Symmetry and Dynamics of a Magnetic Oscillator

Sang-Yoon Kim*
Department of Physics, Kangwon National University, Chunchon 200-701

{(Received 26 September 1997)

We consider a permanent magnetic dipole in an oscillating magnetic field. This magnetic os-
cillator has two dynamical symmetries. The breakdown and the restoration of these symmetries
are investigated by varying the amplitude A of the magnetic field. For small A, symmetric states
exist with respect to one of the two symmetries. However, such symmetric states lose their sym-
metries via symmetry-breaking pitchfork bifurcations, and then the symmetry-broken states exhibit
period-doubling transitions to chaos. Consequently, small chaotic attractors with broken symmetries
appear. However, as A is further increased they merge into a large symmetric chaotic attractor via

symmetry-restoring attractor-merging crisis.

We consider a magnetic oscillator consisting of a per-
marnent magnetic dipole of moment m placed in a spa-
tially uniform magnetic field B that oscillates periodical-
ly in time. Its motion can be described by a second-order
nonautonomous ordinary differential equation [1-3]:

I§+bé+mBocosutsin0=0, (1)

where the overdot denotes the differentiation with re-
spect to time, # is the angle between the magnetic dipole
and the magnetic field, I is the moment of inertia of the
magnetic dipole about a rotation axis, b is the damping
parameter, and By and w are the amplitude and the fre-
quency of the periodically oscillating magnetic field B,
respectively. Making the normalization wt — 2x(t + 1)
and 8 — 27z, we have

£+ Tt — Acos2ntsin2rz =0, 2)

where z is a normalized angle with range z € [m%, %),
I'=27b/Iw, and A = 2rmB,./1w?. Note also that this
equation of motion is the same as that of a particle in a
standing-wave field [4,5].

For the conservative case of I' = 0, the Hamiltonian
system exhibits period-doubling bifurcations and large-
scale stochasticity, which have been found both experi-
mentally [1-3] and numerically [4,5], as the normalized
amplitude A is increased. Here we are interested in the
dissipative case of I' # 0. An experiment on period-
doubling bifurcations in a dissipative system has been
reported [2].

The normalized equation of motion (2) can be reduced
to two first-order ordinary differential equations:

z =y, (3a)
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y = -Ty+ Acos2rtsin2rz. (3b)

These equations have two symmetries, S5, and Sy, be-
cause the transformations

1 1
Sl: zqzii,y—-}y,t—htii, (4)
SZ: = —I, Yy— -y, t_’tv (5)

leave Eq. (3) invariant. The transformations in Egs. (4)
and (5) are just the shift in both z and ¢ and the (space)
inversion, respectively. Hereafter, we will call S; and S»
the shift and the inversion symmetries, respectively. If an
orbit z(t)[= (z(y), ¥(¢))] is invariant under S; (i = 1,2), it
is called an S;-symmetric orbit. Otherwise, it is called an
Si-asymmetric orbit and has its “conjugate” orbit S;z(t).

In this paper, by varying the amplitude A we study the
evolutions of both the stationary states and the rotation-
al states of period 1 in the magnetic oscillator for a mod-
erately damped case of ' = 1.38. Particularly, the break-
down and the restoration of the symmetries are investi-
gated. As will be seen below, the dynamical symmetries
are eventually broken through symmetry-breaking pitch-
fork bifurcations {6], which results in the birth of com-
pletely symmetry-broken states. These symmetry-broken
states undergo period-doubling transitions to chaos [7],
leading to the creation of small chaotic attractors with
broken symmetries. However, as A is further increased
they merge into a large symmetric chaotic attractor
through a symmetry-restoring attractor-merging crisis
[8}.

The surface of section for the periodically-driven mag-
netic oscillator is the Poincaré time-1 map. Hence the
Poincaré maps of an initial point 2o [= (z0,y0)] can be
computed by sampling the orbit points z,, at the discrete
timet=m (m=1,2,3,...). We call the transformation
Zm — Zm+1 the Poincaré map and write zmy1 = P(zm).
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P9(zq) = 2o is determined from the linearized-map ma-
trix DP9{z9) of P? at an orbit point zg. Here P? means
the g-times iterated map. Using the Floquet theory [9],
the matrix M (= DP?) can be obtained by integrating
the linearized equations for the small displacements,

bz = by, (6a)
by = —[dy+ 2w Acos2ntcos 27z bz (6b)

with two initial displacements {6z, 6y) = (1,0) and (0,1)
over the period q. The eigenvalues, A; and Az, of M are
called the Floquet (stability) multipliers, characterizing
the orbit stability. After some algebra, we find that the
determinant of M is given by det(M) = e~F4. Hence the
pair of Floquet multipliers of a periodic orbit lies either
on the circle of radius e~ T9/2 or on the real axis in the
complex plane. The periodic orbit is stable only when
both Floquet multipliers lie inside the unit circle. Hence
the periodic orbit can lose its stability only when a Flo-
quet multiplier A decreases (increases) through —1 (1)
on the real axis. When a Floquet multiplier A decreas-
es through —1, the periodic orbit loses its stability via
period-doubling bifurcation. On the other hand, when a
Floquet multiplier A increases through 1, it becomes un-
stable via pitchfork or saddle-node bifurcation. For more
details on bifurcations, refer to Ref. 6.

We first consider the case of the stationary states. The
magnetic oscillator has two stationary states 2. The first
one is 2r = (0,0) and the second one is zyr = (3,0).
These stationary states are symmetric with respect to
the inversion symmetry S;, while they are asymmet-
ric and conjugate with respect to the shift symmetry
S1. Hence they are partially symmetric orbits with on-
ly the inversion symmetry S;. We also note that the
two stationary states are the fixed points of P [i.e.,
P(2) = 2 (2 = 21, 211)). We investigate the evolution
of the fixed points Z; and £;; with increasing A. For
A = 3.142710 - - -, each fixed point loses its stability
through a symmetry-conserving period-doubling bifurca-
tion, leading to the birth of a new stable S;-symmetric
orbit with period 2. An example for A = 3.31 is shown
in Fig. 1(a). Like the fixed points, the two stable period-
doubled orbits with the inversion symmetry Ss, whose
phase portraits are denoted by solid lines, are asymmet-
ric and conjugate ones with respect to the shift symme-
try S1. The Poincaré map of the stable 2-periodic orbit
encircling the unstable fixed point z; [Z;/] is also repre-
sented by a solid circle (square). However, as A is further
increased each of the two S;-symmetric orbits of period
2 becomes unstable via S;-symmetry-breaking pitchfork
bifurcation for A = A, , (= 3.817897 - - ). Consequent-
ly, two conjugate pairs of new Sp-symmetry-broken or-
bits with period 2 appear for A > A4;,. An example
for A = 3.87 is given in Fig. 1(b). One S;-conjugate
pair encircles the unstable fixed point Z;, while the oth-
er pair encircles the unstable fixed point Zy;. For each
Sy-conjugate pair, the phase portrait (Poincaré map) of
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Fig. 1. Symmetry-conserving and symmetry-breaking bi-
furcations. Two stable period-doubled orbits with the in-
version symmetry S; are born from the two fixed points via
symmetry-conserving period-doubling bifurcations. They are
shown in (a) for A = 3.31. Their phase portraits (Poincaré
maps) are denoted by solid lines [solid symbals (circle and
square)]. The two Sz-symmetric orbits with period 2 be-
come unstable via Si-symmetry-breaking pitchfork bifurca-
tions. Consequently, two Sz-conjugate pairs of stable orbits
with peried 2 appear, as shown in (b) for A = 3.87. For
each S>-conjugate pair, the phase portrait (Poincaré map)
of one orbit is denoted by a solid line [solid symbol (circle
or square)], while that of the other one is represented by a
dashed line [open symbol (circle or square)].

one orbit is denoted by a solid line {solid symbol (circle
or square)], whereas that of the other one is represented
by a dashed line [open symbol (circle or square)]. Thus
the two symmetries S; and Sy are completely broken.
With increasing A, each of the four 2-periodic orbits
with completely broken symmetries undergoes an infi-
nite sequence of period-doubling bifurcations, ending at
a finite critical point A} (= 3.934787 ---) as in the case
of the one-dimensional maps [7]. For A > A}, four s-
mall S;- and Sz-asymmetric chaotic attractors with the
largest positive Lyapunov exponent o, characterizing the
average exponential rate of divergence of nearby orbit-
s [10}, appear. As A is further increased, the different
parts of each chaotic attractor coalesce and form larg-
er pieces. Through such a band-merging process, each
chaotic attractor eventually becomes composed of two
pieces. An example for A = 3.9411 is given in Fig. 2(a).
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Fig. 2. Poincaré-map plots of chaotic attractors after the period-doubling transitions to chaos for the case of the fixed points.
An S;-conjugate pair of small chaotic attractors, ¢; and c2, near the unstable fixed point 3; are shown in (a) for A = 3.9411.
Each of them consists of two pieces. These two chaotic attractors merge into a bigger one ¢ via Se-symmetry-restoring crisis.
For A = 3.95 the chaotic attractor ¢ with the inversion symmetry S; and its Si-conjugate one s are shown in (b). These two
small chaotic attractors also merge into a larger one via S;-symmetry-restoring crisis. A single large chaotic attractor with
completely restored S; and S; symmetries is shown in (c) for A = 3.975.

For the sake of convenience, only the two chaotic attrac-
tors with ¢ ~ 0.189, denoted by c¢; and e, near the
unstable fixed point #; are shown; in fact, their conju-
gate chaotic attractors with respect to the S; symmetry
exist near the unstable fixed point Z;;. As A exceeds a
1st critical value A, ; (= 3.9484), the two chaotic attrac-
tors ¢; and ¢z merge into a bigger one ¢ via So-symmetry
restoring crisis. As an example, a chaotic attractor ¢
with ¢ ~ 0.307 is shown in Fig. 2(b) for A = 3.95, and
its conjugate one with respect to the S, symmetry is
denoted by s. These two chaotic attractors, ¢ and s, be-
come Sy-symmetric (but still S;-asymmetric). Thus the
inversion symmetry S is restored first. However, as A
passes through a 2nd critical value A.; (= 3.9672) the
two small chaotic attractors, ¢ and s, also merge to form
a larger one via S;-symmetry-restoring crisis. An exam-
ple for A = 3.975 is shown in Fig. 2(c). Note that the
single large chaotic attractor with o >~ 0.599 is both S;-
and S;-symmetric. Thus the two symmetries S; and S,
are restored completely, one by one, via two successive
symmetry-restoring crises.

We now study the evolution of the rotational states of
period 1 with increasing A. A pair of stable and unsta-
ble rotational orbits with period 1 is born for 4 ~ 2.771
through a saddle-node bifurcation. In contrast to the s-
tationary states, the rotational states are S)-symmetric,
but Sy-asymmetric. As an example, a conjugate pair of
Sp-asymmetric rotational states for A = 3.31 is shown
mn Fig. 3(a). The phase portrait (Poincaré map) of
the orbit with positive angular velocity is denoted by
a solid line (solid circle), while that of the other orbit
with negative angular velocity is represented by a dashed
line (open circle). With increasing A4, each stable S-
symmetric rotational orbit with period 1 loses its stability
for A = Ay (= 9.892445 - - ) via S;-symmetry-breaking
pitchfork bifurcation. Consequently, two conjugate pairs
of 51-symmetry-broken orbits with period 1 appear for
A > Ay . An example for A = 11.1is given in Fig. 3(b).
The phase portrait (Poincaré map) of one S;-conjugate
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Fig. 3. Saddle-node and symmetry-breaking pitchfork bi-
furcations. A conjugate pair of the S;-asymmetric rotation-
al orbits with period 1 born via saddle-node bifurcations is
shown in (a) for A = 3.31. These two orbits of period 1 are
Si-symmetric. The phase portrait (Poincaré map) of the orbit
with positive angular velocity is denoted by a solid line (solid
circle), whereas that of the other orbit with negative angular
velocity is represented by a dashed line (open circle). The
two 51 -symmetric orbits with period 1 lose their stability via
Si1-symmetry-breaking pitchfork bifurcations. Consequently,
two 5;-conjugate pairs of stable orbits with period 1 appear,
as shown in (b) for A = 11.1. The phase portrait (Poincaré
map) of cre Si-conjugate pair is denoted by a solid line [sol-
id symbols (circle and square)], whereas that of the other
pair is represented by a dashed line [open symbols (circle and
square)].
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Fig. 4. Poincaré-map plots of chaotic attractors after the
period-doubling transitions to chaos for the case of the ro-
tational orbits with period 1. Four small chaotic attractors,
denoted by c1, ¢z, 81, and s, are shown in {a) for A = 12.342.
These four small chaotic attractors merge into a larger one vi-
a symmetry-restoring crisis. A single large chaotic attractor
with simultaneously restored S and S, symmetries is shown
in (b) for A =12.4.

pair with positive average angular velocity is denoted by
a solid line [solid symbols (circle and square)], while that
of the other pair with negative average angular veloci-
ty is represented by a dashed line [open symbols (circle
and square)]. Thus the two symmetries S; and S» are
completely broken.

With further increase of A, each of the four 1-periodic
rotational orbits with completely broken symmetries ex-
hibits an infinite sequence of period-doubling bifurca-
tions, accumulating at a finite critical point A} (=
12.252903 - - ), as in the case of the stationary states. For
A > A}, four small chaotic attractors appear. Through
a band-merging process, the different parts of a chaotic
attractor merge into larger pieces. Thus each chaotic at-
tractor eventually consists of a single piece, as illustrated
in Fig. 4(a) for A = 12.342. Four small chaotic attractors
with ¢ ~ 0.416 are denoted by ¢y, ¢2, 51, and sy, respec-
tively. However, as A passes through a critical value A,
(= 12.3424), the four small chaotic attractors merge to

Iorm a larger one via symmetry-resioring Crisis. An €x-
ample for A = 12.4 is given in Fig. 4(b). We note that
the single large chaotic attractor with ¢ ~ 0.713 has both
S1 and S, symmetries. Thus the two symmetries S; and
Sy are restored simultaneously through one symmetry-
restoring crisis, which is in contrast to the case of the
stationary states.

In addition to the breakdown and the restoration of the
symmetries discussed, the magnetic oscillator exhibits
other interesting dynamical behaviors, such as period-
doubling transitions to chaos, disappearance of large
symmetric chaotic attractors via attractor-destroying
crises or intermittencies, creation of new periodic attrac-
tors through saddle-node bifurcations, and a cascade of
“resurrections” of the fixed points (i.e., an infinite se-
quence of restabilizations and destabilizations of the fixed
points). A detailed account of such rich dynamical be-
haviors will be given elsewhere [11].
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