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Q . . . .
Two area preseming maps of class-C? and C° are numerically studied to investigate z possibie
dependence of transpert barriers on the analyticity class. In the case of a map of class-C % 2 nobie
invariant curve persists below the critical parameter value and the critical behaviors are the same as

. . [ . . . .
the cases of analytic perturbations. However in a map of class-C”, the rational invariant curves revive

and play the roie of wansport barriers of the stochastic orbit.

[. INTRODUCTION

Let us consider a periodically time-dependent
1-D system governed by a Hamiltonian H;

H=Hy li—e-Vigi- S 8it—1)

==

=H,{[i~¢ % T 1. cos 2x(mf—11),

(== m=1

Vigy=v(-6) vigr=1u—1)

1
and J;D Vig) df = ¢

The perturbation represents a ‘kick’ per unit time.
It will be convenient to limit ocur consideration
to the cases with g2y ,/417 > 0. This restriction
leads us to a twist map.

By constructing a surface of section at (=0
{mod 1) in the(/,#,; i space, a Poincare time-1
map 7 can be obtained:

Ly ey = 0o eFU6 )

7:(")

i
s oy = O~ U1

F(ei=Vv' {8 and w=H ]

First, under a sufficiently small pertuTsation,
we consider the phase ilows near r/s-resonance.
The resonant terms in H, those with ;. = r/s,
dominate the phase flows near »/s-resonance.
The largest term is that with the smalles: ¢ and
m, since Fourier coefficients tend to dzcrease
as m increases. Therefore, the phase flows in the
neighborhood of r/s-resonance z2re dominated
by the resonance Hamiltonian Hp ‘Hp=H, 1)+
eV, cosirz s —ri) By introducing a siow time
t, one can see the phase flows nezr one is’znd in
the r /s-island chain, where 7=1/s. Tc¢ ze the
canonical trensformation, Hp mus: be trans’armed
to Hp,where Hp = s 'Hp . Transformatior = new
canonical varizbles p and ¥ by the generatirz func-

tion

Sip.  =5-{f—r- 1

T

yields
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The eguilibrium points (p - }/5 Wi of Hy are de-

termined by the eguation,
Tax Uil r s

where plus or minus sign corresponds to the case
with i - ¢ or 1/2. Taylor-expansion of Hg about
the equilibrium point and keeping the terms

to the 2nd order. vields

fp=— s mgiTiptevs 100y cos @
where P=p—p and Q = 2z . Phase flows near
the equilibrium point are dominated by Fg. This
approximation is called the pendulum approxima-

tion.

Linearizing around the equilibrium point vields

= = ]'T,f /- sl’}‘f"COS(b'E;

o
x

where the dot denotes the derivative with respect
to o, £-0-0Q.7=Pand®=0or =. The solution
for the time displacement operator M(z) satis-

fying

Fets
i

i

-l

is
’ L wSs w T (KT wiesitaet )
Al sgir= . . s N ~ '
— :s"l[:-‘ [ - Shwr COSw T
W rfsr=e st U D (Y - c0s @ Since @

is 0 or =. @ is a real or pure imaginary
number. The residue R ir/ s} of the periodic orbit
in the Poincare time-! map is defined!?! by

-~
H - o A . [ ¢
o B E o . TrAf ) L= osmT T

J-
For . e 1z, the periodic orbit is stable. If the

periuzpanon 17 (6 ° is a function of class ~¢

Vo~ = and &7, g~ ——

g (1)
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Greene connected the existence of an invari-
ant curve to the stability of nearby periodic
orbits!2],  Greene’s residue criterion indicates
that, if the residues of nearby orbits go to zero
asymptotically, then an invariant curve seems to
exist. By equation (1), under a sufficiently
small perturbation of class- C" (#>>2). @" (r/s)—0
and R{r/s)— 0 as 5-—wc fOT any r/s-resonance.
Therefore, by the pendulum approximation
and Green’s residue criterion, the critical smocth-
ness of the perturbation », is two for the Hamil-
tonian and one for the map. This agrees with
the result of Chirikov obtained by the pendulum
approximation and the resonance overlap cri-
ten’on.“'z']

By Moser’s twist theorem, the sufficient critical
smoothness of perturbation for & map 7 is three
(4], Therefore, for a map T with perturbation
of class-C%, the persistence of invariant curves
is not guaranteed by Moser’s twist theorem, but
by the above estimates, In this paper, we study
whether or not a noble invariant curve persists for
a map T with F(0) of class-C?.By Greene’s residue
criterion, we show numerically that the noble
invariant curves exist below the critical pertur-
bation strength and the critical behaviors seem
to be the same as those for analytic perturbations.

For a map with F(8) of class-Co, since the
smoothness of the perturbation is below the
critical smoothness, all invariant curves are
expected to be broken and extended chaos occurs
for arbitrarily small perturbations. But Chirikov
observed that at a finite ¢ extended chaos did not
occur, and thus the chaotic region was confined
in 11"3]. This curious phenomencn was first
observed during numerical studies by Hine (re-
ferred to by Chirikov[l'ﬂ). We also observed
the same phenomena for certain parameter inter-
vals and then a complete barrier to transport

seemed to exist. We show that rational invariant



curves revive and turn into complete barriers
to transport at certain parameter values. Succes-
sion of revival of rational invariant curves in a
specific parameter interval makes the rational
invariant curves play the role of an effective
barrier in that interval.

In section 2, we show numerically the existence
of a noble invariant curve and describe the critical
behaviors for a map T with F(8) of class-C%
In section 3 we show, analytically and numerical-
ly, the revival of rational invariant curves for a
map T with F(6) of class-C’. In the final section,

we summarize and discuss our results.

II. EXISTENCE AND CRITICAL BEHAVIORS
OF A NOBLE INVARIANT CURVE IN
A MAP OF CLASS-C?

We study an area-preserving map of class-CZ,T

which has a unit Jacobian (det (D7) =1),

I'= [~ ¢eFif)

{
6 =9 -7 X
where
{ 46"~ 271 . g N R
i B P 1 - . .
R -l SR R SO I I IS N
Figr=] ¢ AN
. R R
l N R RN T T Ry
. 3
Feai=pig—-11 and | Feos ap=¢
4]

Here DT is the Jacobian matrix of 7 which is the
two by two matrix of partial derivatives of § ‘ and
I'with'respectto ¢ and /.Since T+ 1.T)=(g"
=L 1.7 is a periodic map in A (angle varizble)
and can be represented on a cylinder. An orbit of
T has a winding number ¢ if the average number of
rotations per iteration of T (Lim (4, -~ a,1 / )

Fr—-oe

exists, where (6,./,)=7" (Go, 1,7,
Since 7 has a rotational shear (46 /67 . 0},
T is a twist map and can be obtained from a

generating function L (#,6) such that /= 5L (¢,
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G°y/atiand 1= GLH 07 /dtl Wy,

Sp—¢ P -V and F(#) (TN
tionary action principle, a scquen,, o

Oy g =0+ p yields a periodi o,

gl e
numberp/g if its action A NI e

stationary with respect 1o vinat,og,
= ()0 ind p . 7
Since T has a reversible symme,

factored into the product (V). . |

tions, where

B =8 n

g [ .
lf’:]*'sf“(ﬁ)

AP R T TR

The four symmetry hali-line. forne I

invariant points under Sand 7+ gpe 4, B

I=2fandf=26-1L 118, .1,

HE VR .
then{S(4;,7,)}isanorbitof 7 "wpy,. |
TS} is the inverse map of 7. A vy, .,
is an orbit which is its own time reye,

fore symmetric orbits are invarian: Wi,
must have two points on the BTV

A reversible, periodic, area-preserving |,

has two symmetric periodic orhit. fo,r ¢,

al winding number  in the ranpe.
One of these orbits minimizes the ..,
the other minimaximizes the actiop,

The residue R of an orbit of perige 4
by R=(2—4i—A""),where z an: ;7' .y

values of the Jacobian matrix ~f 74
orbitlz]. When R<0 the ore: 4 ,

‘.,

hyperbolic with reflection. I+ . .
minimizing periodic orbits have rey;- .
and minimaximizing periodiz - -
residues[(’]‘

Any irrational winding num-<r .,

infinite continued fractiorn rezrecc.-

“

W= Mg T T e,

My ”
Mia =0 "
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where wm, ¢ Z and m e ZT R J B e _ The
rational approximant », of ¢ Is given by

e ™ Pp Uao

Dpa1 - Py Bn T dmeyc dmg =G and p-, = 1
and
Qe = Wney Un = Gno10 G-p 0 Poand gy = O

The difference in actions F, between minimi-
zing and minimaximizing of winding number
5./g, can be interpreted as the area which is
transported¢ between minimizing and minimaxi-
mizing periodic orbits per iteration[7*8]. Mather
has showrn that given & sequence of rationals
Fnlén—w.there exists an invariant circle of wind-
lim B glol

n—o

When F. is nonzero, Mather, Aubry and Katok

ing number wif and onlv if F, =

nas shown that a2 hyperbolic invariant set of rota-
tion number w which 1s called a cantorus exists,
[5.:9.30]  Cantori can be regarded as circles with
an infinity of gaps caused by the overlap of
nearby resonances.

We study whether or not an invariant curve
of winding number 7% exists under a pertur-
bation {y - ii-+D5j/:i. Following Mackay, we
find the parameter values ¢, such that the mini-
maximizing svmmetric periodic orbit of winding
number p_/q, corresponding to the nth rational
approximant to 7 has some given residue, e.g.
1] The fimit value ¢* of { ¢, | —sequence is
the critical parameter value for the invariant
curve, The convergence ratic ¢ is the limit value

v

of {5, ) sequence defined by 4, = (cay— €50/

\fn —€n, ' These seqguences are shown in the
TABLE 1. By super-converging the results, we
obtainea ¢ and ¢:

¢* = 1.3630577 and § = 1.6280.

Therefore. the parameter value £, accumulates
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Table 1. Parameter value ¢, for the nth convergent
minimaximizing periodic orbit to 77" 10 have
residue 1 and the corresponding convergence
ratio; y = (1 < v51/ 2

# En Or

3 1.72791153

4 1. 56942565 1.94941
5 1,48812316 1. 59105
G 1. 43702338 1, 76782
7 1.40844114 1. 58694
8 1, 39043019 1.71734
g 1.37994250 1. 50142
10 137335234 1, 66656
11 1. 36940298 160707
12 1.36€94548 © 164787
13 1.365344944 161811
14 136452488 1. 63471
15 1,36395930 1, 62561
16 1,36361144 1, 62855
17 1, 36339784 162802
18 1,36326664 1, 62793
19 1 36318605 1. 62815
20 1,36313655 1. 627N
21 1.36310614

geometrically at the critical value ¢ ™

For the subcritical, critical and supercritical
cases, we calculated the residues R,” and R of
the minimizing and minimaximizing periodic
orbits of winding number #,/¢,, their action
difference F, and the #-coordinate #,0f the nearest
minimizing periodic point to the dominant sym-
metry line (§ = 0). All the minimaximizing periodic
orbits tend to have a point on the dominant
symmetry (#=20). This observation is not vet
understood mathmathically. The other three
svmmetry lines are called subdeminant half-
lines. The results are tabulated in the tables (from

TABLE II to TABLE VIII).
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Table 1. . Residue value K. for the nth convergent minimaximizing periodic arbit to 7‘2 when

oo, e, et de =1 =5/ 2 de = W0

7 &-he e* e+ he

3 24275 2107 . 24383 2. 4450 - 107
4 2.5281 107" . 25468 2. 5656 - 107
5 2.4077 107! . 24370 2. 4667 <107
6 2.4931 107! . 25409 2. 589 - 107!
7 23767 < 167 . 24531 2. 5319 107"
5 2.3974 - 107! . 25216 2. 6523~ 107!
y P 2, 2855 -~ 107! . 24819 2.6953 < 107
20 2. 1946 <1071 . 25084 2.8675 - 107!
Pl 2. 0079 - 107! . 24949 31015 < 107!
12 1.7606 » 107 . 25059 3.5711 < 107
13 14061 #1071 . 24996 4. 4539 - 107
1% 9. 7913 1072 . 25002 6. 4207 - 107
15 5.4693 <1072 . 25009 1. 1646

16 21251 »307¢ . 25010 3. 0983

17 4. 50811073 . 25008 15553 - 107!
18 4, 2434 » 107* . 25005 22475 107F
19 33628 v 107° . 25005 1. 8266 > 107°
20 7152971078 . 24999 2. 3227 < 1077

Table [l Residue value A7 for the nth convergent minimizing periodic orbit to ;—‘2 when e=¢

*

Je, e ¥4 de = (14V5) /2 de= 100

” &—Ae e* e+ e

3 -2.4742 x 107! ~. 24854 ~2.4965 » 107!
4 ~2.5107 < 107" —. 25301 —2.5496 ~ 107"
5 ~2.3960 « 10™" -, 24263 —2.4570 x 107"
6 ~2.5674 = 107" — 26173 ~2.6682- 107"
7 —2.4286 107" - 25078 ~2.5897 = 107!
8 —2. 4444 x 107 — 25737 ~2.7099 » 107!
9 —2.3254 10" —. 25296 -2.7521 % 107"
10 ' —2.2321~ 107! -, 25577 —2.9321 % 107
5 —2.0410 1071 —. 25455 ~3.1787 =107
12 —1.7914 310~ — 25631 —3.6793 » 107!
13 -1,4235 107} — 25556 —4.6206 107
14 ~9, 8819 x 1072 — 25529 - 6.7336 % 107"
15 ~2,1332 %1072 —. 25545 ~3.5658

17 —4.5270% 1073 —. 25544 —2.0119 < 107!
18 —4, 2689 x 107* — 25537 = 3. 150~ 10°
19 ~2.7293 %1077 -, 25539 - 2.6190 - 10°
20 — 11378 %107° —. 25533 - 16145~ 107

=205~
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Table N, Action difference F,, between minimaximizing and minimizing periodic orbits nth convergent

10 ;«72 when ¢ - e¥—de, e, e de oy 1 - T/ de - 0?
” £—rte g Y
3 3.5759 107" 3.5910 10f 3.6061 - 1077
4 §.7155 10 ° 5.7771 1t 5.8391 - 1077
5 1.9044 - 107° 19267 - 107 1.9452 - 1070
6 4.6220 107" 4. 7054 ~ 107" 4.7902~ 107"
7 1.0143 - 107" 1.0451 - 3077 1.0768 - 107"
8 2.3514 1077 2. 4664 107" 2.5868 » 107"
9 5.1822.107F 5.6032 - 107" 6.0572 » 10”°
10 F, 1. 1489 1077 1.3037 107" 1.4788 - 107"
11 2.4374 - 107" 2.9936 v 107" 3.6737 - 107
12 4.9606 - 1071 6.9317 - 107" 9.6625 - 107 1F
13 g.2165 ~ 10~ 1.5936 - 1071 2.7351 - 107"
14 1,499 - 107 3. 6692 <0 &.8038 10!
15 1.9669 » 10712 §. 4643 - 10717 34528 - 10 1
16 1.8020 - 10~ 1.9504 10712 1. 8067 - 107"
17 g.0380 - 10 1® 4.4945 1078 13281 100 "
18 2.0163 - 1071 1.0356 - 1072 1,2377 - 10
19 3.3580 107" 2.3868 1071 1.2316 - 107
20 2.2246 > 107" 5.5006 107F
Table V. Ratio of the fluxes F,/F,., for the critical When ¢ <¢* the residues R} approach to zero,
case. and when ¢ >¢ ¥, R% diverge to =+ oc. For the critical
§ FalFnes case, R approach to some finite values R,
3 4,0913
4 4.3335 | * = 0.250
5 4. 0946
6 4, 5023 and
7 4. 2374 R¥=-10.255
8 4. 4018
9 4 2980 Therefore, when the residues of nearby periodic
0 4. 3548 minimaximizing orbits are nearly 1/4, the invari-
» 4. 3188 ant curve of winding number 772 is on the edge
12 ¢ 3496 of disappearance.
13 4. 3433 When : = ¢ % the ratio of the fluxes F,/F . ap-
14 4.3349 proaches to some value §&. Here {is the area-
15 4. 3397 scaling factor of nearby minimaximizing istands
16 4.3396 and the observed value of & is 4.3390. There-
17 4, 3300 fore, I'y, obeys a power law decay: F,~q,", do =
18 4. 3350 log ,¢ . For the subcritical case,  approaches to
19 4. 3391 zero at a rate faster than that for the critical
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Tablei: Exponent xj when¢ = e—de, e* ¢* + ¢ :

¥ B8 Ty v+ 085 7 8

Table Il ¢ -coordinate #, of the nth convergent minimizing periodic point nearest to the dominant

symmetry line when ¢ - e*- Je, ¢* ¢* . 4, . de = 1078

5 ' —le e* e +he

3 1.5271 > 107! 1.5277 - 107! 1.5284 » 107!
4 1.0956 10" 1.0965 ~ 107! 1.0973 % 107!
5 76817 2107 7.6921 5 107¢ 7.7025 > 107¢
6 5.4429 1077 5. 4555 ~ 107% 5.4682 - 107F
7 3.8269 10 2 3. 8417 - 1072 3, 8566 107°
3 2.7049 - 1072 2.7221 2 107% 2.7395 07 ¢
9 1.89593 . 107¢ 1.9192 - 1072 1.9395 % 1072
10 f, 1.3353 1072 1.3580 1077 1.3817 - 1677
11 9.3276 - 10° 9. 5852 - 107 9.8617 - 1073
12 6.4878 1077 6. 7778 - 1072 TeioEa v pors
i3 4 6T 1072 4. 7885 ¥ 107° 5.1765 - 107
14 3,0354 » 107" 3. 3856 107 3.8602> 107
15 2.0235 1078 2.3926 . 1077 2.9934 + 107°
16 1,3191 2 107% 1.6911 - 1073 2.4869 - 107°
17 8.4100> 107* 11953~ 107° 22715 1073
18 5.2738 - 107 8. 4480 107 2.2258 - 1072
19 3. 2790 » 197* 5.9709 - 107¢ 29207 2 1678
20 2.0318 #1077 4, 2200 107¢

and Je = 107°

-207-

Tabie ¥ Scaling factors 8, and @, along and across the

dominant symmetry line when ¢ = ¢*

” e¥—le € ¥+ he " Bn oy

3 69001 . 68928 . 68854 4 —3.0326 - 1.4232
4 73787 . 73668 . 73548 5 ~3.0725 ~ 1. 4082
5 71595 . 71396 . 71195 6 -3, 0469 —1.4191
6 73204 . 72883 . 72560 7 - 3.0735 ~1.4128
7 72106 . 71590 . 71066 § ~3. 0630 =471 54
3 73472 . 72633 L71771 9 — 3. 0658 —1.4138
g 73223 . 71877 . 70473 10 —3, 0660 ~1.4164
10 x7% 74553 . 72395 . 70080 11 —3. 0651 —1.4146
1 75447 . 72020 . 68183 12 —3, 0669 -1, 4157
12 77568 L 72199 . 65746 13 — 3. 0673 —1.4147
13 80278 . 72044 . 60986 14 —3. 0680 -1, 4150
14 84270 . 72145 . 52845 15 —3, 0661 —1i.4148
15 .88913 . 72108 . 38526 6 —3.0670 ~1,4149
16 93543 . 72112 . 18828 17 =3, 0670 - 1.4148
17 96976 22113 . 422021077 18 -3, 0669 = 1.4148
18 98756 L7214 2. 8981 % 1077 19 ~ 3. 0668 - Lagy
19 99455 . 72117 20 - 3. 0668 —1. 4740




case. When: -¢7,F  approaches to some nonzero
value. In this case, the invariant curve is broken
At = ¢* + 102 the observed
107,

The #&-coordinate ¢, of the minimizing perio-

nto a cantorus.

flux through the cantorusis 1.23 -

dic point nearest to the dominant symmetry line
approaches to zero when ¢ “¢*, For the crirical
case, ¢ obeys a pover law decay:

6,~ g7, x,= U7l

Therefore, the critical invariant curve is not di-
fferentiably bui topologicelly conjugate to the
uniform rotation. When =< ¢*, the observed
power x; seems to be neariv 1. For the super-
critical case, £, approaches to some nonzero value.
When < =¢" . the observed limiting value js 2.22 x
o Therefore, the invanant curve is broken
into the cantrous with an infinity of gaps.

We now describe the scaling along and across
the symmetrv lines for the critical invanant

curve. We use symmetry coordinates (X Y).

For S-symmetry, svmmetry coordinates are:
X=¢ and Y =1 *% - F(8) . For TS-symmetry,
symmetry coordinates are :

y=1r.

X=6-1/2 and
In the symmetry coordinates, the sym-
metries are represented as (X ,}) —~ (X', V") =(-X
-n LY i Z.

Firstly, we describe the scaling behavior near
the dominant half-line.  We call the periodic
point (0,1}, on the dominant half-line the domi-
nant point. We measured the position Y, of the
dominant point. {}', |- sequence converges geo-
metrically to the invarant curve with a ratio § .
The convergence ratio 5 is the limit value of
=gy | P~
Y noy 1. This sequence is shown in the TABLE VII.

{ 5, ) —sequence defined by 5, = (¥, _,

The observed scaling factor 3 along the dominant

half-line is:

s o= 2088 .

Therefore, Y, approaches to the invariant curve
in a nonanalvtic fashion:
! }'nA 1T },n

=0 Yo~ log, 5.

/

ni}nkl

This is consistent with

| 1- _ ’*l'\, —_\,‘0
i}n ¥ : Gn

where Y™ is the limit value of {}, }-sequence.

The observed value of V'™ is:

P,

4056311116478107.

The scaling behavior across the dominant half-
line can be studied by measuring the positions
(X,,V,1of the nearest point of the periodic orbit
to the dominant point. {X, )} - seguence con-
verges geometrically to the dominan: half-line.
The convergence ratio « is the iimit value of
{ a, | —sequence defined by a, =X,/X,,,. This
sequence is included in the TABLE VIIL. The
observed scaling factor « across the dominant

half-line is:
a=— 14148

This is consistent with

!.\;1:~q:,°;)(0 :log,i-a

Secondly, we describe the scaling behaviors
We call

the periodic point on the subdominant half-

near the three subdominant half-lines.
line the subdominant point. In z similar way.
by measuring the positions of the subdominant
point and the nearest point to it, the scaling
behaviors can be studied. But the scalings exhibit
These results are included
in the tables (from TABLE IX to TABLE X).

The 3-step scaling factors A3 and ay along and

‘period-3° behaviors.

across the dominant half-lines are:
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TableIX. Scaling factors 5, along the three subdominant

half lines when & = ¢*

n f=1/2 =24 I=20-1
4 — 2. 0485 =3y BIET — 2.4447
5 —3.3876 —2.4215 - 2.0625
6 —2.4459 — 2. 0656 — 3. 3489
7 -2, 0577 — 3, 3795 — 2.4165
& —3.3542 — 2,439 —2.0643
9 —2.4254 = 2. 0584 —3.374
10 5, —2.0621 —3,3625 — 2.04345
11 ~—3.3692 — 24285 — 2.0594
12 —2.4318 — 2, 0604 — 3.3673
i3 —2.0589 — 3,369 = 2.4291
14 —3.3678 — 2.4305 — 2.0597
15 — 2. 4306 = 2895 —3.3678
16 — 2, 0596 — 3. 3684 —2,4302
17 — 3. 3682 —2,4303 —2.0596
18 ~—2.4303 —2,0597 —3.3681
19 — 2. 0597 ~3.3679 = 2.4304
20 - 3.3673 —2.4303 — 2.0597

Table X. Scaling factors @ ,across the three subdominant
half lines when ¢ = ¢*

n f=1/2 I=2¢6 I=28-1
4 — 1. 7835 — 1. 6283 - 1.7055
5 —1.610 ~ 1.7087 — 1L.7706
6 - 1. 6966 —~ 17734 — 1,6075
7 —1.7729 — 1, 6005 = 1. 7067
8 —1.6022 — 1, 6980 —1.7748
9 —1.7065 —1.7722 — 1. 6038
10 a, — 1. 7747 — 1, 6029 — 17013
11 — 1.6039 —1. 7042 —1.7735
12 ~ 1, 7025 ~ L7745 — 1.6030
3 —1.7743 —1.6033 — L7037
14 — 1. 6032 —1.7030 —1.7746
15 —1.7034 — L7741 — 1.6037
16 - 1.7743 — 16034 — 1.7033
17 — 1. 6034 — 1. 7032 —1.7744
18 = 1.7033 — 1743 — 1.6035
19 = 10743 — 16034 —1.7033
20 — 1. 6034 — 17033 - 1.7743

—209-

B,=- 168659,
a, = — 48458

Note that £, 5" e, # «® and o, - §, = (a- §,7 .
Therefore, though the scalings along and across
the symmetry half-lines exhibit different beha-
viors, the area-scalings exhibit the same behaviors.
This is consistent with the fact that the ratio
of the fluxes F./F,., approaches to some value
£ ¢ o gl

In this section, we showed numerically that
for an area-preserving map of class-C*, the in-
variant curve of winding number r"l persists
below the critical parameter value, and the critical
behaviors are the same as those in the standard
map studied by Shenker and Kadanoff““,
and Mackay“”.

III. REVIVAL OF RATIONAL INVARIANT
CURVES IN A PIECEWISE LINEAR
MAP OF CLASS-C°

We study a reversible, periodic, area-preserving

twist map T of class—C°:

, {1’:175F(0)

T' il
6’ =6~ 1
-6 N o P
where F('ﬁ):{ 6— 172, 1/9Z0<374
=8 o §fgspE]

1
F(8)=F(6~1) and fﬂ F(§)- d6 =0

For the twist may 7, the generating funcrion

Lig,6) is:

LG, 6")=1.72-(p—0"17 —¢g. Vg,

where 17 (¢ )=
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Since the map 7 is a reversible map, T can be
factored into the product (TS)*S of two involu-

tions, where

. v oez {mleger ).
g TR
The four symmertry lines formed from the in-
variant points under S and TS are 6 =0 6 = 1/2
1 - 26

Since the smoothness of the map 7 is below

and J - 28 - 1.

the critica! smoothness, all invariant curves are
expected to be broken and extended chaos may
occur for arkitrarily smali €. But Chirikov ob-
served that at some parameter value global choas
disappears and thus the chaotic component was
confined in 1,173

We show that this peculiar phenomenon can
be explained by the fact that rational invariant
curves revive at some e, For this map 7 de la
Llave has an example with a rational invariant

curve of winding number O (referred to by Mac;

Colfay: ILT'I(B*L]T)—,-}E ’
I ]
I=—7i0-31-+
R 4 2
1 ] !
= g g SRR R A
7 5 (4 2) 7
_o 3 "
[= 7 (5—4—4,%/2
l
I=7e-="42
1
7:‘.*\-'? 2

We find numerically rational invariant circles

of winding number p/¢ (¢=3). It is observed
that when the parameter ¢ crosses some parameter
value at which the ¢-coordinate of a periodic
pomt of one of the two minimizing and mini-
maximizing svmmetric periodic orbits of winding
number p/q crosses the 6 = 1/4 - line. an ex-
tremum transition in action occurs, such that

the minimizing orbit turns to the minimaxizing
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ol L
kav) 1 when e= 4/3. The rational invariant curve

¢ {)of winding number ¢ is:

J = 2670173, HT LY
C(D):{/:—:H] A S
I =273~ 173, 17276 7]

Thais saturates the bounds of Mather's result on
non-existence of invariant curves anc thus there
are arbitrarily small perturbations with no in-
variant curves at =111 We also find rational
invariant circles C(1/3) and ¢(1‘4) of winding
number 1/3 and 1/4. When ¢ = 1}, the rational
invariant curve C(1/3) of winding number 1/3

revives, where

col.72):

I =6.72~1."8,

and when e =+ ~ 1

and the rational invariant curve (1/4) of winding

1/4 revives, where

=
v J
— T8 3/4
p /
4.0

one, and vice versa. When the extremum tran-

sition occurs, the action difference between
the two symmetric periodic orbits becomes
zero, and thus the rational invariant curve of

winding number p/q revives. Extremum transi-

tions occur (2m -1} times when g=4m, 4m -~
1m =1L 2., and 2m times when g=4dm+1, 4m+2
{(m= (0 1..). Forexampie, for the two symmetric
periodic orbits of winding number 1/5, the ex-
tfremum transitions occur two times when ¢ =

30277563, 1.30277364. It is also observed that
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Table X . Final extremum transition values c* i/y)and

the convergence ratio.

g "1/ g o,

3 1 3, 47705098
4 A5 3. 18300590
5 1.30277564 3. 07760292
6 1. 32340428 3. 03214932
7 1. 33005574 3. 01297096
8 1. 33224650 3. 60510601
9 1. 33297167 3. 00196519
10 1. 33321286 3, 00074567
11 133306319 3. 00027856
12 1. 33331995 3. 00316285
13 1. 33332887 3. U764
14 1. 33333155 3. 00001366
15 1. 33333254 3, D000$93
16 133333317 3, 00000175
17 133333329 5. 00000073
1% 1, 33333331

the final extremum trensition of the two svm-
metric periodic orbits of winding number p/g
occurs at tile same parameter value dependent
only upon ¢ irrespective of ». For example, the
final extremum transitions of symmetric perio-
and 3/7

occur at the same time when £ =1.33005874.

dic orbits of winding number /7, 2/7

After the final extremum transition, all the period-
ic points of the two symmetric periodic orbits
¢ =G- line lie
between f=1/4 -lineand 8= 3/4 - line.

€xcept one periodic point on the

We restrict our considerations of exiremum
transitions to the final transitions. The final
exrremum transition values £*(1/4) of the two
symmetric periodic orbits of winding number
I/qare shown in the TABLE XI. {¢* {(1/g } -~
sequence converges to some iimit value with a

geometric ratio ¢ . The imir vajue is 4'3, which
Is just the value at which the rstiona) invariant
curve of winding number 0 is found 1o exist

by de la Llave. The ratio 6 is the limit value of
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{6,] —sequence defined by
VAT VA S N
sequence is included in the TABLE XI. There-

dqg =14/3 — ™ (1/g)

.o e
1o 6 - 3 {dg}

fore, when ¢ >>4/3 no extremum transition QCCUrs
and extended chaos takes place. Even when
€ 1s less than 4/3. global chaos can occur in the

absence of a rational invariant curve,

IV. SUMMARY AND DISCUSSION

According to the pendulum approximation
and Greene's residue criterion, the critical smooth-
ness of perturbations is class-¢C* for the map,
But these approximations are not Very accurate.
Thus, we study numertcally whether or not a
noble invariant circle persists under a perturba-
tion of class-C2. Following Greene’s residue
criteion, we show that the invariant curve of
winding number 7*1 persists below the ¢ritical
parameter value. Therefore, below the critical
parameter value, the invariant curve plays the
rele of a complete barrier to the transport of
stochastic orbits. It is also observed that the
critical behaviors seem to be the same as those
for analytic perturbations.

In a piecewise linear ma_ ‘s observed that
an extremum transition occurc between the two
symmetric minimizing and minimaximizing period-
ic orbits. At the transition parameter value, the
difference in actions is zero between the two
pericdic orbits and & rational invariant curve
revives. In the piecewise linear map, the rational
invariant curves plav the role of barriers to trans-
port. It is also observed that when £>4/3, no
extremum transition takes place. Therefore for
any parameter value greater than 4/3, global
chaos occurs. When ¢ 4/3 hoth extended and
confined chaos occur as the parameter varies,
depending upon the existence of a rational in-

variant curve. It is still a mystery to us why an
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extremum transition takes place when the para- [4]  J. Moser, Stable and Random Motions in Dynami-
meter crosses some value at which the 6 -coor- cal Systems, (Princeton Univ, Press, 1973).
dinate of one of the two periodic orbits crosses [S] S Aubey and P.Y. Le Daeron, Physica 8D, 381
{1983).
the #=1/4 - line. :
{6] R.S. Mackay and J.D. Meiss, Phys. Leit. 98A,
92 (1983).
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