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We study the universal scaling behavior of all period p-tuplings (p = 2,3.4, .. .} in two coupled
one-dimensional maps with a single maximum of order z. The effect of the maximum-order z on
the critical behavior associated with coupling is investigated by a renormalization method. We find
three (five) fixed points of the renormalization method for even (odd) p. However, relevant “coupling
eigenvalues” associated with coupling perturbations vary depending on the crder z only for one (two)
fixed point(s) in the case of even (odd) p, whereas they are independent of z for the other two {three)
fixed points. These renormalization results are also confirmed by a direct numerical method.

Universal scaling behaviers of period p-tupling (p =
2,3,4,...) sequences of p*-cycles (i.e., orbits of period
p"} (n = 1,2,...) have been found in a one-parameter
family of one-dimensional (1D) unimodal maps with a
single maximum of order z (z > 1) {1-10]. As an example,
consider a 1D map with a maximum of order z at z = 0,

Tiy1 = f(Ig) =1-A4 ll'glz, z > 1, (I)

where r; denotes a state variable at a discrete time ¢.
For all z > 1, an infinite sequence of period doublings
(p = 2) accumnulates at a finite parameter value A and
exhibits an asymptotic scaling behavior.

The parameter interval between A, and the final
boundary-crisis point (4 = 2) beyond which no peri-
odic or chaotic attractors can be found within the uni-
modality interval is called the “chaotic” region. Besides
the period-doubling sequence, there exist infinitely many
higher period p-tupling (p = 3,4,5,...) sequences in-
side the chaotic region. These higher period p-tupling
sequences also exhibit their own asymptotic scaling be-
haviors near their accumulation points Agﬁ)A However,
the critical behaviors characterized by the parameter and
the orbital scaling factors, é and a, vary depending on p.
Moreover, for each period p-tupling case, the maximum-
order z affects the critical behavior; consequently, the val-
ues of A®) 6. and o vary depending on z [1-10]. Thus,
the order z determines universality classes in each period
p-tupling case.

In this paper, we are interested in the critical be-
haviors of all period p-tuplings (p = 2,3,4,...) in two
symmetrically coupled 1D maps. The coupled maps are
used as models of coupled nonlinear oscillators such as
Josephson-junction arrays, chemically reacting cells, and
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so on [11]. The critical behavior of period doublings
(p = 2) in such coupled 1D maps was first studied for
the quadratic-maximum case (z = 2) [12,13]; then, the
results for the z = 2 case were extended to all even-
order cases (2 = 2,4,6,...) [14]. However, the criti-
cal behaviors of all the other higher period p-tuplings
(p = 3,4,5,...) in the coupled 1D maps were studied
only for the quadratic-maximum case [15,16]. Here, we
extend the results of the higher period p-tuplings for the
z = 2 case to all even-order cases by a renormalization
method. The renormalization results are also confirmed
by a direct numerical method.

Consider a map T consisting of two identical 1D maps
coupled symmetrically:

oz = Fleap) = f(zt)‘+9(1t,yt)
o { yer1 = F(ye,ze) = f(we) + 9w, z2) @)

where f(z) is the 1D map (1), and g{z,y) is a coupling
function. The uncoupled 1D map f satisfies the normal-
ization condition, f(0) = 1, and the coupling function g
obeys the condition g(z,z) = 0 for any x. Here, we con-
sider only the analytic cases, i.e., the cases of even-order

z(2=2,4,6,...).

The two-coupled map (2) is invariant under the ex-
change of coordinates such that £ — y. The set of all
points which are invariant under the exchange of coordi-
nates forms a symmetry line y = z. An orbit is called
an “in-phase” orbit if it lies on the symmetry line, t.e.,
it satisfies

z, =y forallt. (3)

Otherwise, it is called an “out-of-phase” orbit. Here, we
study only in-phase orbits.

Stability of an in-phase orbit with period ¢ is deter-
mined from the Jacobian matrix J of T?, which is the
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g-product of the Jacobian matrix DT of T along the or-
bit:

9
J = HDT(I‘: , .’L‘t)

f(ze) — G(zy) G(z:)
( G(z2) f’(rz)—G(xz)) )

where the prime denotes a derivative, and G(z) =
09(x,y)/0y |y=z; hereafter, G(z) will be referred to as
the “reduced coupling function” of g(z,y). The eigen-
values of J, called the stability multipliers of the orbit,
are

-

q

=1

q q
n=I1rE) de=[[lf(@) -26@). ()

Note that the first stability multiplier A; is just that of
the uncoupled 1D map and the coupling affects only the
second stability multiplier A,, which may be called the
“coupling stability multiplier.” An in-phase dWbit is sta-
ble only when the moduli of both multipliers are kess than
or equal to unity, t.e., —1 < A\ <1fori=1,2

We now consider the period p-tupling renormalization
transformation A, which is composed of the p-times it-
erating (7)) and rescaling (B) operators:

N(T)= BTP B~ (6)

Here, the rescaling operator B is

a 0
B= ( @ 0 ) @
because we consider only in-phase orbits (z; = y; for all
t).
Applying the renormalization operator A" to the cou-

pled map (2) n times, we obtain the n-times renormalized
map T, of the form

T - { Tep1 = Fo(ze, y) = falze) + gulze, ve) )
"y = Fa(ye, ze) = fa(ye) + gnlye, 22).

Here, f, and g, are the uncoupled and coupling parts of
the n-times renormalized function F,,, respectively. They
satisfy the following recurrence equations:

fari(®) = afP (2], (9)

(e y) =aFP (2,0 —af@ (2}, (o)
where

fiP(2) = f (87 (2)), (11)

FiP(z,9) = Fa(FP (e, 0), FPV(w,2)),  (12)

and the rescaling factor is chosen to preserve the normal-
ization condition fr41(0) =1, ie.,a = l/f,(lp-l)(l). The
recurrence relations (9) and (10) define a renormalization
operator R for transforming a pair of functions (f, g):

() ==(5) @

A cntical map T, with the nonlinearity and coupling
parameters set to their critical values is attracted to a
fixed map 7™ under iterations of the renormalization
transformation A:

v o = F (e, u) = ffr)+ g7 (2 m0)
L { Yer1 = F(ye, @) = () + 9" (yr, 22)- (14)

Here, (f*, g*) is a fixed point of the renormalization oper-
ator R with a = 1/f*®=1)(1), which satisfies (f*,g") =
R(f*,¢"*). Note that f*(z) is just the fixed function in
the 1D map case, which varies depending on p [4,5,7,8].
Only the equation for the coupling fixed function g*(z, y)
is, therefore, left to be solved. One trivial solution is
¢*(z,y) = 0. In this zero-coupling case, the fixed map
(14), which is associated with the critical behavior at the
zero-coupling critical point, consists of two uncoupled 1D
fixed maps.

However, it is not easy to directly find coupling fixed
functions other than the zero-coupling fixed function
¢*(z,y) = 0. We, therefore, introduce a tractable recur-
rence equation for a reduced coupling function G(z) =
dg(z,y)/0y|y==. Differentiating the recurrence equation
(10) for g(z,y) with respect to y and setting y = z, we
obtain a recurrence equation for G(z):

Gn+1(z):F,SF,)z) (E‘)

= Qe G20l (D)
e Qe Q)

where the subscript 2 of F,, denotes a partial derivative
with respect to the second argument. Then, Egs. (9) and
(15) define a “reduced renormalization operator” R for
transforming a pair of functions (f, G):

(Ee)=r(&) (8)

We look for fixed points (f*,G*) of R which satisfy
(f*,G*) = R(f*,G*). Here, f* is just the 1D fixed func-
tion, and G* is the reduced coupling fixed function of
g"; t.e, G*(x) = 0g™(x,y)/ 0y ly=c. As in the quadratic
maximum case (z = 2) [16], We find three (five) solutions
for G* in the case of even (odd) p:

G*(z) = 0, (17)
G'(2) = 35() (15)
G'(z) = Gl () - 1), (19
G'(2) = FU @) +1) (20)
G"(z) = 1) (2)

where the solutions (17)-(19) exist for any p, but the



solutions (20)-(21) exist only for odd p. The first so-
lution (17) corresponds to the zero-coupling case, while
the other solutions (18)-(21) are associated with critical
behaviors at critical points other than the zero-coupling
critical point [16].

Consider an infinitesimal, reduced coupling perturba-
tion (0,®(z)) to a fixed point (f*,G*) of R. When
fu(z) = fr(z) and G,(x) = G"(z), the function F(P)(E)
of Eq. (15) will be denoted by F, p)( Z3). We then examine
the evolution of a pair of functions, ( *(z), G*(z)+P(z))
under the reduced renormalization transformation R. In
the linear approximation we obtain a reduced linearized
operator £ for transforming the reduced coupling pertur-
bation ®:

On1(2)=[L8a](2)
720 (3)< [ (D)1 (D).,

- (e () - e (3]

s (P (Earts )

en (e () £

Here the varlatlon 6F(p)( ) 1s introduced as a linear term
(denoted by [ (;) — Ff?(%)]linear) in ® for the devi-
ation of F(p)( ) from Ffp;(i) If the reduced coupling
perturbation &" (z) satisfies

[£27](=), (23)

4

vd®*(z) =

then it is called a reduced coupling eigenperturbation
with a coupling eigenvalue (CE) v

" We first show that the CE’s are independent of the
order z for the second, third, and fourth solutions of
G*(z) [see Eqgs. (18)-(20)]. In the case of the second
solution G*(z) = 2f~'(z), the reduced linearized op-
erator £ becomes a null operator independently of z
because the right-hand side of Eq. (23) becorres zero.
Therefore, no relevant CE’s exist. For the third case
G*(z) = $[f*'(z) = 1], the CE equation (23) becomes

(£67)(z) = 65 (2)
=E‘P‘(*“( ) (21)

When ®*(z) is a nonzero constant function, i.e., ®*(z) =
b (b : nonzero constant), arelevant CE, v = p, exists inde-
pendently of z. For the fourth case G*(z) = %[f*'(:c)+1],
which exists only for the case of odd p, the CE equation
(23) is just that of Eq. (24). Therefore, it has the same
CE, v = p, as that for the case G*(z) = L[f*'(x) - 1],
independently of z.

The remaining solutions are the first and fifth ones;

e., G*(z) = 0 and G*(z) = f*'(z). As mentioned ear-

v®*(z)

lier, the solution G™(z) = 0 is associated with the critical
behavior at the zero-coupling critical point, while the so-
lution G*(z) = f~ (z), which exists only for odd p, is
associated with the critical behavior at other (nonzero-
coupling) critical points. In both the cases G™(z) = 0
and f*' (z), we have the same CE equation, composed of
p terms:

I

v®*(z) = [£0")(x) = 6FLF (2)

p—1
o (G)e (m(3))
 fo=1-) (fx(m) (2)) (25)

where f(9)(z) = z. Relevant CE’s of Eq. (25) vary de-
pending on the order z, as will be seen below. Thus,
relevant CE’s vary depending on the order z only for one
{two) fixed point(s) m the case of even (odd) p

An eigenfunction ®*(z) can be separated mto two com-
ponents, &*(z) = & (z) + &*I(z) with &*()(z) =
as+ale+ - +as_yet % and &*D(z) = aj_jz*7 +
a;z* 4 -, and the 1D fixed function f* is a polynomial
inz*; ie, fr(r) = 1+ ciz* +c3,z% +--- . Substituting
the functions ®*, f~, and f*' into the CE equation (25),
the structure is

vap =Y Mu({c"}a}, k,1=0,1,2,... . (26)
!

Each a; (! =10,1,2,...) in the first term (the i = 0 case)
on the right-hand side of Eq. (25) is involved only in
the determination of coefficients of monomials z* with
k=14+mz {m=0,12,..), while each a in all the
remaining (p — 1) terms (the cases of i = 1, .., p—1)
is invloved only in the determination of the coefficients
of the monomials z* with k = (z ~ 1) + mz. Therefore,
any a} with ! > z — 1 (on the right-hand side) cannot
be involved in the determination of the coefficients of the
monomials £* with k < z—1, which implies that Eq. (26)
is of the form

&1 My 0 PV

()= O ) (o) e
where My i1s a (z — 1) x (z — 1) matrix, &) =
(ag,...,a%.,), and () = (aj_y,a},...). From the re-
ducibility of the matrix ;’\/1 into a semi-block form, it fol-
lows that to determine the eigenvalues of M it is sufficient
to solve the eigenvalue problems for the two submatrices
M) and M> independently.

We first solve the eigenvalue equation of M) (v®*() =
M®*); se,

vay = > My{{c"}aj, ki=0,... 22 (28)
i

Note that this submatrix M, is diagonal. Hence, its

eigenvalues are just the diagonal elements:



vy = Mg,

r—1
[I @)
= b_l_;cmm:az—i—", k=0,...,2=2. (29)
Notice that all 14’s are relevant eigenvalues.

Although vy 1s also an eigenvalue of M, (CDZ(U, 0) can-
not be an eigenvector of M, because a third submatrix
exists M3 in M [see Eq. (27)]. Therefore, an eigenfunc-
tion ®;(x) in Eq. (25) with eigenvalue v, is a polyno-
mial with a leading monomial of degree k; i.c., ®}(z) =
@;(l)(z)+¢;(2)(x) =ajzftal_|a* '4aie’+ -, where
a, #0.

We next solve the eigenvalue equation of M; (v®*(2) =
My®d*(3); i,

ua;:ZMH({c-})a:, ki=z-12.... (30)
!

Unlike the case of M}, (0, ®(?)) can be an eigenvector of
M with eigenvalue v. Then, its corresponding function
@*(2)(z) is an eigenperturbation with eigenvalue v which
satisfies Eq. (25). One can easily see that ®*(?)(z) =
[*'(z) is an eigenfunction with CE, v = p, which is the
zth relevant CE in addition to those in Eq. {29). It is also
found that an infinite number of additional (coordinate
change) eigenfunctions ®*(2(z) = f'(z)[f*"(z)—z"] ex-
ist with irrelevant CE’'s a™ (n = 1,2, ...), which are as-
soclated with coordinate changes. We conjecture that to-
gether with the z relevant (noncoordinate change) CE’s,
these irrelevant CE’s give the whole spectrum of the re-
duced linearized operator £ of Eq. (22) and that the spec-
trum is complete.

We now examine the effect of the CE’s on the coupling
stability multipliers for two kinds of couplings. We first
consider the two coupled 1D maps (2) with f(z) = f.(z)
and g(z,y) = ep(z,y). Here, f.(z) is the 1D critical
map with the nonlinearity parameter set to its critical
value A = A(O‘Z), and ¢ is an infinitesimal coupling pa-
rameter. The map for ¢ = 0 is just the critical map
T, at the zero-coupling critical point consisting of two
uncoupled 1D critical maps f.. It i1s attracted to the
zero-coupling fixed map (14) with F*(z,y) = f*(z) un-
der iterations of the renormalization transformation A’
of Eq. (6). Hence, the reduced coupling function G(z)
[= ¢® = O¢(z,y)/0yly=<] corresponds to an infinitesi-
mal reduced coupling perturbation to the reduced cou-
pling fixed function G*(z) = 0.

We next consider the two coupled 1D maps (2) with
f(z) = fe(z) and g(z,¥) = fo(y)— fe(2)+ep(x, y) for odd
p. The critical map T; for ¢ = 0 1s attracted to the fixed
map (14) with F~{z,y) = f"(y) under iterations of A"
Note that the coupling fixed function for this case is given
by ¢*(z,y) = f*(y) — f*(z). Since the reduced coupling
function G(z) [= fl(z)] for £ = 0 converges to G™(z) =
f’l(z) under iterations of R, ¢®(z) can be regarded as
an infinitesimal, perturbation to G*(z) = f*l(z).

Let (fa.Gr) be the nth image of (f..G) under the
reduced renormalization transformation R. In the case
of G(z) = €®(z), Galz) =~ zP,(z), while G,(x) ~
e[fnlz) + @n(zx)] for the case of G(z) = fo(z) +£®(x).
Here, ®,(z) is the nth image of ® under the reduced lin-
earized operator £ of Eq. (25). For large n, it becomes

=2

Bn(z) = D apfOi(z) + amip” () (31)

k=0
because the irrelevant part of @, becomes negligibly
small for large n.

The stability multipliers A1, and Az, of the p™-
periodic orbit are the same as those of the fixed point
of the n times renormalized map A™(T), which are given
by

A = fo(2a), Aon = fa(Ea) — 2G.(%n). (32)
Here, &, 1s just the fixed point of f(z) [i.c., &n = fo(Zn)]
and converges to the fixed point z of the 1D fixed map
fr(z) as n — oo. The first stability multiplier A; , con-
verges to the 1D critical stability multiplier A* = f"/(i)
as n — oo. For infinitesimally small €, A, , has the form

/\Qyn ~ ﬂ‘:Al,n — 2€(I>n
2—2
~+A" 4 [Zekug+ez_1p”] for large n, (33)
k=0

where the plus and minus signs in front of A, , and
A* correspond to the case of G(x) = ¢®(z) and the
case of G(z) = fc(z) + £®(z), respectively, and e, =
—20;®3(2) (k=0,...,2—2)and e,_; = — 20, 1 f*'(2).
Therefore, the slope S, of Az, at the critical point
(e=10)1s

aA . z—2
S, = 025’ ~ Zeky,:‘—f-ez_lp" for large n.(34)
ez 4o

Here, the coefficients {e; ; ¥ = 0,...,z — 1} depend on
the initial reduced function ®(z) because the a;’s are
determined only by ®(z). Note that the magnitude of
the slope 5, increases with n unless all the ex’s (£ =
0,....2—1) are zero.

We choose monomials ' (I = 0,1,2,...) as the initial
reduced coupling perturbations ® () because any smooth
function ®(x) can be represented as a linear combination
of monomials by a Taylor series. Expressing ®(z) = '
as a linear combination of eigenfunctions of £, we have

o(x) =2' = @} (z) +a,.1f'(z)
+Y B f (@) f ) - 2] (35)

where «; is nonzero for ! < z — 1 and zero for { > z — 1,
and all 3,,’s are irrelevant components. Note that two
relevant components «; and «,_; exist for { < z — 1,
while only one relevant component a,_, exists for [ >
z — 1. The growth of the slope'S,, for sufficiently large n
is governed by the largest CE vyax:



Table 1. The sequences {rn} for the one-term scaling law
are shown when ®(z) =1, z, r?, and z°.

n P(z)=1 ®(r)=12 O(r) = z° O(r) =z’
1 -30.099 9.986 -3.007 2.97197
2 -31.559 10.09 -3.233 3.00525
3 -31.278 9.955 -3.086 2.99902
4 -31.328 9.947 -3.214 3.00018
5 -31.319 9.938 -3.095 2.99997
6 -31.320 9.937 -3.208 3.00001

Table 2. Two sequences {r1,»} and {r2,»} for the two-term

scaling law are shown when ®(z) = z°.

n Ti,n T2,n
1 -3.1428 2.01
2 -3.1539 2.75
3 -3.1517 2.94
4 -3.1522 2.99

Sp ~ Vr?m.x’ (36)

For I > z — 1, Vmax 1s always p (i.e., ¥max = p), while
for | < z — 1, vmax is the larger one between the two
CE’s v; and p (z.e., if |i1] > p then vpax = 11; otherwise,
Vmax = P)

Taking the quartic-maximum (z = 4) case as an ex-
ample, we numerically study the growth of the slopes
S.'s for the period-tripling (p = 3) case and confirm
the one-term scaling law (36). We follow the periodic
orbits of period 3™ up to level n = 7 and obtain the
slopes S, at the zero-coupling critical point (Agg),O)
(A = 1.909335470794655 .. .) when the reduced cou-
pling function ®(z) is a monomial ' (I = 0,1,2,...).
Since the magnitude of o (@ = ~3.152.. ) is larger than
By Vi = @ W for I=1, 1,2

We define the growth rate of the slopes as follows:

- 5n+1

Ty = S (37)
Then, it will converge to a constant r (= ¥max) as n — 00.
Four sequences of {r,} for ®(z) = =/ ({ = 0,1,2,3) are
shown in Table 1. It seems that they converge to their
limit values, r = a%, o?, a, and 3, respectively. However,
the sequence for the case ®(z) = z? slowly converges to
its limit value r = «, as compared with the other three
cases. This is because the value of the second relevant
CE v = 3 for this case is close to that of |a|. In order
to see better convergence, the effect of the CE v = 3
must be taken into account. Then, the sequence cbeys a
two-term scaling law [17],

Sn = a1} + cary, for large n, (38)

where ¢, and ¢ are some constants. Two sequences
{r1.} and {r3,} are shown in Table 2. They seem to
converge to their limit values r; = o« and ro = 3. Note
that the accuracy of ri (= &) is better than that of r
(= @) obtained above by the one-term scaling analysis.
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