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There are in general n-tupling bifuractions in
area-preserving maps(1:2],  We have studied the
period trebling and quadrupling sequences and
found unique universal limiting behaviors in area-
preserving mapsf31.  In the case of the period
the self-similarity is repeated

On the other hand the

trebling sequence,
every other bifurcation.
period quadrupling sequence repeats the self-
similarity every time bifurcation takes place.
It would be interesting to see if these behaviors
can be seen in n-tupling bifurcation sequences
with higher n. Furthermore it would also be
interesting to see if there are certain limiting
behaviors in the universal numbers such as §,
o and 8 in a sequence of n, n being the n-tupling
bifurcation.

In this work we study period 5-tupling and
6-tupling bifurcations in 2-dimensional reversible
area-preserving maps. As shown elsewherel4],
all the quadratic maps are equivalent and we
tate the following form of the Henon quadratic
map of Txm_l- Ynt+2h(xp), ype1=x, with
h(x)= -—(1 ax?). The two symmetry lines formed
from thc invariant points of the orientation-

reversing involutions of TS and S, where S: Xpe1=

Yno Yn+1=Xn and TS:xp,1=2h(yp)- X5, yp,1=

Yn are y=x for S and x=h(y) for TS. Since the
daughter orbits of symmetric periodic orbits
which are formed by 5-tupling and 6-tupling
bifurcations also are symmetric periodic orbits,
the symmetry lines play important roles in loca-
When the residue R,

with M being the

ting the periodic orbits.

defined as R=(2—TrM)/4
Jacobian matrix of TY about an orbit of
period &, is sin? (1/5) a pair of stable and unstable
orbits of period 5% are formed(ll. When one
periodic point Pn(0) of the oad period £ is on the
symmetry line of S, the (2+1)/2-th point from that
point is on the other symmetry line of TS (P(S)=
TSP, (0), where P_(0) is the initial point of the
50(=L)-periodic orbit).

consecutively enlarged figures of S-tupling bi-

Shown in Fig. 1 are

furcations associated with two periodic points
on S and TS. The center circles inside the penta-
gon are the lower order periodic points surrounded
by the five stable points of the next higher order
period 5-tupled orbit. At the parameter value
where the 2=50, 50+1 3n4 sN+2 G ihics are stable,
the consecutive pentagons in Fig. 1 are enlarged
figures near the region around the previous lower

order periodic orbits P(0) (A,’s in the Fig. 1)
2+1 / .
and P(;*) (An’s in the Fig. 1) on S and TS. As
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Fig. 1. Period 5-tupling bifurcations associated with two
periodic points on S and TS. A B, C,, D,
E., A;v Bl;, Cl;, Dr; and EI'1 are elements of ;m
-periodic orbit corresponding to P _(0), Pn(';')’
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P (= 4+ 22 4+ ) ani (g )
n(2+5),Pn(2+ S)andPn(2+5)ofthe

text with 2=5" respectively.

indicated in the figure by (&;, @) and (ay, a'2 ), the
higher order periodic point on the symmetry
line appears either on the opposite side with
respect to the center circle ((a;, a;)) or on the
same side ((a'l , a'2 )), thus flipping the figure ((a;,
a,)) or leaving the figure the same way (o, oz'2 ).
However this flipping ((¢;, «;)) and leaving
((a'l, a'2 )) occur at the same time, one on one
symmetry line and the other on the other sym-
metry line. In the next enlarged figures (ay,
0,) and (a'l, a'g) are interchanged and «, '0['2 =
a,'ay.  Therefore the rescaling can be done
at every other 5-tupling and the rescaling factor

along the symmetry line o is given by o=

v

oy -oz'2=a2 o . Similarly the scaling factor across
the symmetry line § is given by 8=8,8=p, 8.

The (Olj, Bj) and (a'j, 5'1') are the limiting values
of (@), Bn), &'n(), B'n(i)s j=1, 2) (Table 1)
n—o,

when § is the limit value of the 6n-

sequence, where 8n:(an-1—an)/(an—ﬂn+1). The
values of a, are those at which the residue R of
(n/5).

a00=
In Table 1, the numerical

the stable orbit of £=50 period is sin®
We obtain the
—0.3228971868 --.

values of S5-tupling sequences are given. We

accumulation  point

conclude from these numerical values that we
find a;=—30.118, a;=—6.082, oy =1.4366, o) =
7.144, B,=8.241, B,=3.891, By =—9.186, B, =
—19.45 and 6=20.048. Thus we obtain a=0,-03=
0y 0y =—43.27, B=B, B2=P, B1=—75.70.

For the 6-tupling bifurcation, a pair of stable
stable and unstable orbits with 6-tupled period
are formed when R=i[l]. Fig. 2 shows that
among the higher order periodic points surroun-
ding the lower order points on TS line of x=h(y)
either two or none are on the symmetry line.
In the “two points on the line” case, P (0) and
P (#/2) (A, and D, of Fig. 2) surround the
center circle of P 4 (0), and the “none on the
line” case occurs when all points are in the region
surrounding the center circle Pn-l('f)' In the next
enlargement of the figure, two points P, 1(0) and
Pn+1(—§—) on the TS line surround P (0) while all
six points (A'y 1, B'py1, C'ne1> D'nat, E'paq and
F'\,1 of Fig. 2) around Pn(—g—) are off the TS line.
If we define o, (), By() for j=1, 2, 3, 4, 5, (Table
2) in order to retain the pattern of the periodic
orbits, we find from Table 2 that all o,(j) and
B,(j) approach the same limits irrespective of j,
contrary to the case of 5-tupling bifurcations.,
The rescaling factor along the symmetry line
« is —8.25 and the rescaling factor across the
symmetry line f is 6.30 where o and § are the limit

values of the a,— and B,— sequences. Also the
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Table 1. Period 5-tupling sequences.

ap(1) = (Ap=Bp)g/(Ap1-Britds:

ap(2) = (B =Cp)g/( n+1"Cn+1s)

O"n(l)= (A;l_B'n)y/(A'le”‘B(’ﬁl)y'

ap(2) = (B'n_c‘n)y/(B'nH _C'n+1)yv

Bn(1) =By—Ep/Bni1—Epsts

ﬁn(Z) = Cn_Dn/Cn+1_D

n+1

'y(1) =By —E /B ,1—E},q and

F5(2) = C—Dy/C'py1~Diyt
are defined with respect to Fig. 1.

(A,—Bp)¢ and (En'cn)s denote respectively the length
of the projection of the line A —B, and B,—Cj onto

the S-symmetry line. (z_R'n—B'n)y and (B'n—C'n)y
denote respectively the length of the projection of the

line /n\g'[:—iB‘—n_ and the line B’ —C', onto the y-axis.

B —E,, C,—D,, B,—E' and C';—D', denote res-

pectively the length of the line Bn“Env line C,—Dy,
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the line B'n——E'rl and the line C'n—D'

B
n by ag (1) ap(2) ag (1) apy(2)
) 19.9690 —28.4896 —5.63052 7.37095 0.87571
3 20.0877 1.45033 7.15241 —6.29401 —30.0816
4 20.0436 -30.1268 —6.08996 7.10850 1.43947
5 20.0479 1.43664 7.11347 -6.07992 —30.1176
6 20.0476 —30.1178 —6.08221 7.11414 143658
7 20.0478 1.43664 711391 —6.08250 ~30.1183
n Ba(D) Bn(2) ') B'h(2)

2 8.69941 437160 -17.7107 —8.87985

3 ~9.15754 -19.3058 3.76468 8.08063

4 8.23195 3.88462 —19.4840 ~9.18802

5 ~9.18557 ~19.4554 3.89303 8.24277

6 8.24126 3.89141 ~19.4532 -9.18571

7 ~9.18602 —19.4547 3.89119 8.24111

same definition as before of 8n=(an_1—an)/
(ap—an4+1) gives the limiting value of 6=13.8
and the accumulation point ag, is —0.55942053...

In summary, we find numerically that 5-
tupling and 6-tupling sequences have universal

limiting behaviors. The intervals in the parameter

between successive 5-tupling and 6-tupling bifurca-
tions tend to a geometric progression with a ratio
of 1/6 and the pattern of periodic orbits repeats
itself asymptotically, for every other 5-tupling
bifurcation and from one 6-tupling bifurcation

to the next. However it would be difficult to
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Table 2. Period 6-tupling sequences.

(1) = (An“Bn)y/(Am-l”BnJrl)y’

4 (2) = (B -C )y/(Bn+1_Cn+1)Yv

« (3)'(C -D ) /(Cn+1 Dn+1)y’

o (4) ‘(A ~B ) /(An+1 Bn+l)y*

“n(5) = (Br'l"cn)y/(Bml_(‘n +1)y

Bp(1) =By —F n/Bn+1-Fpe1,

Bn(2) =Cy—E, /Cri1—Epne,

b (3)“An F /An+1 l:1n+11

B, (#) =By —E_ /B {—El.{,

B,(5) = Cn—Dy/Chat ~Dh41

are defined with respect to Fig. 2.

(Ag=Bply, (Bp—Cply, (Cp=Dply, (A, -Bp)y

and (B;l_c’n)y denote respectively the length of

the projection onto the y-axis of the line A,—B,, the

line B Cp, the line C Dn, the line A’ —B'. n—B’ 'n and the

line B’ —C B,— Fn, Ci—Eqs A’ F B'n —E' n and

CL-Dn dcnote respectively the length of the line B -F,,

the lineiCn—En, the line A')~F',, the line B' ~E’_ and

the line C'n—]_)’n.
n 5, ap(1) an(2) a,(3) op(4) o, (5)
2 13.907 -9.7553 —9.0846 —9.2121 0.73225 —5.2934
3 13.819 —8.0180 —8.2082 —8.2658 —10.322 —10.0357
4 13.835 —8.3363 —8.2841 —8.2598 —7.8561 —8.0944
5 13.846 —8.2485 —8.2572 —8.2615 —8.2810 —8.2824
6 13.852 —8.2573 —8.2542 —8.2525 —8.2326 —8.2543
n B, (1) B,(2) 8,(3) Bnr(4) 8,(5)
2 6.0640 5.5918 12.205 11.984 11.661
3 6.2894 6.3528 5.2244 5.2003 5.1288
4 6.2895 6.2815 6.4537 6.4525 6.4568
5 6.2999 6.3004 6.2857 6.2838 6.2805
6 6.3033 6.3030 6.3064 6.3057 6.3047

conclude that there is any tendency to approach
a limit in, say, the sequence of 8’s as we see in the
table 3.
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Table 3. Three universal constants &, « and 8 of n-tupling
bifurcation sequences with n from 2 to 6. Cons-
tants with n=2 to 3 are taken from refs. 3 and 4.
« and B with odd nare the geometnc mean of 2

g=6"

Period 6-tupling bifurcations associated with

g= eﬂbl
Fig. 2.

two periodic points on S. A, B, C,, Dy,

En’ Fh, A B C , D'n, EI;, Fl'1 are elements
of an Q-perxodlc orbit corresponding to P _(0),
52 3Q
) P (— 2= ),
Prég ( ),P( )P( (6)’Pn(36)
P2 p (15’2) 219, nd P EL of the text
n'3e ' n°36 6 n'36

with =61 respectlvely.

scaling constants, i.e. _\/alaz, B-\/ﬁ B,-
n 8 a B
2 8.721 —4.018 16.36
3 20.2 6.63 13.67
4 245 ~5.61 143
5 20.05 6.58 8.70
6 13.85 —8.25 6.30
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