimental works. We investigate the effect of the
quasiperiodic forcing on this period-doubling route to chaotic oscillation. In
contrast to the case of periodic forcing, a new type of strange nonchaotic (SN)
oscillating states (that are geometrically strange but have no positive Lyapunov
exponents) is found to exist between the regular and chaotic oscillating states as
intermediate ones. Their strange fractal geometry leads to aperiodic ‘complex’
spikings. Various dynamical routes to SN oscillations are identified, as in the
quasiperiodically forced logistic map. These SN spikings are expected to be
observed in experiments of the quasiperiodically forced squid giant axon.

PACS numbers: 05.45.Ac, 05.45.Df, 87.19.L−

1. Introduction

To probe dynamical properties of a system, one often applies an external stimulus to the system
and investigates its response. Particularly, periodically stimulated biological oscillators have
attracted much attention in various systems such as the embryonic chick heart-cell aggregates
[1] and the squid giant axon [2, 3]. These periodically forced systems have been found
to exhibit rich regular and chaotic behaviors [4]. Recently, similar lockings and chaotic
responses have also been found in neocortical networks of pyramidal neurons under periodic
synaptic input [5]. In contrast, a quasiperiodically forced case has received little attention [6].
Hence, intensive investigation of quasiperiodically forced biological oscillators is necessary
for understanding their dynamical responses under the quasiperiodic stimulus.
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Strange nonchaotic (SN) attractors typically appear between the regular and chaotic
attractors in quasiperiodically forced dynamical systems [7–18]. They exhibit some properties
of regular as well as chaotic attractors. Like regular attractors, their dynamics is nonchaotic in
the sense that they do not have a positive Lyapunov exponent; like usual chaotic attractors, they
have a geometrically strange fractal structure. Here, we are interested in dynamical responses
of neural oscillators subject to quasiperiodic stimulation. SN oscillations are expected to occur
in quasiperiodically forced neural oscillators.

This paper is organized as follows. In section 2, we study dynamical responses of the
quasiperiodically forced Hodgkin–Huxley (HH) neuron which was originally introduced to
describe the behavior of the squid giant axon [19]. As a dc stimulus passes a threshold
value, a self-sustained oscillation (corresponding to a spiking state) is induced. The effect of
periodic forcing on this HH oscillator was previously studied [3, 20]. Thus, regular (such as
phase locking and quasiperiodicity) and chaotic responses were found. We note that similar
dynamical responses were also observed in experimental works of the periodically forced
squid giant axon [2, 3]. In this way, the model study on the HH neuron may be examined
in real experiments of the squid giant axon. Here, we numerically study the case that the
HH oscillator is quasiperiodically forced at two incommensurate frequencies and compare the
dynamical responses with those for the periodically forced case. In the periodically forced
case (i.e., in the presence of only one ac stimulus source), a transition from a periodic to a
chaotic oscillation was found to occur via period-doubling bifurcations [3, 20]. The effect of
the quasiperiodic forcing on this period-doubling route to chaotic oscillation is particularly
investigated by adding another independent ac stimulus source. Thus, unlike the case of
periodic forcing, new types of SN oscillating states are found to occur between the regular
and chaotic oscillating states as intermediate ones. As a result of their strange geometry, SN
oscillating states give rise to the appearance of aperiodic complex spikings, as in the case of
chaotic oscillations. Diverse dynamical routes to SN oscillations are identified, as in the case
of the quasiperiodically forced logistic map [7]. It is also expected that these SN spikings
might be observed in experimental works on the quasiperiodically forced squid giant axon.
Finally, a summary is given in section 3.

2. SN oscillations in the quasiperiodically forced HH oscillator

We consider the conductance-based HH neuron model which serves as a canonical model for
tonically spiking neurons. The dynamics of the HH neuron, which is quasiperiodically forced
at two incommensurate frequencies f1 and f2, is governed by the following set of differential
equations:

C
dV

dt
= −Iion + Iext = −(INa + IK + IL) + Iext

= −gNam
3h(V − VNa) − gKn4(V − VK) − gL(V − VL) + Iext, (1a)

dx

dt
= αx(V )(1 − x) − βx(V )x; x = m,h, n, (1b)

where the external stimulus current density (measured in units of μA cm−2) is given by
Iext = Idc + A1 sin(2πf1t) + A2 sin(2πf2t), Idc is a dc stimulus, A1 and A2 are amplitudes
of quasiperiodic forcing, and ω(≡f2/f1) is irrational (f1 and f2: measured in units of kHz).
Here, the state of the HH neuron at a time t (measured in units of ms) is characterized by four
variables: the membrane potential V (measured in units of mV), the activation (inactivation)
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gate variable m(h) of the Na+ channel (i.e., the fraction of sodium channels with open activation
(inactivation) gates), and the activation gate variable n of the K+ channel (i.e., the fraction of
potassium channels with open activation gates). In equation (1), C represents the membrane
capacitance per surface unit (measured in units of μF cm−2) and the total ionic current Iion

consists of the sodium current INa, the potassium current IK, and the leakage current IL. Each
ionic current obeys Ohm’s law. The constants gNa, gK and gL are the maximum conductances
for the ion and the leakage channels, and the constants VNa, VK, and VL are the reversal
potentials at which each current is balanced by the ionic concentration difference across the
membrane. The three gate variables obey the first-order kinetics of equation (1). The rate
constants are given by

αm(V ) = 0.1[25 − (V − Vr)]

exp[{25 − (V − Vr)}/10] − 1
, βm(V ) = 4 exp[−(V − Vr)/18], (2a)

αh(V ) = 0.07 exp[−(V − Vr)/20], βh(V ) = 1

exp[{30 − (V − Vr)}/10] + 1
, (2b)

αn(V ) = 0.01[10 − (V − Vr)]

exp[{10 − (V − Vr)}/10] − 1
, βn(V ) = 0.125 exp[−(V − Vr)/80], (2c)

where Vr is the resting potential when Iext = 0. For the squid giant axon, typical values of
the parameters (at 6.3 ◦C) are [21]: C = 1 μF cm−2, gNa = 120 mS cm−2, gK = 36 mS cm−2,

gL = 0.3 mS cm−2, VNa = 50 mV, VK = −77 mV, VL = −54.4 mV, and Vr = −65 mV.
To obtain the Poincaré map of equation (1), we make a normalization f1t → t , and then

equation (1) can be reduced to the following differential equations:

dV

dt
= F1(x, θ) = 1

Cf1
[−gNam

3h(V − VNa) − gKn4(V − VK) − gL(V − VL) + Iext], (3a)

dm

dt
= F2(x, θ) = 1

f1
[αm(V )(1 − m) − βm(V )m], (3b)

dh

dt
= F3(x, θ) = 1

f1
[αh(V )(1 − h) − βh(V )h], (3c)

dn

dt
= F4(x, θ) = 1

f1
[αn(V )(1 − n) − βn(V )n], (3d)

dθ

dt
= ω (mod 1), (3e)

where x[= (x1, x2, x3, x4)] ≡ (V ,m, h, n) and Iext = Idc + A1 sin(2πt) + A2 sin(2πθ). The
phase space of the quasiperiodically forced HH oscillator is six dimensional with coordinates
V,m, h, n, θ and t. Since the system is periodic in θ and t, they are circular coordinates in the
phase space. Then, we consider the surface of section, the V -m-h-n-θ hypersurface at t = n (n:
integer). The phase-space trajectory intersects the surface of section in a sequence of points.
This sequence of points corresponds to a mapping on the five-dimensional hypersurface.
The map can be computed by stroboscopically sampling the orbit points vn[≡ (xn, θn)] at
the discrete time n (corresponding to multiples of the first external driving period T1). We
call the transformation vn → vn+1 the Poincaré map, and write vn+1 = P(vn).

Numerical integration of equations (1) and (3) is done using the fourth-order Runge–Kutta
method. Dynamical analysis is performed in both the continuous-time system (i.e., flow) and
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Figure 1. Period-doubling route to chaos in the periodically forced HH oscillator for Idc =
100 μA cm−2 and f1 = 26 Hz (A2 = 0). Time series of V (t) for (a) A1 = 50.42 μA cm−2,
(b) A1 = 50.33 μA cm−2 and (c) A1 = 50.24 μA cm−2, which correspond to the period-1, period-
2, and chaotic states in the Poincaré map P (solid circles represent stroboscopically sampled points
in P), respectively. The largest Lyapunov exponent for the chaotic oscillation in (c) is σ1 � 0.096.
(d) Bifurcation diagram (i.e., plot of V versus A1) in P.

the discrete-time system (i.e., Poincaré map). For example, the time series of the membrane
potential V (t) and the phase flow are obtained in the flow. On the other hand, the Lyapunov
exponent [22] and the phase sensitivity exponent [12] of an attractor are calculated in the
Poincaré map. To obtain the Lyapunov exponent of an attractor in the Poincaré map, we choose
20 random initial points {(Vi(0),mi(0), hi(0), ni(0), θi(0)); i = 1, . . . , 20} with uniform
probability in the range of Vi(0) ∈ (−60, 0),mi(0) ∈ (0.1, 0.9), hi(0) ∈ (0.1, 0.2), ni(0) ∈
(0.5, 0.7) and θi(0) ∈ [0, 1). For each initial point, we get the Lyapunov exponent, and
choose the average value of the 20 Lyapunov exponents. (The method of obtaining the phase
sensitivity exponent will be explained below.)

In the presence of only the dc stimulus (i.e., A1 = A2 = 0), a transition from a resting
state to a periodic spiking state occurs for Idc = I ∗

dc(�9.78 μA cm−2) via a subcritical
Hopf bifurcation when the resting state absorbs the unstable limit cycle born via a fold
limit cycle bifurcation for Idc � 6.26 μA cm−2 [23, 24]. Thus, a self-sustained oscillation
(corresponding to a spiking state) is induced in the HH neuron model for Idc > I ∗

dc. Here, we
set Idc = 100 μA cm−2 and ω to be the reciprocal of the golden mean (i.e., ω = (

√
5 − 1)/2),

and numerically investigate dynamical responses of the (self-sustained) HH oscillator under
the ac external stimulus. We first study the case of periodic forcing (i.e., A2 = 0) by varying
A1 for f1 = 26 Hz. Figures 1(a)–1(c) show the time series of V (t) for A1 = 50.42, 50.33
and 50.24 μA cm−2, respectively, and the bifurcation diagram in the Poincaré map P is also
given in figure 1(d); stroboscopically sampled points in P are represented by solid circles in
figures 1(a)–1(c). As A1 is decreased, successive period-doubling bifurcations occur. For
example, periodic oscillations of V (t) in figures 1(a) and 1(b) correspond to period-1 and
period-2 states in P, respectively. When A1 passes a threshold A∗

1(� 50.28 μA cm−2) a
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Figure 2. State diagram in the A1 − A2 plane for Idc = 100 μA cm−2 and f1 = 26 Hz in the
quasiperiodically forced HH oscillator. Regular, SN and chaotic regions are shown in light gray,
gray and black, respectively. In the regular region, the torus, the doubled torus and the quadrupled
torus exist in the regions denoted by T , 2T and 4T , respectively, and the solid lines represent torus
doubling bifurcation curves with terminal points denoted by crosses. SN attractors appear via
fractalization, collision with a smooth unstable torus and collision with a nonsmooth ring-shaped
unstable set when passing the heavy solid line, the dashed line and the dotted line, respectively.

chaotic transition occurs. Thus, for A1 < A∗
1 chaotic oscillations with positive Lyapunov

exponents appear, as shown in figure 1(c).
From now on, we investigate the effect of quasiperiodic forcing on the period-doubling

route to chaotic oscillation by changing A1 and A2 for f1 = 26 Hz. Figure 2 shows a state
diagram in the A1 −A2 plane. Each state is characterized by the largest (nontrivial) Lyapunov
exponent σ1, associated with dynamics of the variable x (besides the (trivial) zero exponent,
related to the phase variable θ of the quasiperiodic forcing) and the phase sensitivity exponent
δ. The exponent δ measures the sensitivity of the variable x with respect to the phase θ

of the quasiperiodic forcing and characterizes the strangeness of an attractor [12]. Regular
quasiperiodic oscillations occur on smooth tori. A smooth torus that has a negative largest
Lyapunov exponent (i.e., σ1 < 0) and has no phase sensitivity (i.e., δ = 0) exists in the region
denoted by T and shown in light gray. When crossing a solid line, the smooth torus becomes
unstable and bifurcates to a smooth doubled torus in the region represented by 2T . Smooth
quadrupled tori, bifurcated from doubled tori, also exist in the region denoted by 4T . On
the other hand, chaotic oscillating states with positive largest Lyapunov exponents (σ1 > 0)

exist in the region shown in black. Between these regular and chaotic regions, SN oscillating
states that have negative largest Lyapunov exponents (σ1 < 0) and positive phase sensitivity
exponents (δ > 0) exist in the region shown in gray. Due to their high phase sensitivity, SN
oscillating states have a strange fractal phase space structure. Various dynamical routes to SN
oscillations via gradual fractalization, collision with a smooth unstable torus, and collision
with a nonsmooth ring-shaped unstable set will be discussed below.

When passing a heavy solid boundary curve in figure 2, a transition from a smooth torus to
an SN attractor occurs via gradual fractalization [10]. As an example, we study such transition
to SN oscillations along the route a by decreasing A1 for A2 = 0.1 μA cm−2. Figures 3(a)–
3(c) show the time series of V (t) for the quasiperiodic oscillation, the SN oscillation and the
chaotic oscillation when A1 = 50.41, 50.374 and 50.36 μA cm−2, respectively. These regular,
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Figure 3. Appearance of an SN attractor via fractalization along the route a in figure 2 for
A2 = 0.1 μA cm−2. Time series of V (t) for (a) the quasiperiodic spiking state (A1 =
50.41 μA cm−2), (b) the SN spiking state (A1 = 50.374 μA cm−2) and (c) the chaotic spiking
state (A1 = 50.36 μA cm−2). Projections of attractors onto the θ − V plane in the Poincaré map
are shown for (d) the smooth torus (corresponding to (a)), (e) the SN attractor (corresponding to
(b)), and (f ) the chaotic attractor (corresponding to (c)). (g) Lyapunov-exponent diagram (i.e.,
plot of σ1 versus A1); σ1 for the SN attractor is shown in black. (h) Phase sensitivity functions
	

(1)
N are shown for the smooth torus (T) (d) and the SN attractor (SNA) (e). In the case of the SN

attractor, the graph is well fitted with a dashed straight line with slope δ � 2.39. (i) Plot of the
phase sensitivity exponent δ versus 
A1 (= A1 − A∗

1) for the SN attractor; A∗
1 � 50.377.

SN and chaotic states are analyzed in terms of the largest Lyapunov exponent σ1 and the phase
sensitivity exponent δ in the Poincaré map. Projections of their corresponding attractors onto
the θ − V plane are shown in figures 3(d)–3(f ). For the regular state, a smooth torus exists
in the θ − V plane (see figure 3(d)). As A1 is decreased, the smooth torus becomes more and
more wrinkled and transforms to an SN attractor without apparent mediation of any nearby
unstable invariant set [7, 8]. As an example, see an SN attractor in figure 3(e). This kind of
gradual fractalization is the most common route to SN attractors. With further decrease in A1,
such an SN attractor turns into a chaotic attractor, as shown in figure 3(f ).

A dynamical property of each attractor is characterized in terms of the largest Lyapunov
exponent σ1 (measuring the degree of sensitivity to initial conditions). The Lyapunov-exponent
diagram (i.e., plot of σ1 versus A1) is given in figure 3(g). When passing a threshold value
of A1 � 50.377 μA cm−2, an SN attractor appears. The graph of σ1 for the SN attractor is
shown in black, and its value is negative as in the case of a smooth torus. However, as A1

passes the chaotic transition point of A1 � 50.368 μA cm−2, a chaotic attractor with a positive
σ1 appears. Although SN and chaotic attractors are dynamically different, both of them have
strange geometry. To characterize the strangeness of an attractor, we investigate the sensitivity
of the attractor with respect to phase θ of the external quasiperiodic forcing [12]. This phase

6



J. Phys. A: Math. Theor. 42 (2009) 265103 W Lim and S-Y Kim

sensitivity may be characterized by differentiating x with respect to θ at a discrete time t = n.
Using equation (3), we may obtain the following governing equation for ∂xi

∂θ
(i = 1, 2, 3, 4),

d

dt

(
∂xi

∂θ

)
=

4∑
j=1

∂Fi

∂xj

· ∂xj

∂θ
+

∂Fi

∂θ
, (4)

where (x1, x2, x3, x4) = (V ,m, h, n) and Fi’s (i = 1, 2, 3, 4) are given in equation (3).
Starting from an initial point (x(0), θ(0)) and an initial value ∂x/∂θ = 0 for t = 0, we
may obtain the derivative values of S(i)

n (≡ ∂xi/∂θ) at all subsequent discrete time t = n by
integrating equations (3) and (4). One can easily see the boundedness of S(i)

n by looking only
at the maximum

γ
(i)
N (x(0), θ(0)) = max

0�n�N

∣∣S(i)
n (x(0), θ(0))

∣∣ (i = 1, 2, 3, 4). (5)

We note that γ
(i)
N (x(0), θ(0)) depends on a particular trajectory. To obtain a ‘representative’

quantity that is independent of a particular trajectory, we consider an ensemble of randomly
chosen initial points {x(0), θ(0)}, and take the minimum value of γ

(i)
N with respect to the initial

orbit points [12],

	
(i)
N = min

{x(0),θ(0)}
γ

(i)
N (x(0)) (i = 1, 2, 3, 4). (6)

Figure 3(h) shows a phase sensitivity function 	
(1)
N , which is obtained in an ensemble containing

20 random initial orbit points {(Vi(0),mi(0), hi(0), ni(0), θi(0)); i = 1, . . . , 20} which are
chosen with uniform probability in the range of Vi(0) ∈ (−60, 0),mi(0) ∈ (0.1, 0.9), hi(0) ∈
(0.1, 0.2), ni(0) ∈ (0.5, 0.7) and θi(0) ∈ [0, 1). In the case of the smooth torus in figure 3(d),
	

(1)
N grows up to the largest possible value of the derivative |∂x1/∂θ | along a trajectory and

remains for all subsequent time. Thus, 	
(1)
N saturates for large N and hence the smooth torus

has no phase sensitivity (i.e., it has a smooth geometry). On the other hand, in the case of
the SN attractor in figure 3(e), 	

(i)
N grows unboundedly with the same power δ, independently

of i,

	
(i)
N ∼ Nδ. (7)

Here, the value of δ � 2.39 is a quantitative characteristic of the phase sensitivity of the SN
attractor, and δ is called the phase sensitivity exponent. For obtaining satisfactory statistics,
we consider 20 ensembles for each A1, each of which contains 20 randomly chosen initial
points and choose the average value of the 20 phase sensitivity exponents obtained in the 20
ensembles. Figure 3(i) shows a plot of δ versus 
A1(=A1 − A∗

1). Note that the value of
δ monotonically increases from zero as A1 is decreased away from the SN transition point
A∗

1 (�50.377 μA cm−2). As a result of this phase sensitivity, the SN oscillating state has
a strange fractal geometry leading to aperiodic complex spikings, as in the case of chaotic
oscillations (e.g., see figures 3(b) and 3(c)).

As a dashed boundary curve in figure 2 is crossed, another route to SN attractors appears
through collision between a stable smooth doubled torus and its unstable smooth parent
torus [11]. As an example, we study this transition to SN oscillations along the route b by
decreasing A1 for A2 = 0.06 μA cm−2. Figure 4 shows a stable two-band torus (denoted by a
solid curve) and an unstable smooth one-band parent torus (denoted by a short-dashed curve)
for A1 = 50.348 μA cm−2. The unstable parent torus is located in the middle of the two
bands of the stable torus. As A1 is decreased, the bands of the stable torus become more and
more wrinkled, while the unstable torus remains smooth (see figure 4(b)). When A1 passes a
threshold value of A1 � 50.3469 μA cm−2, the two bands of the stable torus touch its unstable
parent torus at a dense set of θ values (not at all θ values). As a result of this phase-dependent
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Figure 4. Appearance of an SN attractor via phase-dependent (nonsmooth) collision between
a stable two-band torus and its unstable smooth parent torus along the route b in figure 2
for A2 = 0.06 μA cm−2. Stable two-band torus (denoted by a solid curve) and its unstable
smooth torus (represented by a short-dashed curve) for (a) A1 = 50.348 μA cm−2 and (b) A1 =
50.347 μA cm−2. (c) SN attractor with σ1 � −0.015 and δ � 3.77 for A1 = 50.346 μA cm−2.
(d) Chaotic attractor with σ1 � 0.038 for A1 = 50.34 μA cm−2.

(nonsmooth) collision between the stable doubled torus and its unstable parent torus, an SN
attractor is born, as shown in figure 4(c). This SN attractor, containing the former bands of
the torus as well as the unstable parent torus, has a positive phase sensitivity exponent (i.e.,
δ > 0), inducing the strangeness of the SN attractor. However, its dynamics is nonchaotic
because the largest Lyapunov exponent is negative (i.e., σ1 < 0). As another threshold value
of A1 � 50.344 μA cm−2 is passed, the SN attractor transforms to a chaotic attractor with a
positive largest Lyapunov exponent σ1 (see figure 4(d)).

A main interesting feature of the state diagram in figure 2 is the existence of ‘tongues’
of quasiperiodic motion that penetrate into the chaotic region. The first-order (second-order)
tongue lies near the terminal point (denoted by a cross) of the first-order (second-order) torus-
doubling bifurcation curve. When crossing the upper boundary of the tongue (denoted by
a dotted line), an intermittent SN attractor appears via phase-dependent collision of a stable
torus with a nonsmooth ring-shaped unstable set [14, 15]. We first study the transition to
an intermittent SN attractor along the route c in the first-order tongue by increasing A2 for
A1 = 50.34 μA cm−2. Figure 5(a) shows a smooth torus for A2 = 0.093 μA cm−2. When
passing a threshold value of A2 � 0.09335 μA cm−2, a sudden transition to an intermittent
SN attractor occurs, as shown in figure 5(b) for A2 = 0.09353. Due to high phase sensitivity,
this SN attractor with δ � 3.15 has a strange fractal structure, while its dynamics is nonchaotic
because of a negative largest Lyapunov exponent (σ1 � −0.015). A typical trajectory on the
intermittent SN attractor spends a long stretch of time in the vicinity of the former torus, then
it bursts out from this region and traces out a much larger fraction of the state space, and so
on. To characterize the intermittent bursting, we use a small quantity d∗ for the threshold
value of the magnitude of the deviation from the former torus. When the deviation is smaller
(larger) than d∗, the intermittent attractor is in the laminar (bursting) phase. For each A2, we
follow a long trajectory until 104 laminar phases are obtained in the Poincaré map P and get
the average of characteristic time τ between bursts. As shown in figure 5(c), the average value
of τ exhibits a power-law scaling behavior,

τ ∼ 
A
−γ

2 , γ � 0.5, (8)
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Figure 5. Appearance of intermittent SN attractors. (a)–(d) Appearance of an intermittent SN
attractor along the route c in figure 2 for A1 = 50.34 μA cm−2. (a) Smooth torus with σ1 � −0.071
for A2 = 0.093 μA cm−2. (b) Intermittent SN attractor with σ1 �= −0.015 and δ � 3.15 for
A2 = 0.09353 μA cm−2. (c) Plot of log10τ versus log10
A2. The graph is well fitted with a
dashed straight line with slope γ � 0.5. Here τ is the average characteristic time between bursts and

A2 = A2−A∗

2(A
∗
2 = 0.09335 μA cm−2). For each 
A2, τ is calculated from 104 laminar phases

in the Poincaré map P. (d) Chaotic attractor with σ1 � 0.083 for A2 = 0.095 μA cm−2. (e)–(h)
Band-merging transition from a two-band torus to an intermittent single-band SN attractor along
the route d in figure 2 for A1 = 50.3 μA cm−2. (e) Smooth two-band torus with σ1 � −0.135 for
A2 = 0.03 μA cm−2. (f ) Intermittent single-band SN attractor with σ1 � −0.029 and δ � 2.17
for A2 = 0.0336 μA cm−2. (g) Plot of log10τ versus log10
A2. The graph is well fitted with a
dashed straight line with slope γ � 0.5. Here τ is the average characteristic time between bursts
and 
A2 = A2 − A∗

2(A
∗
2 = 0.03345 μA cm−2). For each 
A2, τ is calculated from 104 laminar

phases in P 2. (h) Chaotic attractor with σ1 � 0.079 for A2 = 0.04 μA cm−2.

where the overbar represents time averaging and 
A∗
2 = A2 − A∗

2 (A∗
2 = 0.09335). The

scaling exponent γ seems to be the same as that for the case of the quasiperiodically forced
map [13]. As A2 passes another threshold value of A2 � 0.0936 μA cm−2, the SN attractor
transforms to a chaotic attractor because the largest Lyapunov exponent σ1 becomes positive,
as shown in figure 5(d). Furthermore, using the rational approximation, the mechanism for the
intermittent route to SN attractors will be investigated below. Thus, a smooth torus is found
to transform to an intermittent SN attractor via phase-dependent collision with a nonsmooth
ring-shaped unstable set.

We also study another intermittent route to SN attractors along the route d in the second-
order tongue by increasing A2 for A1 = 50.3 μA cm−2. Figure 5(e) shows a smooth two-band
torus for A2 = 0.03 μA cm−2. As A2 passes a threshold value of A2 � 0.03345 μA cm−2, a
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band-merging transition from a smooth doubled torus to a single-band SN attractor occurs [15].
Thus, an intermittent single-band SN attractor appears (e.g., see the intermittent SN attractor
with σ1 � −0.029 and δ � 2.17 in figure 5(f ) for A2 = 0.0336]. A typical trajectory of the
second iterate of the Poincaré map P (i.e., P 2) spends a long stretch of time near one of the
two former attractors (i.e., smooth tori), then it bursts out of this region and comes close to
the same or other former torus where it remains again for some time interval, and so on. As
in the above case of intermittent route to SN attractors, we also obtain the 104 laminar phases
from a long trajectory in P 2, and get the average of characteristic time τ between bursts. As
shown in figure 5(g), the average characteristic time shows a power-law scaling behavior,

τ ∼ 
A
−γ

2 , γ � 0.5, (9)

where 
A2 = A2 − A∗
2 (A∗

2 = 0.03345). The scaling exponent γ seems to be the same as
that for the case of the intermittent route to SN attractors occurring near the first-order tongue.
Since the dynamical mechanism for the appearance of intermittent SN attractors near the
first-order and second-order tongues are the same (i.e., an intermittent SN attractor appears via
a phase-dependent collision between a smooth torus and a nonsmooth ring-shaped unstable
set), the intermittent SN attractors for both cases seem to exhibit the same scaling behaviors.
As A2 is further increased and passes another threshold value of A2 � 0.0352 μA cm−2, the
SN attractor turns into a chaotic attractor with a positive largest Lyapunov exponent σ1, as
shown in figure 5(h).

The dynamical mechanisms for the appearance of intermittent SN attractors near the
tongues are the same, irrespective of the tongue order. Here, we consider the case of the
main first-order tongue, and using the rational approximation to the quasiperiodic forcing,
we search for an unstable orbit that causes the intermittent transition via collision with the
smooth torus for A2 = 0.08 μA cm−2. For the inverse golden mean ω[=(

√
5 − 1)/2], its

rational approximants are given by the ratios of the Fibonacci numbers, ωk = Fk−1/Fk , where
the sequence of {Fk} satisfies Fk+1 = Fk + Fk−1 with F0 = 0 and F1 = 1. Instead of the
quasiperiodically forced system with ω, periodically forced systems with ωk are studied in
the rational approximation. As an example, we consider the rational approximation of level
k = 7. The rational approximation to the smooth torus (denoted by a black curve), composed
of stable orbits with period F7(= 13), is shown in figure 6(a) for A1 = 50.3432 μA cm−2.
We note that a ring-shaped unstable set, composed of F7 small rings, lies near the smooth
torus. At first, each ring is composed of the stable (shown in black) and unstable (shown in
gray) orbits with period F7 (see the inset in figure 6(a)). However, as A1 is changed such
rings make evolution, as shown in figure 6(b) for A1 = 50.343 μA cm−2. For fixed values
of A1 and A2, the phase θ may be regarded as a ‘bifurcation parameter’. As θ is varied,
a chaotic attractor appears via an infinite sequence of period-doubling bifurcations of stable
periodic orbits in each ring, and then it disappears via a boundary crisis when it collides with
the unstable F7-periodic orbit (see the inset in figure 6(b)). Thus, the attracting part (shown in
black) of each ring is composed of the union of the originally stable F7-periodic attractor, the
higher 2nF7-periodic (n = 1, 2, . . .) and chaotic attractors born through the period-doubling
cascade. On the other hand, the unstable part (shown in gray) of each ring consists of the
union of the originally unstable F7-periodic orbit (i.e., the lower gray line in the inset in figure
6(b)) and the destabilized F7-periodic orbit (i.e., the upper gray line in the inset in figure 6(b))
via a period-doubling bifurcation. As the parameters, A1 and A2, are further changed, both the
size and shape of the rings change, and eventually each ring is composed of a large unstable
part (shown in gray) and a small attracting part (shown in black), as shown in figure 6(c) for
A1 = 50.34 μA cm−2 and A2 = 0.089 μA cm−2 (a magnified view is given in figure 6(d)).
We also note that new rings appear inside or outside the ‘old’ rings.
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(a)

(c)

(e)

(d)

(f )

(g) (h)

(b)

Figure 6. Intermittent transition to an SN attractor in the rational approximation. (a)–(b) Birth
and evolution of a nonsmooth ring-shaped unstable set for A2 = 0.08 μA cm−2 in the rational
approximation of level k = 7. (a) Smooth torus (denoted by a black curve) and a ring-shaped
unstable set for A1 = 50.3432 μA cm−2. Each ring is composed of the attracting part (shown
in black) and the unstable part (shown in gray). A magnified view of a ring is given in the
inset. (b) Smooth torus (represented by a black curve) and an evolved ring-shaped unstable set
for A1 = 50.343 μA cm−2. As A1 is decreased, the unstable part (shown in gray) in each ring
becomes dominant. (c)–(h) Mechanism for the intermittent transition to an SN attractor along the
route c in figure 2 for A1 = 50.34 μA cm−2. (c) Smooth torus and a ring-shaped unstable set
for A2 = 0.089 μA cm−2 (a magnified view near θ = 0.065 is given in (d)). New rings appear
inside or outside the old rings. (e) Nonsmooth attractor born via a phase-dependent (nonsmooth)
collision between the smooth torus and a ring-shaped unstable set for A2 = 0.0904 μA cm−2 ((f )
is a magnified view near θ = 0.065). (g) Intermittent SN attractor with F7 gaps (born via an
interior crisis) for A2 = 0.0915 μA cm−2. (h) A magnified gap near θ = 0.065.

Finally, in terms of the rational approximation of level 7, we explain the mechanism for
the intermittent transition occurring in the first-order tongue for A1 = 50.34 μA cm−2 (see
figures 5(a)–5(b)). As we approach the border of the intermittent transition in the state
diagram, the ring-shaped unstable set comes closer to the smooth torus, as shown in
figure 6(c) for A2 = 0.089 μA cm−2 (see a magnified view in figure 6(d)). As A2 passes
a threshold value of A2 � 0.090305 μA cm−2, a phase-dependent (nonsmooth) collision
occurs between the smooth torus and the unstable part (shown in gray) of the nonsmooth
ring-shaped unstable set. Then, the new attractor of the system contains the attracting part
(shown in black) of the ring-shaped unstable set and becomes nonsmooth, which is shown
in figure 6(e) for A2 = 0.0904 μA cm−2 (see a magnified view in figure 6(f )). As A2

is further increased, the chaotic component in the rational approximation to the attractor
increases, and eventually for A2 � 0.091202 μA cm−2, it becomes suddenly widened
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via an interior crisis when it collides with the nearest ring (e.g., see figure 6(g)). Then,
F7(=13) ‘gaps’, where no attractors with period F7 exist, are formed. A magnified gap
is shown in figure 6(h). We note that this gap is filled by intermittent chaotic attractors.
Thus, the rational approximation to the whole attractor consists of the union of the periodic
and chaotic components. For this case, the periodic component is dominant, and hence
the average largest Lyapunov exponent (〈σ1〉 � −0.037) becomes negative, where 〈· · ·〉
denotes the average over the whole θ . Hence, the rational approximation to the attractor
becomes nonchaotic. We note that the 7th rational approximation to the attractor in
figure 6(g) resembles the (original) intermittent SN attractor in figure 5(b), although the level
of the rational approximation is low. In this way, the intermittent transition to an SN attractor
occurs through two steps in the rational approximation: the phase-dependent (nonsmooth)
collision and the interior crisis.

3. Summary

We have numerically studied dynamical responses of the quasiperiodically forced HH neural
oscillator and compared them with those for the periodically forced case. For the case of
periodic forcing, a transition from a periodic to a chaotic oscillation has been found to occur
via period doublings in both numerical and experimental works. Effect of the quasiperiodic
forcing on this period-doubling route to chaotic oscillation has been investigated. In contrast to
the case of periodic forcing, new type of SN oscillating states have been found to exist between
the regular and chaotic oscillating states as intermediate ones. Due to their strange geometry,
these SN oscillations lead to the occurrence of aperiodic complex spikings, as in the case of
chaotic oscillations. Hence, SN oscillating states might be a dynamical origin for the complex
spikings which are usually observed in cortical neurons. Various routes to SN oscillations via
fractalization, collision with a smooth unstable torus, and collision with a nonsmooth ring-
shaped unstable set have been identified, as in the quasiperiodically forced logistic map [7].
These SN responses are also found to occur in other neurons exhibiting period-doubling route to
chaos (e.g., the Morris–Lecar neuron and the FitzHugh–Nagumo neuron) under quasiperiodic
stimulus [25]. Finally, we suggest an experiment on the quasiperiodically forced squid giant
axon and expect that SN spikings to be observed. However, the real biological environment is
a noisy one. Hence, it is necessary to further investigate the effect of noise on the SN response
for real experiment. This type of investigation is beyond the scope of the present paper, and
hence it is left as a future work.
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