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Eigenvalue-Matching Renormalization-Group Analysis of Tricritical Behavior
in Unidirectionally Coupled Maps

Woochang Lim∗ and Sang-Yoon Kim†

Department of Physics, Kangwon National University, Chunchon 200-701

We study the scaling behavior in two unidirectionally coupled one-dimensional maps near tricrit-
ical points which lie at ends of Feigenbaum critical lines and near edges of the complicated parts
of the boundary of chaos. Note that both period-doubling cascades to chaos and multistability (as-
sociated with saddle-node bifurcations) occur in any neighborhood of the tricritical point. For this
tricritical case, the response subsystem exhibits a type of non-Feigenbaum codimension-2 scaling
behavior, while the drive subsystem is in a periodic state. To analyze the tricritical behavior, we
develop an eigenvalue-matching renormalization-group (RG) method and obtain the scaling factors.
These RG results agree well with those of previous work.
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I. INTRODUCTION

Transition to chaos via period doublings has been
extensively studied in a one-parameter family of one-
dimensional (1D) unimodal maps with a quadratic ex-
tremum. As a control parameter is increased, the 1D
map exhibits an infinite sequence of period-doubling
bifurcations accumulating at a critical point, beyond
which chaos sets in. Feigenbaum [1] developed a
renormalization-group (RG) method and discovered uni-
versal scaling behavior near the critical point. This work
has been generalized to two-parameter families of 1D bi-
modal maps with two extrema [2]. The boundary of
chaos in the parameter plane consists of the Feigenbaum
critical lines and a Cantor-like set of critical points. The
simplest representative among the codimension-two crit-
ical points is a tricritical point which is just an end of
a Feigenbaum critical line. A (non-Feigenbaum) two-
parameter scaling has been found near the tricritical
points in the two-parameter family of 1D quartic maps
[3]. Extension of this tricriticality to multidimensional
invertible systems has also been discussed [4].

In this paper, we study the tricritical behavior in a
system consisting of two 1D maps with a one-way cou-
pling,

xt+1 = 1−Ax2
t , yt+1 = 1−By2

t − Cx2
t , (1)

where x and y are state variables of the first and second
subsystems, A and B are control parameters of the sub-
systems, and C is a coupling parameter. Note that the
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first (drive) subsystem acts on the second (response) sub-
system, while the second subsystem does not influence
the first subsystem. Recently, these unidirectionally cou-
pled systems have been actively discussed in application
to secure communication using chaos synchronization [5].
For a fixed value of C, a kind of non-Feigenbaum scal-
ing behavior appears near a bicritical point where two
Feigenbaum critical lines of the drive and response sub-
systems meet. This bicritical case has been extensively
investigated [6, 7]. Here, we are interested in another
kind of non-Feigenbaum scaling behavior. When the
first drive system is in a periodically oscillating state for
some given A, the second response subsystem has been
found to exhibit a tricritical scaling behavior as in the
case of 1D bimodal maps [8]. We develop an eigenvalue-
matching RG method [9] for the tricriticality and obtain
the scaling factors.

This paper is organized as follows. In Section II we re-
capitulate the tricritical behavior of the response subsys-
tem in two unidirectionally coupled 1D maps when the
drive system is in a period-4 state for A = 1.3. Similar
to the case of the 1D bimodal maps, there exist doubly
superstable periodic orbits containing two critical points
where the Jacobian determinant of the unidirectionally
coupled maps becomes zero. The set of doubly super-
stable points in the B − C parameter plane may be or-
ganized into a binary tree. A specific route in this tree,
which ends in an infinite number of left or right steps,
leads to a tricritical point which is just an end of a Feigen-
baum critical line. The scaling behavior near the tricrit-
ical point is confirmed by showing repeated self-similar
structures in the state diagram. In the main Section III,
we employ an “eigenvalue-matching” RG method, equat-
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ing the successive three stability multipliers of the orbits
of level n (period 2n), n + 1, and n + 2, and make the
RG analysis of the tricritical behavior. Thus, we numer-
ically obtain the tricritical point, the parameter and or-
bital scaling factors, and the critical stability multiplier.
We note that the accuracy is improved remarkably on in-
creasing the level n and the results agree well with those
of previous work [2–4,8]. Finally, a summary is given in
Section IV.

II. SCALING BEHAVIOR NEAR A
TRICRITICAL POINT

In this section, we recapitulate the tricritical behavior
in the two unidirectionally coupled 1D maps of Eq. (1) for
A = 1.3. Near a tricritical point, the response subsystem
is shown to exhibit a (non-Feigenbaum) two-parameter
scaling in the B − C parameter plane.

Stability of an orbit with period q in the two unidirec-
tionally coupled 1D maps is determined by its stability
multipliers,

λ1 =
q∏

t=1

(−2Axt), λ2 =
q∏

t=1

(−2Byt). (2)

Here, λ1 and λ2 determine the stability of the first
and second subsystems, respectively. An orbit be-
comes stable when the moduli of both multipliers are
less than unity, i.e.,−1 < λi < 1 for i = 1, 2. For
A = 1.3, the (first) drive subsystem is in a period-4
state with λ1 = 0.180 542 · · · , x0(= −0.014 946 · · · ) →
x1(= 0.999 709 · · · ) → x2(= −0.299 245 · · · ) → x3(=
0.883 588 · · · ) → x4(= x0). On the other hand, the (sec-
ond) response subsystem exhibits rich dynamical behav-
iors, depending on the values of B and C.

Figure 1(a) shows bifurcation curves of the response
subsystem in the B − C plane. The bifurcation pat-
tern contains “swallow” structures, as in the 1D bimodal
maps [10]. We start from the basic period 4. When pass-
ing the D4 black curve, the period-4 state becomes unsta-
ble through a period-doubling bifurcation (i.e., λ2 = −1
curve), and then a stable period-8 state appears in the re-
sponse subsystem. It is numerically found that a periodic
orbit may become superstable when it contains a critical
point, zL = (xL, 0) or zR = (xR, 0), where xL[≡ x0(=
−0.014 946 · · · )] and xR[≡ x3(= 0.883 588 · · · )]. For this
supercritical case, the 2nd stability multiplier of the pe-
riodic orbit becomes zero (i.e., λ2 = 0). Inside the D4

curve, there exist two superstable gray curves 8L and
8R, on which the period-8 orbit becomes superstable be-
cause it contains zL and zR, respectively. These 8L and
8R curves cross twice, forming a loop, at the lower dou-
bly superstable point (denoted by a circle) and at the
upper bistability point (denoted by a plus). At the dou-
bly superstable point, the period-8 orbit becomes doubly
superstable because it contains both the critical points,

Fig. 1. (a) Swallow-shaped structure of bifurcation curves
of the response subsystem in the B − C plane for A = 1.3.
There are two superstable curves of the period-q orbit de-
noted by the qL and qR gray curves. In addition to them,
black lines Dq and dark gray lines Sq represent the period-
doubling and saddle-node bifurcation curves of the q-periodic
orbit, respectively. (b) and (c) Self-similar topography of the
parameter plane near the tricritical point T1 in the C1 − C2

plane (C1 and C2 are scaling coordinates representing eigendi-
rections). The numbers denote periods of dynamical states,
and chaos or higher periodic states are represented in white.
Magnification of the small box in (b) along the C1 and C2

axes by the factors δ1 and δ2 reproduces the same topogra-
phy of the parameter plane. For more details, see the text.

zL and zR. On the other hand, there exist two indepen-
dent superstable period-8 orbits at the bistability point.
This bistability arises from a cusp catastrophe within
the loop. At the cusp (denoted by a cross), a pair of
saddle-node bifurcation curves S8 (shown in dark gray),
giving rise to a pair of stable and unstable period-8 or-
bits, meet. In addition to the S8 curves, there exist two
period-doubling bifurcation curves D8 in the period-8
zone. These D8 curves cross once just above the cusp,
and they move from one superstable curve to another one
in going from an outer period-doubling prong to an inner
saddle-node prong. Thus, inside the period-8 zone, two
superstable curves 8L and 8R, two D8 curves, and two S8

curves form a swallow-shaped area. Two similar, smaller,
swallow-shaped areas appear inside the D8 curves of the
next higher level (i.e., in the period-16 zone). In this way,
since the number of swallow-shaped areas doubles with
each period doubling, a Cantor-like set of cusps and the
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Fig. 2. Plots of the Mn,n+1 curve at which λ2,n = λ2,n+1

in the B − C plane for A = 1.3. In (a) the intersection
point of the two curves, denoted by a solid circle, gives the
tricritical point (B∗

3 , C∗
3 ) of level 3. (b) As the level n is in-

creased, (B∗
n, C∗

n) approaches the tricritical point (Bt, Ct) =
(1.189 249 · · · , 0.699 339 · · · ). For more details, see the text.

associated superstable crossings (i.e. bistability points
and doubly superstable points) may be organized into
an infinite binary tree coded by two symbols (e.g., “L”
and “R”).

Following a specific route with code [(L, )∞] =
[L,L, L, · · · ] or [(R, )∞] = [R,R, R, · · · ] in the binary
tree, we reach a tricritical point T1 with (Bt, Ct) =
(1.189 249 · · · , 0.699 339 · · · ) or T2 with (Bt, Ct) =
(1.225 396 · · · , 0.760 267 · · · ). Two-parameter scaling oc-
curs near each tricritical point as follows [3]. An infi-
nite sequence of doubly superstable points converge ge-
ometrically to the tricritical point with the scaling fac-
tor δ1(= 7.284 685) along the scaling axis C1. On the
other hand, an infinite sequence of bistability points or
cusps accumulates to the tricritical point with the scal-
ing factor δ2 (= 2.857 124) along the scaling axis C2 (but
from the opposite side). To demonstrate this scaling
near T1, we first introduce scaling coordinates C1 and
C2 such that ∆B(≡ B − Bt) = 0.60C1 + 0.97C2 and
∆C(≡ C − Ct) = −0.79C1 − 0.22C2. Figure 1(b) shows
rich dynamical states near T1 in the C1−C2 plane. Here
the tricritical point T1 is located exactly at the origin, the
numbers denote periods of dynamical states, and chaos
or very high periodic states are denoted in white. As
shown in Figure 1(c), the topography of the parameter
plane is reproduced by magnifying a small box in Fig-

ure 1(b) along the scaling axes C1 and C2 by the factors
δ1 and δ2.

III. EIGENVALUE-MATCHING RG
ANALYSIS OF THE TRICRITICAL

BEHAVIOR

In this section, we employ an eigenvalue-matching RG
method and make the RG analysis of the scaling be-
havior of the response subsystem near the tricritical
point T1 in the two unidirectionally coupled 1D maps for
A = 1.3. The recurrence relations of the old parameters
(B,C) and the new (renormalized) parameters (B′, C ′)
are given by equating the second stability multipliers of
the successive three orbits of level n (period 2n), n + 1,
and n + 2, i.e.,

λ2,n(B,C) = λ2,n+1(B′, C ′), (3a)
λ2,n+1(B,C) = λ2,n+2(B′, C ′). (3b)

Here λ2,n is the second stability multiplier of the orbit
with period 2n.

The fixed point (B∗
n, C∗

n) of the renormalization trans-
formation (3) of level n,

λ2,n(B∗
n, C∗

n) = λ2,n+1(B∗
n, C∗

n), (4a)
λ2,n+1(B∗

n, C∗
n) = λ2,n+2(B∗

n, C∗
n) (4b)

approaches the tricritical point (Bt, Ct) =
(1.189 249 · · · , 0.699 339 · · · ) as n → ∞. Lineariz-
ing the renormalization transformation (3) at the fixed
point (B∗

n, C∗
n), we obtain(

∆B
∆C

)
=

(
∂B
∂B′

∣∣
∗

∂B
∂C′

∣∣
∗

∂C
∂B′

∣∣
∗

∂C
∂C′

∣∣
∗

) (
∆B′

∆C ′

)
(5a)

= ∆n

(
∆B′

∆C ′

)
, (5b)

where ∆B = B − B∗
n, ∆C = C − C∗

n, ∆B′ = B′ − B∗
n,

∆C ′ = C ′ − C∗
n, and

∆n = Γ−1
n Γn+1, (6a)

Γn =

 ∂λ2,n

∂B

∣∣∣
∗

∂λ2,n

∂C

∣∣∣
∗

∂λ2,n+1
∂B

∣∣∣
∗

∂λ2,n+1
∂C

∣∣∣
∗

 , (6b)

Γn+1 =

 ∂λ2,n+1
∂B′

∣∣∣
∗

∂λ2,n+1
∂C′

∣∣∣
∗

∂λ2,n+2
∂B′

∣∣∣
∗

∂λ2,n+2
∂C′

∣∣∣
∗

 . (6c)

(Here Γ−1
n is the inverse of Γn.) As n → ∞, the eigen-

values δ1,n and δ2,n of the matrix ∆n converge to δ1

(= 7.284 69) and δ2 (= 2.857 12), which are just the pa-
rameter scaling factors for the response subsystem. Fur-
thermore, the local rescaling factor of the state variable
y of the response subsystem in the most rarified region
is simply given by

αn =
yn − yn+1

yn+1 − yn+2
for (B,C) = (B∗

n, C∗
n), (7)
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Table 1. Sequences of the tricritical point and the critical
second stability multiplier, {B∗

n}, {C∗
n}, and {λ∗

2,n}.

n B∗
n C∗

n λ∗
2,n

3 1.188 031 357 461 0.699 568 017 742 -2.004 916

4 1.189 278 323 347 0.699 332 962 713 -2.052 459

5 1.189 241 876 101 0.699 340 786 906 -2.048 510

6 1.189 249 350 331 0.699 339 111 107 -2.050 806

7 1.189 249 318 839 0.699 339 118 284 -2.050 779

8 1.189 249 375 785 0.699 339 105 224 -2.050 921

9 1.189 249 376 834 0.699 339 104 983 -2.050 928

10 1.189 249 377 334 0.699 339 104 868 -2.050 939

11 1.189 249 377 352 0.699 339 104 863 -2.050 940

12 1.189 249 377 357 0.699 339 104 862 -2.050 940

13 1.189 249 377 357 0.699 339 104 862 -2.050 940

14 1.189 249 377 357 0.699 339 104 862 -2.050 940

Table 2. Sequences of the parameter and orbital scaling
factors, {δ1,n}, {δ2,n}, and {αn}.

n δ1,n δ2,n αn

3 6.389 726 3.064 274 -1.772 564

4 7.378 722 2.834 330 -1.708 159

5 7.243 372 2.866 203 -1.700 798

6 7.286 477 2.856 633 -1.693 945

7 7.282 234 2.857 639 -1.691 796

8 7.284 642 2.857 130 -1.690 845

9 7.284 515 2.857 159 -1.690 508

10 7.284 674 2.857 126 -1.690 377

11 7.284 673 2.857 127 -1.690 330

12 7.284 684 2.857 124 -1.690 313

13 7.284 685 2.857 124 -1.690 306

14 7.284 685 2.857 124 -1.690 304

where yn is the orbit point with largest distance from
its nearest orbit point in the 2n-periodic orbit of the re-
sponse subsystem. Here, αn also converge to the orbital
scaling factor α (= −1.690 30) of the response subsystem,
as n goes to infinity.

Some results in the low orders are shown in Figure 2(a)
and (b). Figure 2(a) shows two curves M3,4 (where
λ2,3 = λ2,4) and M4,5 (where λ2,4 = λ2,5) in the B − C
plane. We note that the intersection point, denoted
by the solid circle, of the two curves gives the tricriti-
cal point (B∗

3 , C∗
3 ) of level 3, at which the value of the

second stability multiplier (λ∗2,3) is just the critical sec-
ond stability multiplier of level 3. On increasing the
level n, (B∗

n, C∗
n) becomes closer to the tricritical point

(Bt, Ct) = (1.189 249 · · · , 0.699 339 · · · ), as shown in Fig-
ure 2(b). Eventually, (B∗

n, C∗
n) and λ∗2,n converge to the

tricritical point (Bt, Ct) and the critical second stabil-
ity multiplier λ∗2 (= −2.050 940) (which is just the limit
value of the second stability multipliers of 2n-periodic

orbits at the tricritical point), respectively.
Increasing the level up to n = 14, we numerically

make the RG analysis of the tricritical scaling behavior.
We first solve Eq. (4) and obtain the tricritical point
(B∗

n, C∗
n) of level n and the critical second stability mul-

tiplier (λ∗1,n, λ∗2,n) of level n. The results are listed in
Table 1. Next, we obtain the parameter scaling factors
δ1,n and δ2,n from the eigenvalues of ∆n in Eq. (6a) and
the orbital scaling factor αn from Eq. (7). These results
are listed in Table 2. Note that the accuracy in the nu-
merical RG results is remarkably improved with the level
n and their limit values agree well with those obtained
in previous work.

IV. SUMMARY

We have studied the scaling behavior near a tricritical
point in two unidirectionally coupled 1D maps. For this
tricritical case, the response subsystem exhibits a (non-
Feigenbaum) two-parameter scaling behavior, while the
drive subsystem is in a periodic state. To make the RG
analysis of this tricritical behavior, we have employed
an eigenvalue-matching method and obtained the bicrit-
ical point, the parameter and orbital scaling factors, and
the critical stability multiplier. Note that the numerical
accuracy in the RG results is improved remarkably on
increasing the order n. Consequently, these RG results
agree well with the results of previous work.
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