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Renormalization analysis of m/n-bifurcation sequences is reported for 2-dimensional reversible area-

preserving maps, generalizing the method of quadratic approximants. Quadratic approximants are formed

by retaining upto quadratic terms in the Taylor expansion of the p-iterate of map T about the p-periodic

point, TP, Recurrence relations among coefficients of the expansion of two successive orders of the

sequence are elements of the renormalization group. The bifurcation ratios and scaling factors calculated

by this method agree well with the values estimated directly by following the sequences. This method can

also be applied to study other infinitely nested self-similar structures. To show the point we apply this

technique to the critical behavior of a noble invariant curve and obtain universal scaling constants.

I. INTRODUCTION

The motions of nonintegrable systems modera-
tely perturbed from integrable ones can be divided
generally into two types, regular and chaotic
orbits. Regular components consists of main fixed
points, vibrational invariant curves around the
main fixed points and daughter island chains born
out of resonance-bifurcation of the main fixed
points. Chaotic orbits are interwoven with the
island chains since hyperbolic points are also
born out of resonance bifurcation and separatrices
split generically. The daughter island chains have
their own vibrational invariant curves and secon-
dary island chains around them, and so on. In this
way the island chains have infinitely nested
structures!!] ;

In our previous work we have shown that at a

certain parameter value island chains of every
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generation of a particular resonance do exist and
they have self similar structure nested asymptoti-
cally., We found that their limiting behaviours
are self-similar and calculated scaling factors for
the 1/n-resonance sequences with a varying n from
3 to 6(2]. We have also observed that the pattern
of periodic orbits repeat itself asymptotically
from one bifurcation to the next for even n and
to every other for odd n.

Recently it has been recognized that these self-
similar scaling behaviors have paramount impor-
tance in constructing the transport equation in the
divided phase space where regular and chaotic
orbits coexist®l . Stochastic orbits have long time
correlations near islands and their scaling behaviors
are directly related to the transition probabilities
of a Markov tree model which describes the diffu-

sion of particles.



In this paper we study these asymptotically
self-similar island structures by a simple approxi-
mate renormalization method. The renormaliza-
tion method was introduced into the dynamical
system first by Feigenbaum[4] to study the
Feigenbaum sequence of the 1-dim. dissipative
map. The method was soon extended to 2-dim.
area-preserving maps for the study of period
doubling sequences and critical invariant curves.
Collet et al.[8! and Widom and Kadanoff(6) solved
directly the fixed point equation for the renor-
malization of 1/2-bifurcation in map- and action-
space, respectively, and obtained an approximate
fixed point and scaling factors. By linearizing the
renormalization transformation about the fixed
point, they obtained eigenvalues, Using MACSYMA,
Greene et all?l also obtained an approximate uni-
versal map, but they used the accumulation para-
meter value and scaling factors obtained by
directly following the 1/2-bifurcation sequence.
The direct methods for solving the fixed point
equation for the renormalization of 1/n-bifurca-
tion becomes rapidly intractable as n increases.
Therefore, for higher n-tupling bifurcation, it is
desirable to use an approximate renormalization
method in which the difficulty of calculations
does not increase significantly with n. Recently
Lichtenbergls] obtained accumulation points for
higher n-tupling bifurcations (n > 2) in the Chiri-
kov standard map by a simple method. His method
has some similarity to the two-resonance approxi-
mate renormalization of Escande and Doveill®]
used for invariant curves, He reconstitutes approxi-
mately a local standard map about a single island
of period n (n > 2). Through this procedure he
obtains a recurrence relation between the old
parameter of the original map and the new one of
the local map and calculates the accumulation
point as the fixed point of the recurrence relation.

The approximate renormalization method used

in this paper may be called the method of quadra-
tic approximants. Since the self-similarity is an
asymptotic property valid only in the immediate
vicinity of a periodic point, it is sufficient to
retain up to quadratic terms in the Taylor expan-
sion of the composed maps. Although the linear
approximant yields quite a lot of information, it
is necessary to make quadratic approximants in
order to fully resolve the two scaling factors as
will be seen in the later sections. Derrida and

Pomeau!1°!

compared the linear approximants
for T, T? and T3, and obtained the accumulation
point and the bifurcation ratio for 1/2-and 1 /3-
bifurcation. The quadratic approximant is formed
by keeping the terms to the second o.rder in the
Taylor expansion of the n-th iterate of a map, ™
Comparison of successive approximants of a 1 /n-
bifurcation sequence gives the accumulation point
P*, the bifurcation ratio §, the scaling factors a
and 8, and the universal residue value R*. By
looking at the recurrence relation between T“l
and Tn'*!

approximations,

with large / , we can make better
and obtain the approximate
universal map T*:

e _— B a 0
T :A’Tp*/l , /1_<0 ,3)'

Actually Helleman(!!] and Helleman and
Mackaym] used this method to calculate the
accumulation point, the bifurcation ratio, and the
scaling factors for 1/2-bifurcation. In their calcula-
tions they compare quadratic approximants for T
and T2, the lowest pair of approximants, We made
better approximations: by comparing the next
higher approximants, for T? and T#, and obtained
P*,5, a and g for 1/4-bifurcation by comparing
the quadratic approximants for T and T*. AL
though approximants for low order iterates can be
handled analytically, it is imperative to resort to

the numerical method for quadratic approximants



for high order iterates of T for 1/n-bifurcation
with high n values and high order calculations.
Thus by the numerical implementation of this
simple method, we obtained universal maps, scal-
ing factors, bifurcation ratios and universal residue
values for 1 /n-bifurcation (n= 2, 3, 4, 5, 6).

Chang et al (13] , and Hu and Maol#! ysed
similar methods for tricritical behaviors and
period-doubling bifurcations in 1-dim maps with
2-parameters and 1-parameter, respectively. How-
ever our objective in this paper is different from
theirs, and the maps under study are essentially
different. We are concerned about an area-preserv-
ing map, while they were concerned about a 1-dim
dissipative map. Our objective is to study the criti-
cal behavior of higher n-tupling bifurcatins (n =
3,4,5,6) in 2-dim area-preserving maps; there are
no analogous phenomena in 1-dim maps. Finally,
it should be noted that the only renormalization
analysis for higher n-tupling bifurcation reported
prior to this paper is one by Lichtenberg[sl. How-
ever his renormalization scheme is entirely differ-
ent from ours. In effect, his one-shot renormaliza-
tion scheme amounts to our lowest / ( / = 1) appro-
ximation,

Our method can also be applied to other
infinitely nested structures such as critical invari-

(15, 161 we applied the method to a

ant curves
noble invariant curve and obtained the critical
parameter value, the scaling factors and the univer-
sal residue value which have been obtained
through other methods!% 16171 .

In section 2, we describe the renormalization
method briefly and present the results for 1/n-
bifurcation calculated using this method. In
section 3, we discuss the application of the me-
thod to a noble invariant curve. In section 4, we
present a summary and further discussion of our

results.

II. AN APPROXIMATE RENORMALIZA-
TION OF M / N-BIFURCATION

In this paper, we use the DeVogelaere quadratic
map, since that map is represented in terms of

symmetry coordinates. The DeVogelaere map is

Ty F ) KT TN 1 e
. d > X)) = — — .
? y ' =x—fp(¥) * * op

The DeVolgelaere map is an area-preserving map
with unit Jacobian (det(DT)=1). Here DT is the
Jacobian matrix which is the two by two matrix
of partial derivatives of x’and y 'with respect to
x and y. The map is also reversible since it can be
factored into the product (TpS) S of two involu-

tions:

X x/ = X
“()-()
y =~y
% %"= y+ fp(x)
(e R o
y Y =x—fp(x’)

Two symmetry lines formed from the points
invariant under § and TS are y=0 and y = x — fp
(x). If (x; yl.) is an orbit of Tp, then S(xi'yi)
is an orbit of TD‘l which is the inverse map of Tp’
where T ' =g T,S. A symmetric orbit which
is its own time reversal is an invariant orbit under
S. Thus, a symmetric orbit must have two symme-
tric points on the symmetry lines. When the
period n of a symmetric periodic orbit is even the
two symmetric points lie on the symmetry line
y=0, and when n is odd one symmetric point is on
the symmetry line y=0 and the other symmetric
point on the symmetry line y = x — fp(x)[16].

The stability of an periodic orbit is determined
by the Jacobian matrix M of TS about the orbit,
The residue R of the periodic orbit is:

R=(2 — Tr(M)) ] 41181



When R < O the orbit is hyperbolic, when 0 < R
< 1 it is elliptic, and when R > 1 it is hyperbolic
with reflection. For an elliptic orbit, the residue
can be represented as R = sin?( 7 ). Here w is the
rotation frequency about a point on the elliptic
orbit. When o is a rational number m/n ( v <1/2),

(191 analyzed

m/n-bifurcation occurs. Rimmer
bifurcations of symmetric periodic orbits in rever-
sible area-preserving maps. When 0 <m/n < 1/2,
Rimmer has shown that all periodic orbits pro-
duced by generic bifurcation of a symmetric
periodic orbit are also symmetric, Therefore, at
least one symmetric point of the periodic orbits
formed by m/n-bifurcations must lie on the
symmetry line y=o.

As an example we take 1/2-bifurcation and
describe our method briefly. Let us denote the
symmetric periodic point of period 2 as (X, , 0).
The idea of Helleman’s method is to associate, for
each value p’, a value p such that TIZ)I with origin

()A<l, 0) looks the same as T;fl_” with origin
(X7-1 , 0) on a small spatial scale (to the second

order). Therefore,

a 0

(i-1)
0 /s)'

l
T T =AT, a7, A= (

i
If we denote TS as

{
2l 3 x,:FfD )(x,y)
T, = , , then
y ¥'=Gy ' (x,)
FPG,, 0=%, and GP (3, 0) =0

Let us first make Taylor expansions of FB” and
GI‘)“ about (X; , 0). Then,

F§P(x,9) =% +A41(p) (x=31) +Bi(p)y
FUL (D) (x—21) 2 +V (D) (%) vy
WL (0)Y% + eeene

G5 (x,9) = Co(p)(x=37) +Dy(p)y
+ Q) (x—%1) 2+ Ry (p) - (x—2p)
= S,(p)-yz 4 mieng g

Because the self-similarity holds in the vicinity of
the periodic point, we expect that it would be
sufficient to keep only the terms to the second
order in the Taylor expansions, Let us define the

!
linearized map My"> (x,y) of Tj (x,y)as

{
M (x,3) = DTS (%,9)
<H;”(x,y> 151 (x, ) >

ISP (x, ) K§P(x,)

(2)

by introducing four functions H1(>” N
JE,” and KI(J” . The area-preserving condition

is given by
HP KD — 150 15D =1 (3)

for any (x,»).
Then, the coefficients of linear terms of Taylor

expansions can be represented by
Ap(p) = HP (3, 0), Bi(p) =1 (5, 00, (4)
Ci(p)= /;5“(11, 0), and Dy ()= K" (%, 0)
=(1+ B;-Cy)/ A,

f16]

Using symmetry coordinates' "', we have A, (p) =

D, (p). Therefore, the trace of the Jacobian matrix
of T3 about(X;,0), TrM(p), is given by

TrM;(p) =A4,(p)+ Di(p)

= 24;(p). (5)

The coefficients of quadratic terms are also repre-

sented by the derivatives of the above four func-

tions, i.e.,
I aHp(l) 3121)
Uy (p) =—+ ~ , Vi(p) =——]
(P 2 ox }(xl, 0) e ox l(xz,O),
1) )
19k 1 ol
Q(p)=—- . WP =] A
KO =y s l(xl,O) =57 0,
aK[(jl)
Ri(p)= | ~ =@2Bp-Q+Cy-Vy—2D;-Uy)

ox  (x1,0)
/Dl, and



L K"
Si(p) =+ - | (BreR42C W =Dy
dy (x1,0)
Vi) /(2-Dp). (6)

The area-preserving condition (3) is used to ex-
press D, , R, and S, in terms of the other coeffi-
cients.

By eq. (1), we have

Ay (0")=A(p), Di_(§")=Dy(p), Bi_,(p")

Z%Bz(ﬁ),

6 =2 e, v ) = Lo, Vi)
@ =5 Vip),

Wi () = G Wi (8), @y () =L Qi) Ry (1)
(44

:%Rl (#) and

1

51_1(17’):/5

Si(2). (7)

Comparing the diagonal coefficients of the linear
terms of Tgl with origin (X, , 0) and sz'(l'l)

with origin ( X -, »0), we can obtain the accumu-
lation point p* and the bifurcation ratio § as

follows. By eq. (5) and eq. (7), we have

TrM;_(p") = TrM;(p). (8)

This recurrence relation (8) can also be obtained
by the method of Derrida and Pomeau’®l. The
fixed point of the recurrence relation (8) gives the

accumulation point p*, ie.,

TrM;_ (%)= TrM; (p5), (9)
and
dap’ dTrM;(p) dTrM,_ ()
bt | =R SR o)

gives the bifurcation ratio. As / increases, we
naturally obtain more accurate values, For the first

two orders, explicit analytic recurrence relations

can be easily derived, and Derrida and Pomeaul10]

obtained p* and ¢ to the second order. We extend
the calculations to higher order. Our method is as
follows. For any given (x,, yl), the function-

( b g H aacils
x:alues of HD_LID ,Jp ,and Kp are easily
calculated from

. ngl)(xl,yl) 1;5”(4‘71,)’1)
M7 3y, ) = t 0
TsP(xy, ) KB (xy, )

2
= [l m;,
i=1
Fhxi) -1
where m,-:DTp:< >,
1= fhxipy ) Sp(xi) Fplxipy)

fp(xi)=x;—=2-(1—p)x; and
Xip1 Xi
o T .
(}’i+1) p(yi) an

Therefore, TrM, (p) is readily calculated after find-
ing the periodic orbit of period 2’ . That is,

TrMy(p)=2-H" (%, 0). (12)
The equation for p to be solved is given by

F(p) =TrM(p) — TrM;_,(p)=0. (13)
The root of F(p) = 0 is just the accumulation point
p*. The universal residue value R* is: R* =
(2-TrM, (p*))/4. The bifurcation ratio § is the
ratio of the slopes of TrM, (p) and TtM,_; (p")
at the accumulation point p*, eq.(10). At p=p*,
the derivatives of TrM; (p) and TrM,_, (p) are
calculated by the ordinary numerical differentia-
tion routine, We numerically solve eq. (13) and
eq. (10), and obtain p* and § to the 6th order
(see Table 1). Table 1 shows that we have more
accurate values as / increases,

Once we have p*, we can obtain the scaling
factors « and g through eq. (7). At the accumula-
tion point p*, we first find the symmetric periodic
point of period 2! and the function-values of
HI()” , IL()I) , JI‘)” and K;)“ at (x,, 0)

through eq. (11). Next we calculate their deriva-



Table 1. The various quantities obtained by an approximate renormalization method for 1/2-bifurca-

tion. Known best values are those obtained by Greene et al. (1981) by following the 1/2-

sequence.
/ p* a B
1 _1.265564 9.0623 _4.1204 17.012
2 1.266321 8.6845 —4.0059 16.294
3 —1.26631115 8.72541 401992 16.3729
4 ~1.2663112786 8.720596 —4.01775 16.3627
5 ~1.266311276899 8.721156 _4.01814 16.3641
6 ~1.2663112769223 8.721090 —4.01806 16.36386
known best
nlown °s ~1.2663112769221 8.721097 —4.0180767 16.363897
values

tive values at ( X , » 0) by the ordinary differentia-
tion routine, Therefore, at p = p* we obtain the
coefficients of the terms to the second order of
Tﬁi and Tpil—l . By eq. (7), for p = p'= p*, we
obtain not only the ratio of the scaling factors
«/f , comparing the off-diagonal coefficients of
the linear terms, but also obtain the scaling factors
a and B separately, comparing the quadratic
coefficients of T;; and Tpi“-”
creases we obtain more accurate values of « and

. As !/ in-

8 as we see in the Table 1.
We define a renormalization transformation

T by

T =¢(T)=AT? 47}

with A as defined in eq. (1). Let us define T, as
the / -times renormalized map. That is, Tz &
! (Tg) = AT A" . If we put T, = T,*, then
1,152 T, = T*. Here T* is the fixed point called a
universal map under the renormalization transfor-
mation. Then we have approximately T* ~
A’T;f: A7" for large /. Therefore we have an
approximate universal map T*:
T = A0 T% - 48
x/ =—1.27176x—1.01322y —2.31933x"
:< + .0334822xy +----- >
¥’ =—.609305x— 1.27176y+ .793849x°",

+5.91963xy +------
R*=1.13588.

A similar renormalization technique can also be
applied to 1/3-, 1/4-, 1/5- and 1/6-bifurcations.
However, since 1/3- and 1/5-bifurcation sequences
have “period-2” behavior rather than straight
geometric convergence, the renormalization trans-

formation ¢ (T) now must be
T/ =(T)= AT™ 47,

where n = 3 and 5. Let To be the initial map. We
define T, by

2l _
letl(To):AlT()n /1 l.

For TO =T _* we have

p ¥
jima' TR g~ 7%
and
nl+ly

lim A" TR = T,
Unlike 1/2-bifurcation (‘“‘period-1 behavior), we
have two fixed points T* and T**. We calculated
to the 3rd order (/=3) p*,5,a and 8 for n = 3.
The results are listed in the Table 2. Two approxi-

mate universal maps T* and T** are given by



Table 2. The various quantities obtained by an approximate renormalization method for m/n-

bifurcation. Known best values are those obtained by following the 1/n-sequence in our

previous studies (1984, 1985).

i / * 0
44
bifurcation P 2
1/3 3 -.477013684274045 407.4254 —43.9794 —-186.723
known best values —.477013684274048 407.422 —-43.9807 -186.7
1/4 5 —.0689824440291 244616 -5.6119 14.2824
known best values —.0689824440286 2445 -5.6141 14.269
1/5 2 177137427506 401.75 —-43.34 -76.09
known best values 177137427510 401.92 —-43.27 -75.70
1/6 ) 3362383932 13.83 —8.248 6.302
known best values .3362383931 13.85 -8.25 6.30
T** = BT*B. Thus T* and T** in eq.(14) are eigenvalues,

two different fixed points which have the same
6
T*=ATy 17°

x' = — . 46742x— . 90841y —1.7374% — .23725xy

( ...... >

¥’ = .86032x— .46742y~ .53585x% +1.8279xy

and
7
T = *ThA™

/= — . 46742x+ . 28035y — 17. 773x% — 18 059xy

:<+ ...... >

y'= —2787Tx— 46742y — 32.037x% — 33.728xy

with R* = 73371, (14)

Because of marginal eigenperturbation in coordi-
nate changes corresponding to only scale changes,
if T* is a fixed point under a renormalization
transformation, T**(= BT*B'I) is also a fixed

point, where

a0
B= ( ) for any nonzero a and b.
0b

But, in eq. (14) there does not exist a B such that

Using this technique, we have performed the
calculations to higher order for 1/4- 1/5- and 1/6-
bifurcations. The results (p*, 4 , « and 8 ) are
listed in Table 2. For 1/4-bifurcation, this pro-
cedure can be performed analytically for / = 1
comparing l-cycle and renormalized 4-cycle maps
(see the appendix). For 1/4- and 1/6-bifurcations,
like 1/2-bifurcation, we obtained a single approxi-

mate universal map. For 1/4-bifurcation, we have
T*= A Th ™

x’ =— .03561x—1.0114y— 1.251%% — .3308xy

:<+ ...... )

¥ = .9874x—, 03561y~ . 1982x% + .4157xy

and

for 1/6-bifurcation, we have

5 _
T*zAS-T;*A s

x’ = .374x ~1.129y — . 764x% — .623xy

:<+ ...... >

' =.7617x + 374y + .0588x% — .0967xy

with K* = .3130.



For 1/5-bifurcation, like 1/3-bifurcation, we
again have two universal maps T* and T**, They
are
4
T*= - Ti A7

-

x = L 2217x— . 46y— 1.4x" — , 37Txy+----- )
v = 207+ .2217y — .215%% +. 162xy + -+ -+

and

T* =A% TS A"

(x’: L2217x+ .27y — 15922 —3 21y -+ eee )
TNy = —352x+.2217y — 4142 — 18, 3xybeeeees
with R*= 3892 .

III. RENORMALIZATION ANALYSIS OF
A VIBRATIONAL INVARIANT CURVE

Greenel!8! suggested a connection between
existence of invariant circles and the stability of
nearby periodic orbits. His numerical work shows
that for the critical parameter value at which the
residues of nearby periodic orbits are 0.25009, the
invariant curve with rotation number r_l breaks
up ( 7=(1+v5)/2) . and Doveill®!

have reproduced Green’s result by an approximate

Escande

renormalization method. Kadanoff and Shen-
ker!S 171 and Mackay[16] “explain” the scaling
laws for a noble invariant curve by the renormali-
zation method.

We apply our renormalization method used in
section 2 to the study of a noble invariant curve

~? in the quadratic map

of rotation number
studied by Mackay[16].

consider in this section is given as

x x,:‘y+fp(x) 2
v () ) rwot
y Y =x—fp(x)

(15)

The quadratic map we

We consider invariant circles with rotation number
o . Any irrational rotation number « has a unique

infinite fraction represented by

w— 1 7[7}’11’7}12’7}’!3, """ :|7
o+ 1 0<w< 1,
my +
Mg oeees
where
mi S ZT, i=1 2, e

The rational approximant Lo of w is given by

Tw=bp/4,, (16)
where

p":mnpn—1+ pn—z’ p-lz 1, pO‘O
and

P0G oy Ty 4_110, qo=1.

The vibrational island chain corresponding to the
rational approximant rn(=pn/q n) of « is formed
by pn/qn-bifurcation of the fixed point of Tp. As
n increases, the vibrational island chain approaches
closer to the vibrational invariant curve of rotation
number » . Thus the invariant curve of rotation
number w is formed at the parameter value at
which the residue R of the fixed point is sin?(ze).

Forw= 1/7% = (2, (1,)° ], Mackay!"®! has
found that in the critical case (p* = 2.38216325...),
the nearby vibrational island chains repeat each
other asymptotically on smaller scales. The scaling
factors across and along the dominant half-line o

and g are given by
& = 14148360
and

B = —3.0668882..

The dg,-sequence converges to a limit value §
(=1.6280), where g,
(an-1—=an)/(an—ans1 ). Here, aj is the parame.

is defined by 4=

ter value at which the periodic orbit of type
(P> a,) has some given residue.
Since there is unstable coordinate change

corresponding to quadratic shear, it is necessary



to choose the scaling coordinate to kill the com-

[16] . The scaling coordinate

ponent in this direction
(X, Y) is given by

X=x-Sy* S=-07783661

and
Y=y
Thus,
v v/-xesyt-Lallv+L
Tp:< >—* _1 Sy )22
¥ ( 5 (X+SY5)*]
X’:-Y+§—%(X+SY2)2
_Sylz

Asymptotically, on the dominant half-line,

q7-1 LN ] :H 0
Tx =~ATx A ,A:(O L)

. 4, ;.
That is, T, looks the same as Ty«

on a small
spatial scale,

Let us denote the dominant symmetric point as
(;(1, 0). The method we are going to uge is to
associate, for each p’ a value p such that sz with
origin ( X ;> 0) looks the same as Tgf“ with
origin ( X1-1 ,0)on a smal%1 spatial scalg (to the
second order). Therefore, Tpf” = ATp’ A1
By the same renormalization technique used for
m/n-bifurcations, we calculated to the 17th order
p*, 6, a and B . The results are listed in Table 3.
The approximate universal map T* to this order is
given by

q
17 ,—-17
T*= " Tx'd

X’ =.5079X +4.779Y + .184Y % + .1159XY>

:< -

Y/ =~ 1552X +.5079Y —.0974Y % +---...

The calculated residue value is 0.24625 (the ex-
pected value R* = 25009). Thus, when the resi-
dues of the nearby periodic orbits are 1/4, the
vibrational invariant curve of rotation number ;2

is on the edge of disappearance.

IV.SUMMARY AND DISCUSSION

In this section we summarize and discuss our
results and the renormalization method used for
the analysis. As was reported 2] , the self-similarity
repeats in I /n-bifurcation sequences. It is observed
that the pattern repeats itself from one bifurcation
to the next for even n (n=2,4,6), while for odd n
for every other bifurcation (n=3,5). When o =
1/7%, Mackay[16] has found that in the critical
case the vibrational island chains repeat each other
asymptotically on smaller scales.

Our objective is to study the critical behaviors
of higher n-tupling bifurcations and a noble in-
variant curve by a simple approximate renormali-
zation method. The approximate renormalization
method we employed in this paper is essentially
a generalization of Helleman’s original idea which
was used for 1/2-bifurcation to the lowest order.
Comparison of the quadratic approximants for
T and T»'*' yields the accumulation point
p*, the scaling factors a and g , the convergence
ratio ¢ and the universal residue value R*. As
shown in section 2, as / increases, the higher order
approximation gives better values. Since at the
accumulation point, in the limit / -oco, 4‘Tn
A" >T* we can also obtain an approximate

universal map. By the numerical implementation

Table 3. The various quantities obtained by an approximate renormalization method for an invariant

curve of the rotation number 7~ ( 7=(1 ++/5)/2).Known best values were obtained

by Mackay (1982).

l p* B a
17 2.382158 1.6279 —3.083 -1.4199
known best values 2.382163 1.6280 ~3.0669

—1.4148




of this simple method, we obtained p*, a and 3 ,
6, R* and T* for I/n-bifurcation (n=2,3,4,5,6)
and a noble invariant curve. The results agree well
with the values obtained by directly following
1/n-bifurcation sequences and through other
methods for a noble invariant curve.

The obtained universal residue values R* for
1/n-bifurcation and the islands near the critical
noble invariant curve are less than unity, while
R* in the period-doubling bifurcation is 1.13588.
The fact that R* is less than unity implies that
infinitely nested islands exist, and near these
islands stochastic orbits have long-time correla-
tions! 3. Consequently islands play important
roles in transport phenomena in area-preserving

maps.
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APPENDIX

In this appendix we analytically calculate o,
o and B for 1/4-bifurcation (/=1) and for 1/2-
bifurcation (/=2) by Helleman’s scheme. We

take for the quadratic map,

x = — y+ f(x)
O
y ¥ = x—f(2")

Thus

’

2
Xt41— *y¢+cx,+x,

(A.1)

and

X4= Vet Xy T X, (A.2)
so that T has a fixed point (X, y) at (0, 0). Note
that this map T & is equivalent to the DeVogelaere

quadratic map Tp up to scale changes in x and y

with c=p.

1. 1/4-bifurcation (/=1)
The stable 4-cycle is given by

Zi=— 2 Al0-0? ~ 1+ 21— - )ETr4c)

-~

Zain1= = = (1= = D+ o) = F4r, s

2 ien = *% A=) —1+2((1-¢)?
—1)4[]%+},

34i=0=34i s,

34”1:—%[(1 -0)? - +2((1—c)2-1)4‘*]?L

-~

= —Va4iv3,
a:c+2;4,-:—c—23?4,<+2 and b:c+2;4i+|.
(A.3)
Now consider small deviations:
x,:?,-{-u,
and
V=3 + vy, (A.4)

Substituing eq.(A.4) into eq.(A.1) and eq.(A.2),
we get

py) = —vp+ (C+ 2%, )uy + ul (A.5)

and

=gyt (C+ 280 Dur + 8, (A.6)
Letting t = 4i+3 in eq.(A.5) and t = 4i+2 in
eq.(A.6) and adding them, we get

Ugipq=—Ugipo+ 20Ugi et 2Udiia . (A.T)
Letting t = 4i+2 in eq.(A.5) and t = 4i+] in
€q.(A.6) and adding them, we get

Ugiy 3= —Ugiy)— 20hgipp + 2050, . (A.8)

Letting t = 4i+1 in eq.(A.S5) and t=4i in eq.(A.6)
and adding them, we get

. —_— . 2
Ugisg = —Ugi+2bug;y ) +2ug;, ) .

(A.9)

)



Letting t = 4i in eq.(A.5), we get
i) = — Ugi + Quy +ul; | (A.10)
Substituting eq.(A.10) into eq.(A.9), we get

Ugivy = —2bvgi + (— 1+ 2ab)ug; +2(b+a?)ul; .
(A.11)

Substituting eq.(A.11) and eq.(A.10) into eq.

(A.8), we get

ugi 3= (1+4ab)vy; + (a— 4a° b)uy
—[1+4ab+4a® ~ 2(1 —2ab)* Judd; .
(A.12)
Substituting eq.(A.11) and eq.(A.12) into (A.7),

we get

Ugive =4b(1+2ab)vg; + (1 —8a26%)u,;
+8ab(4a°b— 3d* + 2ab% — 3b)u’;
+higher —order terms . (A.13)
Similarly we get

Uy = —46(1+2ab)vg 4+ (1 “8‘12b2)“4i+4
+8ab(4a%b —3a*+ 2462 — 3b) %4, ,
+higher —order terms . (A.14)

Rescaling eq. (A.13) and eq. (A.14) with
X =aQuy;
and
Yi=Buvy

we obtain the renormalized map,

2
xi+l:—yl+c/x,~+xi s
— . 7 g 2
Xi=Yigt e xig+xig,
c’:1w802b2,

a= 8ab(4a3b~ 3a® + 2ab? —34)

)
and
B= —4ab(1+2ab) . (A.15)
Thus,

3
¢/=1-8((1—c)?-1)?~16[(1—-c)~1] 2 .
(A.16)

The fixed point of eq.(A.16) c* is
K= — 070826+ ;

The bifurcation ratio ¢ is given by
d=dc’/de | % = 2471 +onee .

The scaling factors a and g are

and
B=17.633 . ,
2. 1/2-bifurcation(/=2)

The 2-cycle is given by
;2,-:%[-<c+n+/m] :
Zoini= 5 [~ (1) -V @A DD ],
Y2 =0=Y 241 ,

A=2(c+2%5;) and B=2(c+2%,,1) .

In a similar way, we get

1 A

”2i+2:—Bu2i+(~1+7AB)”21'+(B+‘2—)”51’
+ higher order terms (A.17)
and
1 A,
“21':BU2i+2+(~1+7AB)”21‘+2+(B+T)”21‘+2

+ higher order terms .
Rescaling eq. (A.17) with

Xi=upi and  y; =0y
We obtain Tl:

1 A?
%is1= = Byi (1o AB) v+ (Bt =) xf
2

1 A
%= Byt (= 1+ 5 AB)xiy + (B+ )y,

(A.18)

The 4-cycle is given by

fu= - {[0- -1 2=~ ¥ e e,

+

-~

1 ~
x4,~+1:‘7[((1-6)2—1) +c]:x4,~+3 )



5 W) 1 a N
5 3 o= ~%{'[(1~c>24f2<(1—c)2—1)2]5 16(1+2ab)- 7 = — B, (A.2006)

+e} and
2

~ o~ 3 , A
Y4 =0 =J4ir2, Bebiga b_302+2ab2 B 3b)/a:B+ 7 - (A.20¢)

~ 1 2 P
y4i+l*_?[(1~“) —1-2((1-¢)* - 1)*] By eq.(A.20a), we get c¢* and ¢ :
= TS o*= — 1266321
a:c+2§4,~:~c«2;4; and b:C-f-Z;““ i and
0=86845 .
In the same way, we get eq.(A.13) and eq.
(A.14). Rescaling eq.(A.13) and eq.(A.14). By €q.(A.20b) and eq.(A.20c), we get a and 8 :
with Xi =uy; and Yi = V4; We obtain T2: e =
Xiv1= 46(1+ 2ab)Y; + (1 —8a26?)X; and
+8ab(4d° b—3a% + 2ab?— 34) X2 8=16.294 .
+ higher order terms (A.19)
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