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We study period-1 scaling behaviors for period r-tuplings in four-dimensional volume-preserving maps when
n = 2. We find that there are four fundamental noncoordinate scaling factors, & and &5 (divergence rates from the
period-1 map) and &} and &'} (convergence rates to the period-1 map). Therefore, the parameter scaling fac-
tors, 7, and 7,, for any bifurcation path are some combinaiion of the fundamental noncoordinate scaling
factors. We obtain the four fundamentai noncoordinate scaling factors by a direct numerical study and find
that there are three kinds of period-1 scaling behaviors,

1. INTRODUCTION

The discovery of universal scaling behaviors for
period doublings in one-dimensional {(1-D) maps by Fei-
genbaum'"! inspired several people®'? to study scaling
behaviors for period doublings in area-preserving maps.
Although the universality results for period doublings in
1-D maps extend to higher dimensional dissipative
maps®, the universal scaling behaviors in area-preser-
ving maps are distinctly different from those in dissipa-
tive maps™'%. An interesting question is whether the
self-similar period-doubling patterns of area-preserving
maps carry over to higher dimensional conservative
maps. Therefore, peried doublings in four-dimensional
(4-D) symplectic maps have recently been studied!'®2.
However, clear evidence for an infinite period-doubling
sequence in a 4-D symplectic map has been reported by
Mao, Satija and Hu'™®. The infinite period doubling se-
quence was determined by following a special bifurca-
tion path. Many additional bifurcation paths and their
scaling behaviors in a symmetric 4-D volume-preserving
map have been found by a direct numerical method*
and a renormalization method"®. However, these
authors!'*'® did not obtain the fundamental noncoor-
dinate scaling factors.

By generalizing the bifurcation routes and the bifur-
cation paths introduced in Ref. 14, we find that there are

infinite kinds of bifurcation routes. In this paper, we
study among them only the ‘period-1" scaling behaviors
in the ‘period-1" bifurcation routes. We find that there
are three kinds of ‘period-1" bifurcation routes. Each
bifurcation route is characterized by its own four funda-
mental noncoordinate scaling factors, &, and &, (divergen-
ce rates from the period-1 map of the renormalization
transformation) and &, and & (convergence rates to the
period-1 map). Therefore, the two parameter scaling fac-
tors 7, and 7, for any (regular or special) bifurcation path
in a bifurcation route are some combination of the four
fundamental noncoordinate scaling factors. We obtain
these four fundamental noncoordinate scaling factors by
a direct numerical method. Although the ‘period-1' scal-
ing behaviors were studied'**'”), the fundamental non-
coordinate scaling factors were not found and only one
special path for each of the bifurcation routes (-, - and
E-route} was found, whereas we have found three kinds
of special paths for our - and A-routes and two kinds of
special paths for our E-route.

This paper is organized as follows. We begin by col-
lecting some useful properties of a symmetric 4-D volu-
me-preserving map in Sec. ll. We then generalize the
bifurcation routes and the bifurcation paths defined in
Ref. 14. In sec. [lI, the resuits of ‘period-1' scaling beha-
viors are given and the final Section IV is a summary.
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I1. BIFURCATION ROUTES AND
BIFURCATION PATHS

We present scme useful properties of a syminietric
4-D volume-preserving map in subsection !. We then
generalize in subsections 2 and 3 the bifurcation routes
and bifurcation paths defined in Ref 14.

1. Symmetric 4-D Volume-Preserving Maps

We study the period-1 scaling behaviors in a sy
nietric 4-Ir volume-preserving map which was first stu-
died in Ref. 14. The symmetric 4-D volume-preserving
map T is of the following form:

2=y fix o,
TZ|¥=g
2 .
u=-v—gilx, ul,
V=u, 12.1;

where Fix ui= 20 Cxt * 4 Ewt Fo - Grul)
and glx i =7Fu.x) The termiCx 4 221 in fix,uis a quad-
ratic function of x, and C a parameter. The lerm [u -
Fif — G xu) in fx, u)contains all the coupling terms up
to quadratic terms. £ is their common coefficient, called
the coupling parameter. £ and G are parameters, hut we
will fix their values to perform a two-paranieter search!'*.
Therefore, the map T is a symmelrically coupled qua-
dratic Henon map.

There are two kinds of orbits in map {2.1)"". One is
the in-phase orbit:

u( xi .
= . i=1,..N, where NV is the period.
Uy Yu

The other one is the opposite-phase orbit:

u, Xiun
[ }={ e ] where / is the period.
Uy Vivnrz

In this paper, we consider only the in-phase orbit.

For the in-phase orbit, the Jacobian matrix L of map
(2.1) decomposes into two 2x 2 matrices under a coor-
dinate change!"!. By introducing new coordinates
(X, Y, Ul V) defined by

X={x4+w- -R/2, Y= {y+uvi-R/2,
U=(x-v)-R/2, V=0u-V)-R/?2 {2.2)

where R=1+ EF+ EG,

the old map 7(2.1) becomes a new map T:

X =-Y~-INX U,

T V=X
U=-V- G X U0,
V=1, i2.3:
where

FX U=2 PX-X*+F L7,
GX, Uy =2 P=-2E:U: G XU, and
P=C—-F Fi=1+FEF-EGI/R, G,=21-EH),
H=CQ2Ft G /R.
Then the in-phase orbit of the old map (2.1) becomes the
orbit of the new map with /= V=0. Moreover, the
values of two new coordinates (XY} can be determined
by the 2-D Henon map,

X' =-Y+2PXtXH YV =X 2. 41
The Jacobian matrix [ of the new map at the in-phase
orbit is decomposed:

o 2]
L_
0 L,). 2.5
where 0 is the 2 x2 null matrix,
2Pt4X -1
and L,=
1 0J,

[Zi'P—2E21+QG,X —1]
—
1 0J.

Here, the matrix 7, is just the Jacobian matrix of the 2-D
Henon map (2.3}.

Map 7°(2.1) is symplectic" only if
or _oe. 2.6)
ou 9x

The stability of an orbit of period NV in a 4-I symplectic
map is determined by the Jacobian matrix M of T
which is symplectic. As is well known!"®, if A is an ei-
genvalue of M, then so are A™' and A* (complex con-
jugate of A). Therefore, the eigenvalues, A's, come either
in reciprocal pairs which are real, or in 1 complex qua-
druplet with A, =A;' =A% =1} These eigenvalues of
M are called the multipliers of the orbit!'’. Following
Broucke!'”, Howard and Mackay''® associate with each
eigenvalue A a stability index,

p=A+A"", (2.7)



Then, the reduced characleristic polynomial of a 4-D

symplectic matrix is quadratic!™®':
o= T-pr Ti—2=0. 2.8

where

TYM - Ty MU 2= 0 2.

Therefore, the two independent quantities:7, 7,ar
(#,,0,) determine the stability of the periodic orbit !*'*
A periodic orbit is spectrally stable if all stability indices
are real with |#l<2 and a period-doubling bifurcation
gccurs when two eigenvalues coalease at A = -1 and
split along the negative real axis (a stability index de-
creases through -2)!'*!

The map 7 (2.1) is a volume-preserving map, since
Det(/)=1 and it is symplectic only if G=2F. However,
for the in-phase orbit, Eq. (2.6) is always satisfied be-
cause of the symmetry of the map igix a1 =f (2 2.
Therefore, the stability diagran in the 7,- 7, ptane for
the urbits in a 4-D symiplectic map is the same as that for
the in-phase orbil in a symmetric 4-D volume preserving
map' . Since the Jacobian matrix of the new map (2.3)
at the in-phase orbil is decomposed as shown in Eq.
(2.5), the stability index 2, of a pericdic orbil is a func-
tion uf unly one parameter £ and ., a function of wu
parameclers Pand E since we fix the vatues of Fand G (v
perform a two-parameter search!':

g}
=

o, =p 1 Prand p,=p, (P E.. (

2. Bifurcation Routes

A remarkable observation of Mao and Helleman''* is
that a mother stability region bifurcates into two daugh-
ter stability regions in the parameter plane as shown in
Fig. 1. Therefore, the stability diagram in the parameter
plane can be regarded as a kind of binary tr‘ee. We de-
note the upper branch of the two daughter stability
regions by the letter' /" and the lower branch by the let-
ter ‘I.". Then, a bifurcation route is uniquely determined
by its address which is an infinite sequence of the two
letters ‘U’ and ‘L as shown in Fig. 1. Therefore, there are
infinite kinds of bifurcation routes. In this paper, we
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Ll
.. 4
-’1”’

Fig. 1. A skematic stability diagram in the PE-parameter plane
for period-1,-2,-4, ete., orbits of map (2.3). The period-
doubling bifurcation line is denoted by the solid line,
and the tangent bifurcation line is denoted by the dash-
ed line.

consider only the “period-1" bifurcation routes among
them.

We find that there are three kinds of ‘period-1" bifur-
cation routes. The three kinds of ‘peried-1" bifurcation
routes are as follows. The first one is the ‘S-route’ whose
address is [z, ([,) *] or [b, (1.,)” ], where a and b are ar-
bitrary finite sequences. That is, an ‘S-route’ is formed if
one follows asymptotically only the upper branches or
only the lower branches. Since one goes asymptotically
in the same direction (‘{/* or ‘L'-direction) in the 'S-rou-
te’, we call it the ‘S-route’. The second one is the ‘A™-rou-
te whose address is [¢,([,.0J)” ], where ¢ is an arbitrary
finite nonempty sequence. Since the address of an ‘4-
route’ is [¢, (I,L1)~ ], the direction of the route asym-
ptotically alternates between the 7 '-direction and ‘/-di-
rection. Therefore, we call it the ‘A-route’. The third one
is the ‘E-route’ whose address is [(/,{J.)"]. Since the ad-
dress is unique, there is only one %-route’. The differ-
ence between an ‘A-route’ and the ‘E-route’ is as follows.
The value of the coupling parameter £* at the accumu-
lation peint (P*,£*) for period doublings in the Z-route’
is zero, whereas the value of £* in any A-route’ is non-
zero. In these three kinds of ‘period-1" bifurcation rou-



tes, the period-doubling patterns exhibit their respective
‘period-1" scaling behaviors (see Sec. ).

3. Bifurcation Paths

In this subsection, we define the ‘period-1" bifurca-
tion paths and compare them with those previcusly de-
fined in Ref. 14.

Before defining the bifurcation paths, we explain
some terms and notations which will be used later. We
cail an orbit born by the nth period-doubling bifurca-
tion 1 map (2.3) an orbit of level n. Then, the periud
N of an orbit of level n is 2" and there are 2" orbits of
level n. As explained in subsection A, the stability of an
orbit of level n is determined by its multipliers (4, .4, .
Aam Agn)or its stability indices (9, ,,0, ) or two in-
dependent quantities (7, T, ) defined in Eq. (2.8).
The values of the two parameters ” and £ in map (2.3)
for which an orbit of level # has some given multipliers
or equivalently some given stability indices will be
denoted by F, and £,.

Let us choose a ‘period-1’ bifurcation route. Then, a
‘period-1" bifurcation path which belongs to the chosen
bifurcation route is formed by following in the chosen
bifurcation route using P, and F, for which the orbit of
level n has some given multipliers{ A,, A;', ¢ ¢~ )or
equivalently some given stability indices (g, p,) where

Ay is any real number (A, ER), 0= 6= 72, 10)
0, €R and [p,=2-cosg| =2

The ‘period-1' scaling behaviors have been studied
previously''* and three kinds of bifurcation routes were
found ({-route, (/-route, and E-route). We compare our
‘period-1" bifurcation routes with those found by Mao
and Helleman. They first defined bifurcation paths. Their
bifurcation paths are formed by following asymptotically
£ and £, for which the orbit of level 1 has some given
multipliers (- 1, - 1, ¢**, ¢=* ) which correspond 1o a bi-
furcation point lying on the period-doubling bifurca-
ticn line in the 7}-T, plane. A bifurcation path with
0=6=7/2 s called an L, path (or L path if 8 is not spe-
cified)'*. Then, an /.-route is formed by a paticular /.
path and all L, paths in its neighborhood and its ad-
dress is [a,(U,) " ] or [6(L,)" 1" which is the same as
that of our ‘S-route’. However, they considered only the
case for Aj=-1 and 0=§<7/2 whereas we consider

the case for 4, €R and 0= §< for the ‘S-route’ (see Eq.
(2.10). In such a sense, their L-route is a proper subsel uf
our S-route’, Sinilarly, it is easy (o show that their Coroule
and F-route are proper subsets of our ‘A-route’ and £-
route’, respectively. By generalizing the ‘period-1 bifur-
cation routes and ‘period-1" bifurcation paths as nien-
tioned above, we find in our ‘period-1" bifurcation roules
thal there are more “special’ bifurcation paths than those
found in Ref. 14 (see Sec. IlI).

IIl. PERIOD-1 SCALING BEHAVIORS

In this section, the effects of ‘period-1' scaling beha-
viors in the three kinds of ‘period-1" bifurcation routes
{5~ A- and E-route) are given. In subsection .4, we obtain
the two parameter scaling factors, 7, and 7,, by the scal-
ing matrix method"®. The values of 7, and 7, depend
on the ‘period-1" bifurcation paths. We find that there
are more special bifurcation paths than those found in
Ref. 14. Furthermore, we find in subsection B the four
fundamental noncoordinate scaling factors, &, and &,
(divergence rates from the fixed map of the renormaliza-
tion transformation) and &; and &, {(convergence rates to
the fixed map). Therefore, the parameter scaling factors
Yy and ¥, for any (regular or special) bifurcation paths in
a ‘period-1" bifurcation route are some combination of
the four fundamental noncoordinate scaling factors of
the bifurcation route. In the final subsection 3, we
review the orbital scaling behaviors which have been
studied in Ref. 14,

1. Parameter Scaling Factors

To perform a two-parameter search!'®, we consider
the case where the values of (£,G) are (1,2), (2.4), (1,3)
and {(2,3) and follow with quadruple precision the orbit
with # level up to 17. The parameter scaling factors are
independent of the values of [ and G within numerical
accuracy. This is expected as we are considering a codi-
mension-two problem.

We first define regular paths and special paths as fol-
lows. Choose a 'period-1' bifurcation route. Then, for
any ‘period-1" bifurcation path which belongs to the cho-
sen bifurcation route, (P, £,) converges to the same ac-
cumulation point (P* £*)in the chosen bifurcation
route:



Table 1. The critical stability indices py and g in the ‘period-
1" bifurcation routes.

Route o7 o5
S-route -2.54351020 2.00000000
A-route -2.54351020 -1.00000000
E-route -2.54351020 -2.54351020

lim (P, E,:=iP* F* for all bifurcation paths.
3. D

Furthermore, at the accumulation point (P* E¥), the
stability indices ¢, , and s, , converge geometrically to
the critical stability indices 67 and g3, respectively:

lim po.{P*)=p¥ and lim py, (P* E*)=pk,

o o 3,2)
Note that 2, ,, is a function of only one parameter P(see
Eq. (2.9)). The critical stability indicies are shown in
Table 1. If the given values of the stability indices ¢, and
0, in Eq. (2.10) are not the critical values (o, ¢} and
P, 7 £3), then we call it a regular path, otherwise we call
it a special path.

The scaling behavior of the period-doubling se-
quence [(P, E,), » = 0,1,2,...] can be determined by the
scaling matrix method developed by Gukenheimer, Hu
and Rudnick"? (refer to Ref. 13 for details). The 2x2
scaling matrix of level #, I';, is defined as follows:

il
En_En-1 o Em»!_En .
Then, I', approaches a constant matrix I" as n—>oo:

(3.4)

3.3)

lim =1

e

The eigenvalues of I', 7| and 7,, are the parameter scal-
ing factors. The parameter scaling factors in the three
kinds of ‘period-1’ bifurcation routes are shown in Table

2. The values of 7, and 7, in each bifurcation route de-
pend on the bifurcation paths. Regular paths have the
same values of 7, and ¥, whereas each kind of special
path has different values of 7, and 7, from those of the
regular paths. In the S- and A-routes, there are three
kinds of special paths. On the other hand, in the
E-route, there are two kinds of special paths, since g, for
any bifurcation path (see the range of #, in Eq. (2.10))
can not be p§ (see Table 1}. No 7, exists for the 1st type
of special path in the E-route, since E,, is zero for all #. In

Table 2. The parameter scaling factors, 7| and 75, for the
‘period-1" bifurcation paths in the ‘period-1" bifurca-
tion routes. In the 2nd column, we denote regular
paths by ‘R’ and special paths by ‘S. The ranges of £,
and g are given in Eq. {2.10).

Route Path 71 ¥z
S-route o F ot pFEpl R) 8.721 4,000
ook p=pFS)  8.721 -15.08
o=pr, mELSS) —74.78 4.000
o= pr p=prS) —74.78 -1508
Aroute o Fpf eFpes (R 8721 -2.000
pF o p=pFiS) 8.721 —15.08
pi=pr, mFerS) —74.78 —2.000
pi=pr pe=pr 1S —74.78 —15.08
E-route on¥oef R} 8.721 —4,40/4
=< (=2 218} 8.721 non- existent
p=pl S) ~74.78 —4.404

Ref. 14, they found only one special path in each bifur-
cation route (7-,U- and E-route) which belongs to the 1st
type of special path in each bifurcation route (S- A- and
E-route). Tierefore, by generalizing the bifurcation
routes and the bifurcation paths as explained in Sec. Il
we find that there are more special bifurcation paths
than those found in Ref. 14.

2. Fundamental Noncoordinate Scaling Fac-
tors

In this subsection, we find that there are four funda-
mental noncoordinate scaling factors, §, and &, (diver-
gence rates from the fixed map of the renormalization
transformation) and 8, and &, (convergence rates (c the
fixed map).

At the accumulation point (F* E*) in a bifurcation
route, the stability indices, #, ,(P*)and e, ,(P*E*} con-
verge to the critical stability indices o} and g3, respecti-
vely. The convergence is asymptotically geometric at
rates &7 and & 5, respectively:

prn (P —pr~8" and pua (P% E*) — o7~ 8,7
(3.5)

The values of §; and &; are shown in Table 3. Since |§}|
=8| (equality holds only for the E-route), &, is the es-
senttal convergence rate as it is the largest noncoardina-
te eigenvalue inside the unit circle!"!. That is, a critical
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Table 3. The four fundamental noncoordinate scaling faclors,
&,. 8,, &/and 8, in the ‘period-1" bifurcation routes.

Route 5 5y 51 &,
S-route 8721 4.000 -0.1166 -0,2653
A-raute 8721 -2.000 -0.1166 0.1326
E-route 8721 -4.404 -0.1166 ~-0.1166

map on the critical map surface converges to the fixed
map with rate & in the scaling coordinate!”.

First, we oblain the analytic formulae for & and &, (di-
vergence rates from the fixed map) by using the eigenva-
lue-matching renormalization method”. The basic idea
of Derrida et al.® is to associate for each (P E) a
value (P’ E"isuch that T2+ locally resembles 777"
is the 2"th iterated map of T (L.e., 7" =7%"). An appro-
ximate way to do this is to equate the stability indices
oflevelnp, P E) and p.a (P, E} to those of levet 1n—
1), prnes (P E7) and pones (PLEY:

o1 P El=pyp (P E) and pn (P £)

=prna (PLET). (3.6)
The accumulation point (P* £*) is a fixed point of the re
currence relation (3.6):

orn (F¥ E¥) = py ey 1P EX,

prn (P E*)=py ., (P* E*), 3.7)

By linearizing Eq. (3.7) about the accumulation puint
(P* £%), we obtain

aF ar

AP aP,|t #8E’|* AP
= £ £ (3.8)

3 a i

AE B_P’l* ﬁh AE

[ ’]
An'
]E/ i

where
AP=P-P* AF=FE—E*AP' =P - P¥*
AE'=E'—FE* and An= An-Ba,

3pun 9pun |

ap'* a8 "
A=

ap?.n‘ g_ml

apP ™ ak "*

— 411 -
__apl‘f‘i-l | aPl.nﬂ] |
ap '* EY
B,= and
SP2nn | OP2nsy |
op EY

« denotes the accumulation point (P*,£7).

Then, the cigenvaluess|, and 8. of the matrix A, are

_ Tra,d (Tra i —4-Det AL

‘1)
g Z

(3.91

Note that £, = £,(P} and £, = £4(,2£) In map {2.3) (sce
Eq. (2.9)). Therefore, after sonie algebra, we oblain the

analytic formulae for 84" and 54"

_ _dfol.rﬁl/q_'P/'*

5= .
doy.n/dP | % 3.10)
n_ Q_’M*—JaE_’b
T 9pin/OE]s

As n—x.6" and 84" approach &, and &, which arc the
divergence rates from the fixed map:

&=limé{, =1,2.

n—+m

(3.11)

Secondly, we obtain lhe analytic formulae for ¥, and
7, (parameter scaling factors) by using the scaling mainx
method"®. Note that a bifurcaton path is formed by tol-
lowing in the chosen bifurcation route (2, ) al which
the orbit of level n has some given stability indices g
and g, {see Eq. {2.10)). Let us denote the given slability
indices p, and p, by (g, and Gg, and write them in the
following form:

Go,=pF+Ap, and Gp,=pf +Ap,. (3. 12!

The, by the definiticn of a bifurcation path, we obtain
GP1:P;k+AP1=pl‘n l’Pn- En)y
GP1:P;“_A91:P1.M| (Prvic Enial,
Gﬂzzp;‘+Aﬂz:Pz,n'<Pn. En)-
Gp;zp:*AP2=ﬂ2.n‘1 (Pryyy Eney). (3. 131

By linearizing Eq. (3.13} about the accumulation point
(P*,£%) and using Eq. (3.5), after some algebra we oblain

[ AP,,] [APM }
=Tl
AE" Aﬁrn+1 5
where AP =P -P*, AE =F-E* and
I = A" C,.where A, is defined in Eq. (3.8), and C,

3.14)



depends on the values of Gg, and Gp, as follows:
L Ge#p! and Ge, ¥ pf {Ap, X0 and Ap, =0,
Co=B,1B, 15 defined in Eq. (3.8) ).
2. Gp,¥pf and Gp,=pf (Ap,*0 and Ap,=0],

%ﬂtl |* P11 I
oF E’
Co=
5;71_ aﬂz.nn ‘* ;_1‘__aﬂz.n~1 I

2P’ ok

3. Gov=pF and Gp, ¥ pf (Ap,=0 and Ap,¥0),

’_ ap:.n»l ,_ aP1.n+1
6\1 I'—; fe=2m
ap It N gp I
Cp=
apl.fhll

oP

a,ol.m-l |’.=
o’

4. Go=p} and Gp.=pof (4p,=0 and Ap,=01,

/1 OPune s 9Prn
& o v T o
ap v Sl

Co=
o apz.n'l sl apz.m1
82 ) B &, E
op | oE *

Then, the eigenvalues 71" and 7" of the scaling mairix
I are:

e TrLp (TP = 4 Dt (1)
; :

(3.15)

Note alsu that p, = p\(P) and e, (P.E)} in map (2.3} (see
Eg. (2.9)). Therefore, after some algebra, we ..tain the
analytic formulae for 79" and 74" which depend on the

values of Gp, and Gp, as follows:
L Ge*p and Go, ¥ pf,

dperHl/dP)i* )’m"= ap?n'ﬂfl/aE/ ’*
dﬂbn/dpl* ’ : aﬂz.n/aEl*

(3.16a)

o
=

2. Go,*®p! and Gp,= pf,

7wn]:dp1vﬂ+l/dp/|* y;n\:aﬂz.nu/aE’l*_ ,a
' doyn/dP|s " Opun/BE|x "

{3.16b)
3. Go,=p' and Go,* p¥,

o Ao /3P % Do /OE | %
in_ VA ¢ T nn+
T mdp.,,,/dPi* 0,72

(3.16¢)

1. Ge=pf and Go,=p},

apzm/aEl «

AL AR LA

PAAYRORASURIRLY, VUL L4, NOL G, LICCCINDEY [HaY

o a’pl.ﬂ+1/dp’ ff

= o _ Opana/IE |4
n dpl.n/dP| *

LR ' Rt
R N Y A

3.16d)

Asn—co,Y (Y and 7" approach 7, and 7, which are the
parameter scaling factors:

Imy™ =y, =12

fi— o

(3.17}

By comparing the analytic formulae for 8% and 6‘2”) in
Eq. (3.10) with the analytic formulae for 7' and 7% in Eq.
(3.16), one can express the scaling factors ¥, and 7, in
terms of §,,8,6] and &, as follows:

1. Gpy*p and Gp,*pF (regular paths),
y,=48, and y,=4,, (3. 18a)}
2. GpFp¥ and Ge,=pf (the 1st type of special
paths),
y, =8 and y,=&./5,; (3. 18b)
3. Go,=p! and Gp,* e} (the 2nd type of
special paths),
==&/ and 7,=&,, (3. 18c)
4. Gey=p! and Ge,=pf (the 3rd type of
special paths),

n=26,/8 and y,=8,/8,. (3. 18d)

Therefore, the furidamental noncoordinate scaling fac-
tors are &, and § , (divergence rates from the fixed map)
and & | and §;(convergence rates to the fixed map) which
are shown in Table 3. That is, the parameter scaling fac-
tors 7, and 7, for any (regular or special) bifurcation path
are some combination of the four fundamental noncoor-
dinate scaling factors. As shown in Table 3, the values of
&, and &, are the same for all bifurcation routes and
moreover, these values are the same as the values of &
and &' for period-doubling in area-preserving maps (the
vaiue of 8’ was found in Refs. 9 and 10). However, the
values of &, and &; are different for the there kinds of bi-
furcation routes. Furthermore, since |8;| =87 (equality
holds only for the E-route), the essential convergence
rate!'” is §; That is, &3 is the limiting factor in the con-
vergence of a critical map on the critical map surface in

the scaling coordinate!”.

3. Orbital Scaling Factors

In this subsecticn, we review the orbital scaling be-



haviors of the in-phase orbits found in Raf. 14 1o
contain in this paper all the scaling behaviors
{parameler scaling behaviors and orbital scaling
behaviors).

After making the linear transformation in Eq. {2.2),
the old map (2.1) becomes the map (2.3). Then, the first
two coordinates X and Y in the new map (2.3) of the in-
phase orbit with /= V=0 are determined by the 2-D
Henon map (2.4). Therefore, X and Y scale with the 2-D
orbital scaling factors®'% a = ~4.018--, and 8=16.36---.
Furthermore, according to the definition of the linear
transformation (2.2), the coordinates x and v (or «# and »)
of the in-phase orbit also scale with the same 2-D orbital
scaling factors e and 8.

IV. SUMMARY

By generalizing the bifurcation routes and the bifur-
cation paths defined in Ref. 14, we find that there are In-
finite kinds of bifurcation routes, whereas only three bi-
furcation routes (- [~ and F-route) were found in Ref.
14. In this paper, we study among them only ‘period-1’
scaling behaviors in the ‘period-1" bifurcation routes. It
is shown that their /-, {- and £-routes are proper subsets
of our ‘period-1' bifurcation routes, S-A- and E-route,
respectively. Furthermore, we find that there are three
kinds of special paths for our S- and A- routes and two
kinds of special paths for our E-route, whereas only one
special path each for the -, U- and E- bifurcation routes
was found.

The parameter scaling factors ¥, and 7, depend on
the bifurcation paths as shown in the Table 2. However,
they are some combination of the four quantities &), &5, &
and &, as shown in Eq. (3.18). Therefore, 8y, &,, 67 and &5
are fundamental noncoordinate scaling factors, These re-
suits, Eq. (3.5) and Eq. (3.10) suggest that there exists a
fixed map T*of the renormalization transformation & for
period-doubling and the linearized transformation 2V of
N at T* has two unstable noncoordinate eigenvalues &,
and &, (divergence rates from the fixed map) and two
stable noncoordinate eigenvalues &, and &; (convergen-
ce rates to the fixed map). Finally, note that there are

four fundamental nencoordinate scaling factors in 4-D
volume-preserving maps, whereas there are only two
fundamental noncoordinate scaling factors in area-pre-
serving maps. This is expected as we are considering a
codimension-two problem.
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