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Effect of Parameter Mismatch on Partial Synchronization
in Coupled Chaotic Systems

Woochang Lim∗ and Sang-Yoon Kim†

Department of Physics, Kangwon National University, Chunchon 200-701

We investigate the effect of parameter mismatch on partial synchronization in three coupled one-
dimensional maps. A completely synchronized attractor on the diagonal loses its transverse stability
through a blowout bifurcation, and then partial synchronization may occur on an invariant plane.
Due to the existence of positive local transverse Lyapunov exponents, the partially synchronized
attractor becomes sensitive with respect to the variation of the mismatching parameter. Thus, in
the presence of parameter mismatch, the invariant plane on which partial synchronization occurs
is destroyed, and then an intermittent bursting from this plane occurs. To measure the degree of
such parameter sensitivity, we introduce the parameter sensitivity exponent and characterize the
parameter-mismatching effect on the intermittent bursting. The scaling exponent for the average
interburst time is thus found to be given by the reciprocal of the parameter sensitivity exponent.
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I. INTRODUCTION

Recently, because of its potential practical applica-
tion (e.g., see [1]), synchronization in coupled chaotic
systems has become a field of intensive research. For
a sufficiently strong coupling, a complete synchroniza-
tion where all subsystems become synchronized occurs
[2–5]. However, as the coupling parameter decreases and
passes a threshold value, the fully synchronized attractor
becomes transversely unstable [6–10]. After the break-
down of complete synchronization, partial synchroniza-
tion where some of the subsystems synchronize while oth-
ers do not, or complete desynchronization may occur via
a blowout bifurcation for three or more coupled systems
[11–16]. Here, we are interested in the partial synchro-
nization (or clustering) which has been extensively stud-
ied in globally coupled systems where each subsystem is
coupled to all the other ones with equal strength [17–19].

In a real situation, a small mismatch between the sub-
systems that destroys the invariant subspace on which
partial synchronization occurs is unavoidable. Hence,
the effect of the parameter mismatch must be taken into
consideration for the study on the partial synchroniza-
tion. In the regime of partial synchronization, a typical
trajectory may have segments exhibiting positive local
(finite-time) transverse Lyapunov exponents because of
local repulsion of transversely unstable orbits embedded
in the partially synchronized attractor. For this case,
any small mismatch results in a permanent intermit-
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tent bursting. This attractor bubbling demonstrates the
sensitivity of the partially synchronized attractor with
respect to the variation of the mismatching parameter.
Recently, we have introduced a quantifier, called the pa-
rameter sensitivity exponent, to measure the degree of
the parameter sensitivity of a completely synchronized
attractor [20]. Here, we extend the method of quanti-
tatively characterizing the parameter sensitivity to the
case of a partially synchronized attractor, and study the
parameter-mismatching effect on partial synchronization
in terms of the parameter sensitivity exponents.

This paper is organized as follows. In Section II,
we introduce the parameter sensitivity exponent for the
case of partial synchronization in three coupled one-
dimensional (1D) maps, and quantitatively measure the
degree of the parameter sensitivity of the partially syn-
chronized attractor by varying the coupling parameter.
In terms of these parameter sensitivity exponents, the
effect of parameter mismatch on the attractor bubbling
(occurring in the regime of partial synchronization) is
characterized. Thus, the scaling exponent for the aver-
age interburst time is found to be given by the reciprocal
of the parameter sensitivity exponent. Finally, we give a
summary in Section III.

II. CHARACTERIZATION OF THE
PARAMETER-MISMATCHING EFFECT

ON PARTIAL SYNCHRONIZATION

We investigate the effect of parameter mismatch on
partial synchronization in three coupled 1D maps with a
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parameter tuning the asymmetry in the coupling,

x
(i)
n+1 = f(x(i)

n , ai) + c [
3∑

j=1

pjf(x(j)
n , aj)− f(x(i)

n , ai)],

i = 1, 2, 3, (1)

where x
(i)
n is a state variable of the ith element at a dis-

crete time n, the uncoupled dynamics (c = 0) is governed
by the 1D map f(x(i), ai) = 1 − aix

(i)2 with a control
parameter ai, c is a coupling parameter, and pj denotes
the coupling weight for the jth element (

∑3
j=1 pj = 1).

Here, the asymmetric coupling naturally appears when
studying the three-cluster dynamics in an ensemble of N
globally coupled 1D maps [17–19], where each 1D map
is coupled to all the other ones with equal strength. For
the case of three clusters with Nj elements in each jth
cluster (j = 1, 2, 3), pj (= Nj/N) represents the fraction
of the total population of elements in the jth cluster. For
the case of unidirectional coupling with p2 = p3 = 0 (i.e.,
p1 = 1), the first drive subsystem with the state variable
x(1) acts on the second and third response subsystems
with the state variables x(2) and x(3), and partial syn-
chronization was observed to occur on an invariant plane
via a supercritical blowout bifurcation of the fully syn-
chronized attractor on the diagonal [11]. On the other
hand, a completely desynchronized 3D attractor appears
through the supercritical blowout bifurcation for the case
of symmetric coupling with p1 = p2 = p3 = 1/3 [16]. We
connect these two extreme cases through a path with
p2 = p3 ≡ p (0 ≤ p ≤ 1/3) in the p2 − p3 plane and
then the parameter p tunes the degree of asymmetry in
the coupling of Eq. (1) from the unidirectional coupling
(p = 0) to the symmetric coupling (p = 1/3).

By varying the parameters p and c for the identical
case of a1 = a2 = a3 = 1.95, we have studied whether an
asynchronous attractor born via a supercritical blowout
bifurcation of the fully synchronized attractor is par-
tially synchronized or completely desynchronized [21].
The completely synchronized attractor lies on the diag-
onal in the hatched region with horizontal lines in Fig-
ure 1(a). As the coupling parameter c decreases and
passes a threshold value c∗1 (' 0.4398), it becomes trans-
versely unstable, and then partial synchronization (com-
plete desynchronization) occurs for p < p∗ (p > p∗)
(p∗ ' 0.146) in the gray (white) region in Figure 1(a).
We note that the partially synchronized attractor exists
in the largest interval of the coupling parameter c for the
unidirectionally coupled case of p = 0.

As an example, we choose the unidirectionally coupled
1D maps,

x
(1)
n+1 = f(x(1)

n , a1),

x
(2)
n+1 = f(x(2)

n , a2) + c [f(x(1)
n , a1)− f(x(2)

n , a2)],

x
(3)
n+1 = f(x(3)

n , a3) + c [f(x(1)
n , a1)− f(x(3)

n , a3)], (2)

where a1 = a, a2 = a − ε2, and a3 = a − ε3. Here,
we fix the value of a as a = 1.95 and investigate the

Fig. 1. Effect of parameter mismatch on partial syn-
chronization for a = 1.95. (a)-(d) correspond to the ideal
case without parameter mismatch. (a) State diagram in the
c − p plane. A fully synchronized attractor exists in the
hatched region, while a partially synchronized and a com-
pletely desynchronized attractor exist in the gray and white
regions, respectively. (b) Plot of the transverse Lyapunov
exponent of the partially synchronized attractor (denoted by
a solid curve) versus c in the unidirectionally-coupled case
with p = 0. The transverse Lyapunov exponent of the fully
synchronized attractor is also represented by a dashed line.
Projections of a partially synchronized attractor onto the (c)

x(1)-x(2) and (d) x(2)-x(3) planes are given for c = 0.42. In
the presence of parameter mismatch, such a partially syn-
chronized attractor is transformed into a bubbling attractor.
(e)-(f) correspond to the mismatching case of ε2 = 0.001
and ε3 = 0. Projections of the bubbling attractor onto the
(e) x(1)-x(2) and (f) x(2)-x(3) planes are shown for c = 0.42.
(g)-(h) correspond to the mismatching case of ε2 = 0 and
ε3 = 0.001. Projections of the bubbling attractor onto the
(e) x(1)-x(2) and (f) x(2)-x(3) planes are given for c = 0.42.

parameter-mismatching effect on partial synchronization
by varying the coupling parameter c. In the ideal case
without parameter mismatching (i.e., ε2 = ε3 = 0) a
fully synchronized attractor, whose transverse Lyapunov
exponent is denoted by a dashed line in Figure 1(b), ex-
ists on the invariant diagonal for a sufficiently strong
coupling. However, as c decreases and passes a thresh-
old value c∗1 (' 0.4398), it loses its transverse stability.
Then, a partially synchronized attractor appears via a
supercritical blowout bifurcation on the invariant Π23
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[= {(x(1), x(2), x(3))| x(2) = x(3)}] plane, as shown in
Figure 1(c) and 1(d) for c = 0.42. This partially synchro-
nized attractor satisfies x

(1)
n ≡ Xn and x

(2)
n = x

(3)
n ≡ Yn,

and its dynamics is governed by a reduced 2D map,

Xn+1 = f(Xn), Yn+1 = f(Yn)+c [f(Xn)−f(Yn)].(3)

The transverse Lyapunov exponent σ⊥ of the partially
synchronized attractor is represented by the solid curve
in Figure 1(b). It is transversely stable in the interval
of c∗2(= 0.3376) < c < c∗1 because σ⊥ < 0. As c is de-
creased from c∗1, σ⊥ begins to increase from c ' 0.413
after its first decrease. However, it has a decreasing part
for 0.372 > c > 0.351, and then increases to zero for
c ' 0.3376. In the decreasing part, the partially syn-
chronized attractor becomes more transversely stable as
c is decreased.

For the case of partial synchronization, there are trans-
versely unstable orbits embedded in the partially syn-
chronized attractor. Due to local transverse repulsion of
such unstable orbits, the partially synchronized attrac-
tor exhibits a parameter sensitivity. Hence, any small
parameter mismatch results in persistent intermittent
bursting from the Π23 plane, called attractor bubbling.
Figure 1(e)-(f) and 1(g)-(h) show such attractor bub-
bling for both cases of (1) ε2 = 0.001 and ε3 = 0, and
(2) ε2 = 0 and ε3 = 0.001. We first consider the mis-
matching case between the first and second subsystems
(i.e., ε2 6= 0 and ε3 = 0). For this case, the sensitiv-
ity of the partially synchronized attractor with respect
to the parameter mismatching may be characterized by
differentiating the transverse variable un ≡ x

(2)
n − x

(3)
n ,

denoting the deviation from the Π23 plane, with respect
to ε2:

∂un+1

∂ε2

∣∣∣∣
ε2=0

=
∂x

(2)
n+1

∂ε2

∣∣∣∣∣
ε2=0

−
∂x

(3)
n+1

∂ε2

∣∣∣∣∣
ε2=0

. (4)

Using Eq. (2) we obtain the recurrence relation

∂un+1

∂ε2

∣∣∣∣
ε2=0

= r(Yn)
∂un

∂ε2

∣∣∣∣
ε2=0

+ (c− 1)fa(Yn, a), (5)

where

r(Yn) ≡ (1− c)fY (Yn, a), (6)

and fa and fY are the derivatives of f with respect to
a and Y , respectively. Iterating the formula (5) along
a trajectory starting from an initial orbit point (X0, Y0)
on the Π23 plane, we may obtain derivatives at all sub-
sequent orbit points:

∂uN

∂ε2

∣∣∣∣
ε2=0

= (c− 1)
N∑

k=1

RN−k(Xk, Yk)fa(Yk−1, a)

+RN (X0, Y0)
∂u0

∂ε2

∣∣∣∣
ε2=0

, (7)

Fig. 2. (a) Three probability distributions P (σM
⊥ ) of the

local M -time Lyapunov exponents for M = 300, 1000, and
2000 when a = 1.95 and c = 0.42. (b) Plot of log10 F+

M (F+
M :

fraction of the positive local transverse Lyapunov exponent)
versus − log10 M for c = 0.42. Note that it is well fitted with
the straight line with the slope η = 0.695. Hence F+

M decays
with some power η. (c) Plots of η versus c.

where

RM (Xm, Ym) ≡
M−1∏
i=0

r(Ym+i) (M ≥ 1) and R0 = 1.(8)

Here, the factor RM (Xm, Ym) is associated with a local
M -time transverse Lyapunov exponent σM

⊥ (Xm, Ym) of
the partially synchronized attractor that is averaged over
M orbit points starting from (Xm, Ym):

σM
⊥ (Xm, Ym) =

1
M

ln |RM (Xm, Ym)|

= ln |1− c|+ 1
M

M∑
t=1

ln |fY (Yn, a)|. (9)

Hence, RM (Xm, Ym) becomes a local (transverse stabil-
ity) multiplier determining local sensitivity of the trans-
verse motion during a finite time M . Because the initial
point starts on the Π23 plane (i.e., x

(2)
0 = x

(3)
0 ), the

value of the initial transverse variable u0 = x
(2)
0 − x

(3)
0

is always zero, independently of ε2 (i.e., ∂u0
∂ε2

∣∣∣
ε2=0

= 0).

Hence, Eq. (7) is reduced to

∂uN

∂ε2

∣∣∣∣
ε2=0

= SN (X0, Y0)

≡ (c− 1)
N∑

k=1

RN−k(Xk, Yk)fa(Yk−1, a). (10)

In the case of partial synchronization, there are trans-
versely unstable periodic orbits embedded in the par-
tially synchronized attractor. When a typical trajectory
visits neighborhoods of such transversely unstable peri-
odic orbits, it has segments experiencing local transverse



Effect of Parameter Mismatch on Partial Synchronization· · · – Woochang Lim and Sang-Yoon Kim -S149-

repulsion from the Π23 plane. Thus the distribution of
local transverse Lyapunov exponents σM

⊥ for a large en-
semble of trajectories and large M may have a positive
tail. As an example, we consider the case of a = 1.95 and
c = 0.42 and obtain the probability distribution P (σM

⊥ )
of local (M -time) transverse Lyapunov exponents, where
P (σM

⊥ ) dσM
⊥ is the probability that σM

⊥ has a value be-
tween σM

⊥ and σM
⊥ + dσM

⊥ , by taking a long trajectory
dividing it into segments of length M , and calculating
σM
⊥ in each segment. Figure 2(a) shows the distribu-

tions P (σM
⊥ ) for M = 300, 1000, and 2000. In the

limit M →∞, P (σM
⊥ ) approaches the delta distribution

δ(σM
⊥ − σ⊥), where σ⊥(= −0.0135) is the usual aver-

aged transverse Lyapunov exponent. However, we note
that the distribution P (σM

⊥ ) has a significant positive
tail which does not vanish even for large M . To quantify
this slow decay of the positive tail, we define the fraction
of positive local transverse Lyapunov exponents as

F+
M =

∫ ∞

0

P (σM
⊥ )dσM

⊥ . (11)

This fraction F+
M is plotted for c = 0.42 in Figure 2(b),

and it exhibits a power-law decay with the exponent η =
0.695,

F+
M ∼ M−η. (12)

By decreasing the coupling parameter c from c∗1, we ob-
tain the exponents η which are shown in Figure 2(c).
Consequently, for any case of partial synchronization, a
trajectory has segments of arbitrarily long M that have
positive local Lyapunov exponents. Then, the local mul-
tipliers RM [= ±exp(σM

⊥ M)] can be arbitrarily large, and
hence the partial sum SN of Eq. (10) may be arbitrar-
ily large. This implies unbounded growth of the deriva-
tives ∂uN

∂ε

∣∣
ε=0

as N tends to infinity, and consequently
the partially synchronized attractor exhibits a parameter
sensitivity. As c is decreased from c∗1, the value of F+

M
becomes larger because the exponent η is smaller. Hence,
the degree of parameter sensitivity increases. However,
in the decreasing part of σ⊥ (0.372 > c > 0.351) [see Fig-
ure 1(b)], the value of η increases, and hence the degree
of parameter sensitivity becomes weaker in this interval.
For c < 0.351, the value of η begins to decrease again,
which results in the increase in the degree of parameter
sensitivity.

As an example, we consider the partially synchronized
attractor for c = 0.42 [see Figure 1(c) and (d)]. To quan-
titatively characterize its parameter sensitivity, we iter-
ate Eqs. (3) and (5) starting from an initial orbit point
(X0, Y0) on the Π23 plane and ∂u0

∂ε

∣∣
ε2=0

= 0, and then
we obtain the partial sum SN (X0, Y0) of Eq. (10). The
quantity SN becomes very intermittent. However, look-
ing only at the maximum

γN (X0, Y0) = max
0≤n≤N

|Sn(X0, Y0)|, (13)

one can easily see the boundedness of SN . Note that
γN (X0, Y0) depends on a particular trajectory. To ob-
tain a representative quantity, we consider an ensemble

Fig. 3. (a) Parameter sensitivity function ΓN for a = 1.95
and c = 0.42. The data are well fitted with a straight line
(represented by a dashed line) with slope δ = 7.915. (b)
Plot of the parameter sensitivity exponents δ versus c. (c)
Plot of the scaling exponents µ (open circles) versus c. They
agree well with the reciprocals of the parameter sensitivity
exponents (crosses).

of randomly chosen initial points {(X0, Y0)} on the Π23

plane and then take the minimum value of γN (X0, Y0)
with respect to the initial orbit points,

ΓN = min
{(X0,Y0)}

γN (X0, Y0). (14)

For the case of partial synchronization, the parameter
sensitivity function ΓN grows unboundedly with some
power δ,

ΓN ∼ N δ, (15)

as shown in Figure 3(a). Here, δ (= 7.915) is a quanti-
tative characteristic of the parameter sensitivity of the
partially synchronized attractor, and we call it the pa-
rameter sensitivity exponent. By decreasing the coupling
parameter c from c∗1, we obtain the parameter sensitivity
exponents. For obtaining satisfactory statistics, we con-
sider 100 ensembles for each c, each of which contains
100 initial orbit points randomly chosen with uniform
probability in the square with side of length 0.5 centered
at (X, Y ) = (0.25, 0.25) on the Π23 plane and choose
the average value of the 100 parameter sensitivity expo-
nents obtained in the 100 ensembles. Figure 3(b) shows
a plot of such parameter sensitivity exponents versus c.
As c is decreased from c∗1, the parameter sensitivity expo-
nent δ increases because of the increase in the strength
of local transverse repulsion of unstable orbits embed-
ded in the partially synchronized attractor. However, in
the decreasing part of σ⊥ (0.372 > c > 0.351) the value
of δ becomes smaller, since the strength of local trans-
verse repulsion of unstable orbits becomes weaker. For
c < 0.351, δ begins to increase again.

Because of its sensitivity with respect to the varia-
tion of ε2, the partially synchronized attractor trans-
forms into a bubbling attractor [e.g., see Figure 1(e)
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and (f)]. We characterize the parameter-mismatching
effect on the attractor bubbling in terms of the param-
eter sensitivity exponents. The bubbling attractor is in
the laminar phase when the magnitude of the deviation
d [≡ |u|(= |x(2)−x(3)|)] from the Π23 plane is less than a
threshold value d∗. Otherwise, it is in the bursting phase.
For this case, the quantity of interest is the average time
τ that a typical trajectory spends near the Π23 plane.
For each c, we follow the trajectory starting from the
initial condition (x(1), x(2), x(3)) = (0.26, 0.25, 0.25) un-
til 50,000 laminar phases are obtained, and then we get
the average laminar length τ (i.e., the average interburst
interval) that scales with ε2 as

τ ∼ ε−µ
2 . (16)

The plot of µ (open circles) versus c is shown in Fig-
ure 3(c). As c is decreased from c∗1, the value of µ de-
creases, because the average laminar length shortens.
However, in the decreasing part of σ⊥ (0.372 > c >
0.351) the average laminar length τ becomes longer, and
hence the value of µ becomes larger. For c < 0.351, µ
begins to decrease again. We note that the scaling expo-
nent µ is associated with the parameter sensitivity expo-
nent δ as follows. For a given ε2, consider a trajectory
starting from a randomly chosen initial orbit point on
the Π23 plane. Then, from Eq. (14) the “average” time
τ at which the magnitude of the deviation from the Π23

plane becomes the threshold value d∗ can be obtained:

τ ∼ ε
−1/δ
2 . (17)

Thus, the two exponents have a reciprocal relation,

µ = 1/δ. (18)

The reciprocal values of δ (crosses) are also plotted in
Figure 3(c), and they agree well with the values of µ.

So far, we have studied the mismatching case between
the first and second subsystems. We now compare the
formula (10) for the partial sum SN with the follow-
ing analogous formula for SN that is obtained in the
mismatching case between the first and third case (i.e.,
ε3 6= 0 and ε2 = 0),

∂uN

∂ε3

∣∣∣∣
ε3=0

= SN (X0, Y0)

≡ (1− c)
N∑

k=1

RN−k(Xk, Yk)fa(Yk−1, a). (19)

For both cases, SN represents the sum of the (same)
local multipliers RN−k, multiplied by some coefficients
[(c− 1)fa for Eq. (10) and (1− c)fa for Eq. (19)]. Since
the values of fa are bounded in the interval [−1, 0], the
boundedness of SN is determined only by the (same) lo-
cal multipliers RM for both cases. This implies that the
parameter sensitivity function ΓN for the case of ε3 6= 0
grows unboundedly with the same power as in the above
case of ε2 6= 0. Consequently, we have the same param-
eter sensitivity exponent δ for both cases.

III. SUMMARY

We have studied the effect of parameter mismatch on
partial synchronization in three coupled 1D maps. Due
to the existence of positive local transverse Lyapunov
exponents, the partially synchronized attractor has a
parameter sensitivity. To measure the degree of such
parameter sensitivity, we have introduced the parameter
sensitivity exponent and quantitatively characterized
the parameter-mismatching effect on attractor bubbling
occurring in the regime of partial synchronization. It
has thus been found that the scaling exponent µ for the
average interburst time and the parameter sensitivity
exponent δ have a reciprocal relation (i.e., µ = 1/δ).
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