Critical Behavior of Period n-Tuplings in Coupled Maps
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We study the critical behavior of period n-tuplings (n=2,3,4,...) in two coupled one-dimensional

(1D) maps.

Using a renormalization method, the critical behavior associated with coupling is

particularly investigated in the zero-coupling case in which the two 1D maps become uncoupled. It
is found that the zero-coupling fixed map of the period n-tupling renormalization transformation
has two relevant “coupling eigenvalues” {CE’s) associated with coupling perturbations, o and n (o
is the orbital scaling factor of 1D maps). In the linear-coupling case, in which the coupling function
has a leading linear term, the scaling associated with coupling is governed by two CE’s, & and =,
whereas it is governed by only one CE, =, in the nonlinear-coupling case in which the leading term

is nonlinear.

Universal scaling behavior of period n-tuplings (n =
2,3,4,..) has been found in a one-parameter family
fa(z) of one-dimensional (1D) unimodal maps with
quadratic maxima. As the parameter A increases, an
initially stable orbit loses its stability and gives birth to
a stable period-doubled orbit. An infinite sequence of
such period-doubling bifurcations accumulates at a finite
parameter value A, and exhibits a universal asymptotic
scaling behavior. [1,2]

What happens beyond the period-doubling accumu-
lation point A., is interesting from the viewpoint of
chaos. The parameter interval between Ay and the fi-
nal boundary-crisis point A, beyond which no periodic or
chaotic attractors can be found within the unimodality
interval is called the “chaotic” regime. Within this re-
gion, the parameter values with chaotic attractors form
a set of positive measure. [3] These “chaotic” param-
eter values are found in between an infinite number of
windows with stable periodic attractors. Besides the
period-doubling sequence (the n = 2 case), higher pe-
riod n-tupling (n = 3,4, ...) sequences of periodic orbits
with periods n¥ (k = 1,2,...) can be selected from the
infinitely many periodic windows densely embedded in
the chaotic regime. Unhke the period-doubling sequence,
stability regions of periodic orbits in the higher period n-
tupling sequences are not adjacent on the parameter axis
because they are born by their own tangent bifurcations.
The asymptotic scaling behaviors of these {disconnected)
higher period n-tupling sequences characterized by the
orbital and parameter scaling factors, o and §, vary de-
pending on n. [2,4-11]

In this paper, we study the critical behavior of period
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n-tuplings (n = 2,3,4,...) in a map T consisting of two
identical 1D maps coupled symmetrically:

Cf min = Fzi,5) = f(=i) + 9(zi, w),
T {%:1 = Fyi, z:i) = f(w) + 9(vi, i), M

where the subscript i denotes the discrete time, f(z)
is a 1D unimodal map with a quadratic maximum at
r = 0, and g(z,y) is a coupling function. The un-
coupled 1D map f satisfies the normalization condition
f(0) = 1, and the coupling function g obeys the condi-
tion g(z,z) = 0 for any z. This coupled map may help
us to understand how coupled nonlinear oscillators, such
as Josepson-junction arrays or chemically reacting cells,
exhibit various dynamical behaviors. [12-14]

The period-doubling case (n = 2) was previously stud-
ied in Refs. [15-20]. Here, we extend the results for the
n = 2 case to all the other higher period n-tupling cases
(i.e., the cases of n = 3,4, ...} in the zero-coupling case
where the two 1D maps become uncoupled. In particu-
lar, the critical behavior associated with coupling is in-
vestigated by the renormalization method developed in
Refs. [15] and [19].

The period n-tupling (n = 2,3,...) renormalization
transformation N for a coupled map T is composed of
the n-times iterating (7(™)) and rescaling (B) operators:

N(T) = BT™™ B, (2)

Here, the rescaling operator B is

a 0
B= ( 0 a ) @)
because we consider only in-phase orbits (z; = y; for all

i).
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Applying the renormalization operator A to the cou-
pled map (1) k times, we obtain the k-times renormalized

map T of the form
Ty - { Tivr = Fe(zi, i) = felz) + ge(zi, %), (4)
Vier = Felwi, z:) = filwi) + oxvi, %)

Here, fi and g; are the uncoupled and coupling parts
of the k -times renormalized function F}, respectively.
They satisfy the following recurrence equations:

frs1(z) = a, ;En)('z).

gena(e,9) = aFV(C, )

(5)
afM(2), (6)

where Fé")(z, y) = Fk(F,En_l)(:z, y),F,S"“l)(y,z)).
The recurrence relations (5) and (6) define a renor-
malization operator R transforming a pair of functions
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The renormalization transformation R obviously has a
fixed point (f*,g*) with ¢*(z,y) = 0, which satisfies
R(f*,0) = (f*,0). Here f* is just the 1D fixed func-
tion satisfying

f1(@) = af () (8)
where a = 1/f*(*=1D(1) due to the normalization con-
dition f*(0) = The fixed point (f*,0) governs the
critical behavior near the zero-coupling critical point be-
cause the coupling fixed function is identically zero, i.e.,
g"(z,y) = 0. Here, we restrict our attention to this zero-
coupling case.

Consider an infinitesimal coupling perturbation (0, )
to the zero-coupling fixed point (f*,0). We then exam-
ine the evolution of a pair of functions (f*, ¢) under R.
Linearizing R at the zerc-coupling fixed point, we ob-
tain a linearized “coupling operator” L. transforming a
coupling perturbation ¢:
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Here, the prime denotes a derivative, and the variation
6[F(")(r £y — ﬂ)( )] is introduced as the linear term
(denoted by [F(n)(a, . fén)(%)]linear) in ¢ for the de-
viation of Fk")(z, Z fﬁn)(%) from 0. If a coupling
perturbation ¢*(z) satisfies

[Lee™)(z, ), (12)

then it is called a coupling eigenperturbation with eigen-
value v.

However, it is not easy to directly solve the coupling-
eigenvalue equation (12). We, therefore, introduce a
tractable recurrence equation for a “reduced coupling
eigenfunction” of ¢*(z,y) [15,19] defined by

ve*(z,y) =

(13)
y=r

Differentiating Eq. (12) with respect to y and setting
y = z, we obtain an eigenvalue equation for a reduced
linearized coupling operator L.:

[£:9%](z)
an(")(g) =

v®*(z) (14)

(15)

[Fz(ﬂ)(z)]linear
£ eEN eI
Qt(f*(n—l)(g))

+77 (2 (16)

Here, F(z,y) = f*(z) + ¢ (=, ), FZ(")(z) is a “re-
duced function” of F(")(z,y) defined by Fz(ﬂ)(z) =
OF™)(z,y)/By|y==, and the variation 6F2(")(§) is also
introduced as the linear term (denoted by [Fé")(i-)]linear)
in ®* of the deviation of FZ")(E) from 0.

In the case n = 2, the variation 6F(2)( ) of Eq. (15)
becomes

s = QI QO U )

Substituting 6F{(Z) into Eq. (16), we have §F§ (%)
for n = 3, which consists of three terms,

sF(C) = eI O
+EW T ENFIC)
()R (D).

z
successively, we

(18)

Repeating this procedure obtain

6F2(")(§) for a general n, composed of n terms,
. n—1
6F2(")(a =y W
i=0
Xf*(n-:—l)’(ft(i+1)(£))
«

<1> (¢ )( )
(19)



where f(O(z) = «.

Using the fact that f*'(0) = 0, it can be easily shown
that when ¢ = 0, the reduced coupling eigenvalue equa-
tion (16) becomes

n—-1
ve(0) = ([ /(O] 2°(0) = a2"0).  (20)
i=1
There are two cases. If the coupling eigenfunction
¢*(z,y) has a leading linear term, its reduced coupling
eigenfunction ®*(z) becomes nonzero at £ = 0. In this
case of ®*(0) # 0, we obtain the first CE

V] = . (21)
The eigenfunction ®7(z) with CE »; has the form
®i(r)=1+ajz+ajz’+---. (22)

In the other case of ®*(0) = 0, we find that f*/(z) is an
eigenfunction for the reduced CE equation (16). Since
Eq. (19) for the case ®*(z) = f*'(z) becomes

67 (Z) = nf (2, (23)
the reduced CE equation reduces to

V(@) = nf*(2). (24)
Hence, we obtain the second relevant CE

vy =n (25)

with reduced coupling eigenfunction ®3(z) = f*'(z).
It is also found that there exists an infinite number
of additional (coordinate change) reduced eigenfunctions
() [f*(z)—z'] with irrelevant CE’s o' (I = 1,2,.. ),
which are associated with coordinate changes. We
conjecture that together with the two (noncoordinate
change) relevant CE’s (v; = «, 1, = n), they give the
whole spectrum of the reduced linearized coupling oper-
ator £, of Eq. (14) and the spectrum is complete.

In order to see the effect of the CE’s on the stability
multipliers of the periodic orbits in the period n-tupling
sequences, we consider an infinitesimal coupling pertur-
bation g(z,y) = ep(z,y) to a critical map at the zero-
coupling critical point, in which case the two-coupled
map Is of the form

T { zip1 = F(zi, 4) = fyen(e:) + 9(zi, %),
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Yitr1 = F(yi, zi), (26)

where A% denotes the accumulation value of the param-
eter A for the period n-tupling case, and ¢ is an infinites-
imal coupling parameter. The map 7" at ¢ = 0 is just the
zero-coupling critical map consisting of two uncoupled
1D critical maps. It is attracted to the zero-coupling
fixed map consisting of two uncoupled 1D fixed maps
under iterations of the period n-tupling renormalization
transformation A of Eq. (2).

The reduced coupling function G{z) of g(z, y) is given

by [see Eq. (13)]

Glr) = ed(z) = £ XEV| (27)

By

The kth irmage ?k of ® under the reduced linearized cou-
pling operator £, of Eq. (14) is of the form

®i(z) = [Le®)()
~ o vf®i(z) + agvi f*'(z) for large k (28)

because the irrelevant part of ®; becomes negligibly
small for large k. Here, a; and «, are some constants.
The stability multipliers A; ; and Ax of the nk-
periodic orbit of the map T of Eq. (26) are the same
as those of the fixed point of the k-times renormalized

map A¥(T), [19] which are given by
Ak = fi(@k), Aok = fi(2k) — 2Gi(2x)- (29)

Here, fi is the uncoupled part of the kth image of
(fA(,.),g) under the renormalization transformation R,

y=¢

Gi(z) is the reduced coupling function of the coupling
part gx(x,y) of the kth image, and &, is just the fixed
point of fr(z) [i.e.,, #2x = fe(Zx)] and converges to the
fixed point z* of the 1D fixed map f*(z) as k¥ — oc.
In the critical case (¢ = 0), Az is equal to Ay, and
they converge to the 1D critical stability multiplier A* =
£/ (z*), the value of which varies depending on n. Since
Gi(z) ~ [£EG](z) = e®i(z) for infinitesimally small €,
Az has the form

’\Z,k ~ )\l,k — 26@),
~ X +elewwf +eyvf] for large k (30)
where e, = —20,®}(z*) and es = —2a2f*'(z*). Hence,
the slope Si of Az at the zero-coupling point (¢ = 0) is
Sk = R =~ eyvF + equf for large k. (31)
de e=0

Here, the coefficients e; and e; depend on the initial re-
duced function ®(z) because the constants o; and a;
are determined only by ®(z). Note that the magnitude
of the slope Sy increases with k unless both e; and e are
Zero.

We choose monomials z' (I = 0,1,2,...) as the ini-
tial reduced functions ®(z) because any smooth function
®(z) can be represented as a linear combination of mono-
mials by a Taylor series. Expressing ®(x) = z' as a linear
combination of eigenfunctions of L., we have

8(z) =o' = 1 ®i(z) +aaf"'(2)
+3 85 @) ) - o] (32)
=1

where a; is nonzero only for [ = 0, and hence zero for
!> 1, and all §;’s are irrelevant components. Therefore,
the slope Sy for large k becomes



R S _
Sk:{nla +eqgn® for 1 =0, (33)

eon®* for [ > 1.

There are two kinds of coupling. In the case of a linear
coupling, in which the coupling function ¢(z,y) has a
leading linear term, the reduced coupling function d(r)
has a leading constant term. However, for any other
nonlinear-coupling case, in which the coupling function
has a leading nonlinear term, the reduced coupling func-
tion contains no constant term. It, therefore, follows from
Eq. (33) that the growth of Sy for large k is governed by
the two relevant CEs v; = o and v5 = n for the hinear-
coupling case (I = 0), but by only the second relevant
CE vy = n for the other nonlinear-coupling cases (I > 1).

As an example, we numerically study the period-
tripling case (n = 3) in the two-coupled 1D maps (26)
with f(z) = 1 — Az? and p(z,y) = Ly™ —2™) (m =
1,2,...), and we confirm the renormalization results (33).
For this period-tripling case, we follow the periodic or-
bits of period 3% up to level £ = 9 and obtain the slopes
S of Eq. (31) at the zero-coupling critical point (Ac,0)
(Ao = 1.786440 255 563 639 354534447 .. .) when the re-
duced coupling function ®(z) is a monomial ! (I =
0t = =)k

The sequence of slopes {Si} for the linear-coupling
case with { = 0 obeys well a two-term scaling law, [20,21]

Sy = dir¥ + dork, for large k, (34)
where d; and d; are some constants, r; = —9.277341 -,
and ro = 2.999- .- Note that the numerical values of

r; and r» agree well with the two relevant CE’s v =
a (= —9.277341 ) and v, = 3 . However, in all the
other nonlinear-coupling cases (I = 1,2,3) studied, the
sequences of slopes {S;} obey well a one-term scaling
law,

S, = dyr? (35)

where d; is some constant and ri = 2.999999999-- .
The value of r; is very close to the second CE vz = 3.
An extended version of this work including a detailed
account of the numerical results, the results for many-
coupled cases, and so on will be given elsewhere.[22]
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