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We study the critical behavior associated with intermittency in two coupled one-dimensional
maps by using a renormalization method. Two fixed points of a renormalization transformation
are found. The relevant “coupling eigenvalue” associated with the coupling perturbation varies,
depending on the kinds of fixed points, while the relevant eigenvalue associated with the scaling of
the control parameter of the uncoupled one-dimensional map is common to all fixed points. These
renormalization results are also confirmed for the dissipative-coupling case.

An intermittent transition to chaos in the one-
dimensional (1D) map occurs in the vicinity of a saddle-
node bifurcation {1]. Intermittency just preceding a
saddle-node bifurcation to a periodic attractor is charac-
terized by the occurrence of alternating bursts of regular
and irregular behavior. Scaling relations for the aver-
age duration of regular behavior in the presence of noise
were first established [2] by considering a Langevin equa-
tion describing the map near the intermittency thresh-
old and by using Fokker-Plank techniques. The same
scaling results were later found {3] by using the same
renormalization-group equation [4] as used for period
doubling, but with boundary conditions appropriate to
a saddle-node bifurcation.

Recently, much effort has been made to generalize the
scaling results of period doubling for the 1D map to the
coupled 1D maps [5-8], which are used to simulate spa-
tially extended systems with effectively many degrees of
freedom [9]. It has been found that the critical scaling
behaviors of period doubling in the coupled 1D maps are
much richer than those in the uncoupled 1D map [8].
These results for the abstract system of the coupled 1D
maps are also confirmed in the real system of coupled
oscillators [10]. In a similar way, the scaling results of
the higher period p-tuplings (p = 3.4, ...) in the 1D map
are also generalized to the coupled 1D maps by using a
renormalization method {11}

In this paper we are interested in another route to
chaos via intermittency in coupled 1D maps. We em-
ploy the same renormalization method [8] developed for
period doubling in the coupled 1D maps and study the
critical behavior for intermittency in two coupled 1D
maps. We thus find two fixed points of the renormal-
ization transformation. They have the relevant eigenval-
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ue associated with scaling of the control parameter of
the uncoupled 1D map as a common one. However, the
relevant “coupling eigenvalue” (CE) associated with the
coupling perturbation varies, depending on the kind of
fixed points. These two fixed points are also found to be
associated with the critical behavior near a critical line
segment. The fixed point with no relevant CE governs
the critical behavior, associated with a “1D-like” inter-
mittent transition to chaos inside the critical line. On the
other hand, the other fixed point with one relevant CE
governs the critical behavior at both endpoints, where
the 1D-like intermittent transition to chaos ends.

We consider a map T consisting of two symmetrically-
coupled 1D maps,

g

Here f(z) is a 1D map with a control parameter ¢ and
satisfies the boundary conditions {3},

f(0)=0 and f'(0)=1,

g1 = F(zs,ye) = f(2e) + 9(20, 91),

Yerr = Fye, @) = f(we) + 9(yr, 20)- )

(2)

which are appropriate to a synchronous saddle-node
bifurcation at the origin for a threshold value of ¢, and
¢{z,y) is a coupling function obeying the condition

for any z.

3)

We now employ the same renormalization transfor-
mation as in the period-doubling case [8], but with the
changed boundary conditions (2). The renormalization
transformation N for a coupled map T consists of the
squaring (T} and rescaling (B) operators:

gle,z) =0

N(T)= BT?B7L. (4)

Since we consider only synchronous orbits, the rescaling
operator is of the form,



B:(g 2) (5)

where o is a rescaling factor.

Applying the renormalization operator A" to the cou-
pled map (1) n times, we obtain an n-times renormalized
map T,, of the form,

| ozeg1 = Falag, w) = fa(ze) + gnlze, vr),
s { Yirr = Folue 2) = falye) + gn(ye, o) ()

Here f, and g, are the uncoupled and coupling parts of
the n-times rencrmalized function Fy,, respectively. They
satisfy the following recurrence equations [8]:

o) = ke (1(3)). ™
gnsi1(z,y) = afn(fn(2)+gn(f’g>)
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Then Eqs. (7) and (8) define a renormalization op-
erator R for transforming a pair of functions (f,g):
(fn+l,.‘1n+l) = R(fn»gn)'

A critical map 7, with the nonlinearity and coupling
parameters set to their critical values is attracted to a
fixed map 7" under iterations of the renormalization
transformation A

. { Tegr = F (2, ) = fr (2 + 0" (ze, 1),

Yrer = Fo(y,20) = f*(ye) + 97 (ye, &)

Here (f*,97) 1s a fixed point of the renormalization op-

erator R and satisfies (f*,g") = R(f",g"). Note that

the equation for f~ is just the fixed-point equation for

intermittency with the boundary conditions (2) in the
uncoupled 1D map. 1t was found in [3] that

f(z) =

(9)

xr

—z+ar’+. - (10)
1 —az

(a : arbitrary constant)

is a fixed point of the transformation (7) with a = 2. Here
we consider only the most common case of quadratic tan-
gency. Consequently, only the equation for the coupling
fixed function g* is left to be solved.

It is not easy to directly solve the equation for the cou-
pling fixed function. We therefore introduce a tractable
recurrence equation for a “reduced coupling function” de-

fined by
dg(z,
) = 9(6 y)
y

(11)

y=r
Differentiating the recurrence equation (8) for g with re-
spect to y and setting y = ¢, we have

Gon(®) = (5 (5)) ~ 26 (5 ()] 6 (3)
D@

Then Eqs. (7) and (12) define a “reduced renormalization
operator” R for transforming a pair of functions (f, G)
8,11} (fas1,Gng1) = R(fn,Gn). We look for a fixed
point (f*,G") of R, which satisfies (f*,G*) = R(f*,G").
Here G* is just the reduced coupling fixed function of
g® (re, G*(x) = 98g¢*(z,y)/0yly=z). Using a series-
expansion method, we find two solutions for G*:

Gi(z) = %—}-ar—}—gazrz-{--»‘, (13)
Gi(z) = bx+g(5a——2b)r2+~-, (14)

where a and b are arbitrary constants. Here we are able
to sum the series of Gj{x) and obtain the closed-form
solution,

Gi(2) = 3'(2) (15)

However, unfortunately we cannot sum the series of
7r(x), except for the cases b = 0 and b = a. In those
cases we obtain the closed-form solutions,

. 0 for b =0,
)= { Y-

for b = a.

Consider an infinitesimal perturbations (h, @) to a
fixed point (f*,G*) of the reduced renormalization op-
erator R. Linearizing R at the fixed point, we ob-
tain the recurrence equation for the evolution of (h, ®):
(hnt1,Pnt1) = [I(h,,,<I>,,). A pair of perturbation
(h*,®") is called an eigenperturbation with eigenvalue
Aif L(h*,®*) = A(h*, ®*). All the fixed points (f*,G*)
have a common relevant eigenvalue 8, (= 4) associated
with the scaling of the control parameter of the uncou-
pled 1D map. However, the relevant CE associated with
the coupling perturbation depends on the kind of the
fixed points as follows . For the case of the first fixed
point (f*, G}), it has no relevant CE’s, while for the case
of the second fixed point (f*,G3;), it has one relevant
CE é3 (= 2), These two fixed points are also found to be
associated with the critical behavior near a critical line,
as will be seen below. The first fixed point with no rele-
vant CE’s governs the critical behavior inside the critical
line, whereas the second fixed point with one relevant CE
governs the critical behavior at both endpoints.

To confirm the above renormalization results, we con-
sider two dissipatively-coupled 1D maps M,

M- { Xip1 = W(Xe, Ye) = u(Xe) + (X4, Ya),
| Y = WY Xe) = u(Ye) + o(Ys, Xa),

(16)

(17)

where the uncoupled 1D map u and the coupling func-
tion v are given by u(X) = 1 — AX? and v(X,Y) =
L[u(Y) — u(X)] (c is a coupling parameter), respectively.
As an example, we consider the saddle-node bifurcation
to synchronous orbits with period p = 3 occurring for
A= A, = 1.75. To study the intermittency associated
with this bifurcation, we first consider the third iterate
M®) of M and then shift the orgin of coordinates (X,Y)



to one of the three synchronous fixed points (X*,Y™) for
A=A, Y= X" = u«®(X"); u® is the third iterate of
u|. Thus we obtain a map T of the form (1), where the
uncoupled and coupling parts f and ¢ are given by

f(z)
g(z,y)

Wz + X)) - X7, (18)
Wz + X7, y+Y") - (e + X7).(19)

Near the region of the synchronous saddle-node bifurca-
tion, f(z) can be expanded about z = 0 and A = A.:

f(z) mz+az’+¢, (20)

where a = %BQf/Bzzhzo)A:Ac and €=
Of/8Alz=0 a=a. (A — A.). Hence this corresponds to
the most common case of the quadratic tangency. The
reduced coupling function G{z) of g(z,y) [defined in
Eq. (11)] is also given by

Glz) = gf’(x), e=c>—3c? + 3¢ (21)
Consider a pair of initial functions (f,, G) on the syn-
chronous saddle-node bifurcation line A = A., where

fo() is just the 1D critical map and G(z) = § f/(z). By
successive a~ctions of the reduced renormalization trans-
formation R on (fc, ), we obtain

fa@) = afa-i(Fam1(S)) Gnla) = T al2), (22)
en = 2epn-1 — Eiﬂl, (23)

where the rescaling factor is @« = 2, fo(z) = f.(z),
Go(z) = G(z), and eg = e. Here f, converge to the
1D fixed function f*(z) of Eq. (11) as n — oo, because
the nonlinearity parameter A is set to its critical value
Ao

The recurrence equation (23) for e has two fixed points

e =0,1 (24)

Stability of a fixed point e* is determined by its stability
multiphier g given by p = de, /den—1].+. The fixed point
at €* = 1 is superstable (4 = 0), while the other one at
e* = 0 is unstable (z = 2). The basin of attraction to
the superstable fixed point €* = 1 is the open interval
(0,2). That is, any initial e inside the interval 0 < e < 2
converges to €* = 1 under successive iterations of the
transformation (23). The left end of the interval is just
the unstable fixed point ¢* = 0, which is also the image
of the right endpoint under the recurrence equation (23).
All the other points outside the interval diverge to minus
infinity under iterations of the transformation (23).

It follows from the relation ¢ = e(c) in Eq. (21) that
there exists a critical line segment joining the two end
points ¢; = 0 and ¢, = 2 on the synchronous saddle-
node bifurcation line A = A, in the ¢ — A plane. Inside
the critical line segment, any pair of critical functions
(f., G.) is attracted to the first fixed point (f*,G7}) {cor-
responding to the case e* = 1) under iterations of R.
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Fig. 1. Phase diagram for a dissipative-coupling case. Here
the solid circles denote the data points on the oy = 0 curve.
The region enclosed by the o = 0 curve is divided into two
parts denoted by P and C. A synchronous period-3 (chaotic)
attractor with oy < 0 (o > 0) exists in the part P (C). The
boundary curve denoted by the solid line between the P and
C parts is just the critical line segment.

This first fixed point has no relevant CE’s, because the
fixed point e* = 1 is superstable. On the other hand, the
pair of critical functions (f., G.) at each end point of the
critical line converges to the second fixed point (f*,G};)
(corresponding to the case e* = 0) under iterations of R.
This second fixed point has one relevant CE & (= 2),
because the fixed point ¢* = 0 is an unstable one with
the stability multiplier g = 2.

Figure 1 shows a phase diagram near the critical line
denoted by the solid line. The diagram is obtained by
calculating the Lyapunov exponents. For the case of a
synchronous orbit, its two Lyapunov exponents are given
by

m-—1

oy(4) = lim iZln|u’(x,)|, (25)
m«=00 M
t=0
1m—l
oi(Ac) = lim = In|(1—)u'(X:)[. (26)
m—00 M
t=0

Here o}(oL) denotes the mean exponential rate of diver-
gence of nearby orbits along (across) the synchronization
line ¥ = X. Hereafter, o (oy) will be referred to as
tangential (transversal) Lyapunov exponents. Note also
that o) is just the Lyapunov exponent for the 1D case,
and the coupling affects only o .

The data points on the o, = 0 curve are denoted by
solid circles in Fig. 1. A synchronous orbit on the syn-
chronization line becomes a synchronous attractor with
o, < 0inside the ¢y = 0 curve. The type of this syn-
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chronous attractor is determined according to the sign of
o)- A synchronous period-3 orbit with o] < 0 becomes a
synchronous periodic attractor above the critical line seg-
ment, while a synchronous chaotic attractor with a >0
exists below the critical line segment. The periodic and
chaotic parts in the phase diagram are denoted by P and
C, respectively. There also exists a synchronous period-3
attractor with o) = 0 on the critical line segment between
the two parts.

We first consider a transition to chaos occurring when
crossing the critical line at any interior point with ¢; <
¢ < ¢p. We fix the value of ¢ at some interior point and
vary the control parameter ¢4 (= A, — A) of the uncou-
pled 1D map. For €4 < 0 there exists a synchronous
period-3 attractor on the invariant synchronization line
Y = X. However, as ¢4 is increased from zero, the pe-
riodic attractor disappears and a new chaotic attractor
appears on the ¥ = X line. The motion on this syn-
chronous chaotic attractor is characterized by the occur-
rence of random alternations of laminar and turbulent
behaviors on the Y = X line. This is just the intermit-
tency occurring in the uncoupled 1D map, because the
motion on the ¥ = X line is the same as that for the
uncoupled 1D case. Thus, a “1D-like” intermittent tran-
sition to chaos occurs near interior points of the critical
line segment. The scaling relations of the mean dura-
tion of the laminar phase I and the tangential Lyapunov
exponent oy for the synchronous chaotic attractor are
obtained from the common relevant eigenvalue §; (= 4)
of the first fixed point ( f*, G}) with no relevant CE’s, as
in the 1D case [3]:

leay~e”, oylea)~es; v=log2/logé =05 (27)

The 1D-like intermittent transition to chaos ends at
both ends ¢; and ¢, of the critical line segment. We fix the
value of the control parameter A = A.(= 1.75) and study
the critical behaviors near the two endpoints by varying
the coupling parameter c. Inside the critical line segment
(&2 < ¢ < ¢r), a synchronous period-3 attractor exists on
the synchronization line ¥ = X. However, as the cou-
pling parameter ¢ passes through ¢; or ¢,, the transversal
Lyapunov exponent o of the synchronous periodic or-
bit increases from zero, and hence the coupling leads to
desynchronization of the interacting systems. Thus the
synchronous period-3 orbit ceases to be an attractor out-
side the critical line segment, and a new asynchronous
(out-of-phase) attractor appears. The scaling relation of
the transversal Lyapunov exponent ¢ near both ends ¢
and ¢, is obtained from the relevant CE 8; (= 2) of the
second fixed point (f~,G3;):

o1(ea) ~€; v=1log2/logéy =1, (28)

where ¢, = ¢ —corc—e,.
To sum up, we have studied the intermittent transi-
tion to chaos in two coupled 1D maps by using a renor-
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malization method. It has been found that there exist
two fixed points of the renormalization transformation.
The fixed point with no relevant CE’s governs the crit-
ical behaviors, associated with the 1D-like intermittent
transition to chaos inside a critical line. On the other
hand, the other fixed point with one relevant CE governs
the critical behaviors at both ends of the critical line,
where the 1D-like intermittent transition to chaos ends.
It 1s also expected that the results in the abstract system
of the coupled 1D maps may be confirmed in the real
systemn of coupled oscillators, as in the period-doubling
case [10]. An extended version of this work, including a
detailed account of the renormalization results and the
critical scaling behaviors near the critical line, a general-
ization to the nonquadratic-tangency cases, an extension
to many coupled maps, and so on, will be given elsewhere

[12].
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