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• An inhomogeneous small-work neuronal network, composed of long-range (LR) and short-range (SR) interneurons, is considered.
• Distribution of betweenness centralities, representing the effectiveness for transfer of stimulation effect, is inhomogeneous.
• Betweenness centralities of LR interneurons are much larger than those of SR interneurons.
• Effects of network architecture on emergence of sparsely synchronized rhythms are studied.
• Dynamical responses to external time-periodic stimuli are investigated in connection with betweenness centralities of stimulated interneurons.
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a b s t r a c t

We consider an inhomogeneous small-world network (SWN) composed of inhibitory short-range (SR)
and long-range (LR) interneurons, and investigate the effect of network architecture on emergence of
synchronized brain rhythms by varying the fraction of LR interneurons plong . The betweenness centralities
of the LR and SR interneurons (characterizing the potentiality in controlling communication between
other interneurons) are distinctly different. Hence, in view of the betweenness, SWNs we consider
are inhomogeneous, unlike the ‘‘canonical’’ Watts–Strogatz SWN with nearly the same betweenness
centralities. For small plong , the load of communication traffic is much concentrated on a few LR
interneurons. However, as plong is increased, the number of LR connections (coming from LR interneurons)
increases, and then the load of communication traffic is less concentrated on LR interneurons, which
leads to better efficiency of global communication between interneurons. Sparsely synchronized rhythms
are thus found to emerge when passing a small critical value p(c)

long (≃0.16). The population frequency
of the sparsely synchronized rhythm is ultrafast (higher than 100 Hz), while the mean firing rate of
individual interneurons is much lower (∼30 Hz) due to stochastic and intermittent neural discharges.
These dynamical behaviors in the inhomogeneous SWNare also comparedwith those in the homogeneous
Watts–Strogatz SWN, in connection with their network topologies. Particularly, we note that the main
difference between the two types of SWNs lies in the distribution of betweenness centralities. Unlike the
case of the Watts–Strogatz SWN, dynamical responses to external stimuli vary depending on the type
of stimulated interneurons in the inhomogeneous SWN.We consider two cases of external time-periodic
stimuli applied to sub-populations of the LR and SR interneurons, respectively. Dynamical responses (such
as synchronization suppression and enhancement) to these two cases of stimuli are studied and discussed
in relation to the betweenness centralities of stimulated interneurons, representing the effectiveness for
transfer of stimulation effect in the whole network.
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1. Introduction

A neural circuit in the major parts of the mammalian brain
consists of excitatory principal cells and inhibitory interneurons
(Connors & Gutnick, 1990; Tateno, Harsch, & Robinson, 2004).
The interneurons are very diverse in their morphologies and
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functions, in contrast to the more homogeneous population of
principal cells (Buzsáki, 2006; Buzsáki, Geisler, Henze, & Wang,
2004). Here, we consider the inhibitory population composed
of interneurons. When the decay time of the synaptic coupling
is enough long, mutual inhibition (rather than excitation) may
synchronize neural firing activities (Hansel, Mato, & Meunier,
1994; van Vreewijk, Abbott, & Ermentrout, 1994). By providing
a coherent oscillatory output to the principal cells, interneuronal
networks play the role of the backbones of many synchronized
brain rhythms (Buzsáki, 2006; Buzsáki et al., 2004; Tiesinga,
Fellous, Jose, & Sejnowski, 2001; Wang, 2003, 2010; Wang &
Buzsáki, 1996; Wang & Rinzel, 1992; White, Chow, Ritt, Soto-
Trevino, & Kopell, 1998; Whittington, Traub, Kopell, Ermentrout,
& Buhl, 2000). In this way, interneurons temporally coordinate
principal neuron activity and control input and output in principal
cells (Buzsáki, 2006; Buzsáki et al., 2004). A majority of short-
range (SR) interneurons with mainly local connections coordinate
multiple operations in principal cells, while a smaller fraction
of long-range (LR) interneurons, with their axons distributed
over large areas, innervate and coordinate all interneuron classes
for generation of global synchrony in interneuronal networks
(Bonifazi et al., 2009; Buzsáki, 2006; Buzsáki et al., 2004; Gulyás,
Hájos, & Freund, 1996; Gulyás, Hájos, Katona, & Freund, 2003; Jinno
et al., 2007; Melzer et al., 2012; Sik, Ylinen, Penntonen, & Buzsáki,
1994).

In this paper, we are interested in sparsely synchronized brain
rhythms, associated with diverse cognitive functions (e.g., sensory
perception, feature integration, selective attention, and memory
formation) (Wang, 2010). At the population level, synchronous fast
oscillations [e.g., fast gamma rhythm (30–100 Hz) and ultrafast
sharp-wave ripple (100–200 Hz)] have been observed in local
field potential recordings, while at the cellular level individual
neuronal recordings have been found to exhibit stochastic and
intermittent spike discharges at much lower firing rates than
the population frequency like Geiger counters (Buhl, Tamas, &
Fisahn, 1998; Csicsvari, Hirase, Czurko, & Buzsáki, 1998; Csicsvari,
Hirase, Czurko, Mamiya, & Buzsáki, 1999; Fellous & Sejnowski,
2000; Fisahn, Pike, Buhl, & Paulsen, 1998; Fries, Reynolds, Rorie, &
Desimone, 2001; Logothetis, Pauls, Augath, Trinath, & Oeltermann,
2001). For this case, only a fraction of individual neurons fires
intermittently for each cycle of the population rhythm, and
hence the population synchronization becomes sparse (i.e., sparse
‘‘stripes’’ appear in the raster plot of spikes). In this way, for the
case of sparsely synchronized rhythms, single-cell firing activity
differs distinctly from the population oscillatory behavior, in
contrast to fully synchronized rhythms where individual neurons
fire regularly at the same firing rate as the population frequency
like clock oscillators (i.e., all individual neurons fire regularly for
each cycle of the fully synchronized population rhythm, and hence
full stripes appear in the raster plot of spikes). As examples,
refer to Fig. 2(a1)–(a2) (full synchronization) and Fig. 2(b1)–(b2)
(sparse synchronization) in Ref. (Kim& Lim, 2015a); fully-occupied
and sparsely-occupied stripes appear in the raster plots of spikes
for the full and sparse synchronizations, respectively. Under the
balance between strong external excitation and strong recurrent
inhibition, fast sparse synchronization was found to occur in
neuronal networks for both cases of random coupling (Brunel,
2000; Brunel & Hakim, 1999; Brunel & Wang, 2003; Geisler,
Brunel, &Wang, 2005) and global coupling (Brunel & Hakim, 2008;
Brunel & Hansel, 2006). However, in a real neural circuit, synaptic
connections are known to have complex topology which is
neither regular nor completely random (Bassett & Bullmore, 2006;
Bullmore & Sporns, 2009; Buzsáki et al., 2004; Chklovskii, Mel,
& Svoboda, 2004; Larimer & Strowbridge, 2008; Song, Sjöström,
Reigl, Nelson, & Chklovskii, 2005; Sporns, 2011; Sporns & Honey,
2006; Sporns, Tononi, & Edelman, 2000).
Here, we take into consideration the inhomogeneous popula-
tion of interneurons in real neural circuits (Bonifazi et al., 2009;
Buzsáki, 2006; Buzsáki et al., 2004; Gulyás et al., 1996, 2003; Jinno
et al., 2007;Melzer et al., 2012; Sik et al., 1994), and consider an in-
homogeneous small-world network (SWN) composed of two sub-
populations of SR and LR interneurons: a preliminary computer
modeling was done (Buzsáki et al., 2004; Buzsáki & Wang, 2012;
Wang, 2010). Brain networks in the visual cortices of the mon-
keys (Felleman & van Essen, 1991; Gerhard, Pipa, Lima, Neuen-
schwander, & Gerstner, 2011; Young, 1993), the cats (Scannell,
Burns, Hilgetag, O’Neil, &Young, 1999; Yu,Huang, Singer, &Nikolie,
2008), and the rats (Shi, Niu, & Wan, 2015) have been found to
exhibit small-world properties (i.e., relatively high clustering and
short path length compared to randomgraphswith the same num-
ber of nodes and connections) (Hilgetag, Burns, O’Neill, Scannell,
& Young, 2000). Brain network architecture has likely evolved
to have small-world topology, associated with low wiring cost
and high dynamical complexity (Bassett & Bullmore, 2006). The
Watts–Strogatz SWN model, which interpolates between regular
lattice (corresponding to the case of pwiring = 0) with high clus-
tering and random graph (corresponding to the case of pwiring = 1)
with short path length via randomuniform rewiringwith the prob-
ability pwiring , has beenmuch studied (Strogatz, 2001;Watts, 2003;
Watts & Strogatz, 1998). Many recent works on various subjects of
neurodynamics have been done in the Watts–Strogatz SWN with
predominantly local connections and rare long-distance connec-
tions (Achard & Bullmore, 2007; Kaiser & Hilgetag, 2006; Kim &
Lim, 2015b; Kwon & Moon, 2002; Lago-Fernández, Huerta, Corba-
cho, & Sigüenza, 2000; Lizier, Pritam, & Prokopenko, 2011; Ozer,
Perc, & Uzuntarla, 2009; Riecke, Roxin, Madruga, & Solla, 2007;
Roxin, Riecke, & Solla, 2004; Shanahan, 2008; Sporns et al., 2000;
Wang, Duan, Perc, & Chen, 2008; Wang, Perc, Duan, & Chen, 2010;
Yu et al., 2008). This ‘‘canonical’’ Watts–Strogatz SWN is statisti-
cally homogeneous because individual interneurons have nearly
same topological network centralities such as degree andbetween-
ness. By increasing the rewiring probability pwiring , LR connections
come uniformly at random from all interneurons over the entire
network, in contrast to real neural circuits where such LR connec-
tions are not known for the case of SR interneurons (Buzsáki et al.,
2004). On the other hand, LR connections appear non-uniformly
from LR interneurons in the inhomogeneous SWNwe consider. For
small plong , LR interneurons have higher betweenness centralities B
(characterizing the potentiality in controlling communication be-
tween other interneurons) than SR interneurons (Freeman, 1977,
1978), although they have the same average in- and out-degrees
(i.e., the same average number of inward and outward synapses
representing the potentiality in communication activity). Hence,
the load of communication traffic is much concentrated on a few
LR interneurons. Then, the LR interneurons tend to become over-
loaded by the communication traffic passing through them. For
this case, it becomes difficult to get efficient communication be-
tween interneurons due to destructive interference between so
many signals passing through the LR interneurons (Kim & Lim,
2015a; Nishikawa, Motter, Lai, & Hoppensteadt, 2003). However,
as plong is further increased, the average betweenness centrality
⟨B⟩LR of LR interneurons decreases due to increase in the number
of LR interneurons (i.e., because the increased number of LR in-
terneurons shares the load of communication traffic). In this way,
as a result of increase in plong , the average path length Lp (i.e., typ-
ical separation between two interneurons represented by average
number of synapses between two interneurons along the minimal
path) becomes shorter, and the load of communication traffic is
less concentrated on LR interneurons because of their decreased
average betweenness centrality ⟨B⟩LR, which leads to better effi-
ciency of global communication between interneurons.
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In this paper, we study the effect of network topology such as
the average path length and the betweenness centrality on emer-
gence of ultrafast (100–200 Hz) sparsely synchronized rhythm
by varying the fraction of LR interneurons plong in the inhomo-
geneous SWN consisting of SR and LR interneurons. As examples
of ultrafast sparsely synchronized rhythms, there are hippocam-
pal sharp-wave ripples (140–200 Hz), occurring during quiet sleep
and awake immobility, along with individual interneurons firing
at an average rate of 30 Hz and cerebellar rhythms (150–250 Hz),
associated with fine motor coordination, together with individ-
ual interneurons (Purkinje cells) firing at an average rate of 38 Hz
(Brunel & Hakim, 2008; Wang, 2010). For plong = 0, the average
path length Lp is very long because there exist only SR connections,
and hence global communication between distant interneurons
becomes ineffective. Consequently, an unsynchronized population
state appears. However, as plong is increased from 0, LR connections
that connect distant interneurons begin to appear non-uniformly
from LR interneurons, and then the average path length Lp can be
dramatically decreased only by a few short-cuts. However, in the
presence of only a few LR interneurons, the load of communication
traffic is much concentrated on the LR interneurons with higher
betweenness centralities, and hence communication traffics pass-
ing through them occur. With further increase in plong , the average
betweenness centrality ⟨B⟩LR of LR interneurons decreases because
the increased number of interneurons shares the load of commu-
nication traffic. Consequently, the load of communication traffic
becomes less concentrated on the LR interneurons. Thus, global
effective communication between distant interneurons may be
available via LR connections. Eventually, when plong passes a small
critical value p(c)

long (≃0.16), ultrafast sparsely synchronized popu-
lation rhythm emerges in the whole population because efficiency
of global communication between interneurons becomes enough
for occurrence of population synchronization thanks to shorter av-
erage path length Lp and smaller average betweenness centrality
⟨B⟩LR of LR interneurons. This transition from desynchronization
to ultrafast sparse synchronization is well described in terms of a
realistic ‘‘thermodynamic’’ order parameter, based on the instan-
taneous population spike rate (IPSR) kernel estimate R(t) (Kim &
Lim, 2014). Population synchronization emergeswhen R oscillates.
For plong > p(c)

long , the IPSR kernel estimate R(t) oscillateswith ultra-
fast population frequency of 139 Hz, while individual interneurons
discharge stochastic spikes at much lower rates (∼31 Hz). This ul-
trafast sparse synchronization is well characterized in terms of a
realistic ‘‘statistical–mechanical’’ spiking measure, based on R, by
taking into consideration the occupation and the pacing degrees
of spikes in the raster plot of spikes (Kim & Lim, 2014). With in-
creasing plong from p(c)

long , the degree of ultrafast sparse synchro-
nization increases monotonically, but its increasing rate becomes
slower due to appearance of sufficient number of LR connections.
These dynamical behaviors in the inhomogeneous SWN are also
compared with those in the homogeneous Watts–Strogatz SWN,
in connection with their network topologies.

Dynamical responses to external stimuli in the brain can pro-
vide crucial information about its dynamical properties. For exam-
ple, the effects of periodic stimuli on rhythmic biological activity
were experimentally studied by applying rhythmic visual stimulus
(Mathewson et al., 2012) and periodic auditory stimulation (Will &
Berg, 2007). Hence, it is of great importance to investigate how an
external stimulus affects the neural synchronization in the brain.
For the case of sparse synchronization, dynamical responses to ex-
ternal stimuli are found to vary depending on the type of stim-
ulated interneurons in the inhomogeneous SWN, in contrast to
the case of the Watts–Strogatz SWN (where dynamical responses
have no particular dependence on randomly chosen interneurons).
We consider two cases of external time-periodic stimuli applied
to sub-populations of the LR and SR interneurons, respectively.
Dynamical responses to these two cases of stimuli are studied and
discussed in relation to the betweenness centralities of stimulated
interneurons, representing the effectiveness for transfer of stimu-
lation effect in the whole network. It is thus found that the degree
of dynamical response (e.g., synchronization suppression or en-
hancement) for the case of stimulated LR interneurons with higher
betweenness centralities is larger (i.e., more suppressed or en-
hanced) than that for the case of stimulated SR interneurons with
lower betweenness centralities.

This paper is organized as follows. In Section 2, we describe
an inhomogeneous SWN composed of SR and LR fast spiking in-
terneurons, and then the governing equations for the population
dynamics are given. Then, in Section 3 we study the effect of net-
work topology on emergence of ultrafast sparsely synchronized
rhythms by varying plong . Furthermore, we also investigate dy-
namical responses to external time-periodic stimuli (applied to
sub-populations of the LR and SR interneurons, respectively) in
connection with the betweenness centralities B of stimulated in-
terneurons in Section 4. Finally, in Section 5, a summary is given.
Explanations onmethods for topological and dynamical character-
izations are also made in Appendices A and B, respectively.

2. Inhomogeneous SWN composed of SR and LR fast-spiking
interneurons

In this section, we first describe an inhomogeneous directed
SWN composed of two sub-populations of SR and LR interneurons
in Section 2.1. Then, the governing equations for the population
dynamics in the inhomogeneous SWN are given in Section 2.2.

2.1. Inhomogeneous SWN

We consider an inhomogeneous directed SWN composed of N
inhibitory SR and LR interneurons equidistantly placed on a one-
dimensional ring of radius N/2π . The fraction of LR interneurons
may be controlled by the parameter plong (0 ≤ plong ≤ 1). Here,
we consider the case ofN = 103. The connection probabilities P(d)
from the SR and LR interneurons are shown in Fig. 1(a). For the case
of SR interneurons, the connection probability P(d) from each SR
interneuron to other interneurons is given by the narrow Gaussian
distribution:

P(d) = e−d/2σ
2
, (1)

where d represents the distance between interneurons, and σ
denotes the standard deviation. On the other hand, LR interneurons
are connected to other interneurons with a (slowly-decaying)
power-law distribution:

P(d) = A(d+ κ)−α. (2)

Here, we consider the case of α = 1, and the coefficient
A [=
√

π/2σ/(ln(N/2 + κ) − ln κ)] is determined such that the
average in- and out-degrees (i.e., numbers of inward and outward
connections) of the SR and LR interneurons are the same. The
integrations of the connection probabilities of Eqs. (1) and (2)
over all distances d [from 0 to N/2 (corresponding to maximum
distance due to ring geometry)] give one-half of the average in-
and out-degrees which are the same for both cases of the SR
and LR interneurons. For the Gaussian distribution for the SR
interneurons, the integration value is given by

√
π/2 σ because

N/2 may be approximately replaced by ∞ for sufficiently large
N . Here, we set σ to be 20 such that the average in- and out-
degrees for the SR and LR interneurons become approximately 50.
Fig. 1(b1) and (b2) show the histograms for the in- and out-degrees
of the SR and LR interneurons for plong = 0.003, respectively, when
N = 1000 and κ = 100. These histograms are obtained through
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Fig. 1. Inhomogeneous SWN composed of N(=103) SR and LR interneurons. (a) Plots of Gaussian and power-law connection probabilities P(d) versus the distance d
between interneurons for the SR and LR interneurons, respectively. Histograms for (b1) in- and (b2) out-degrees of the SR (crosses) and the LR (open circles) interneurons
in the inhomogeneous SWN for plong = 0.003. Synaptic connections in (c1) the inhomogeneous SWN for plong = 0.003 (three LR interneurons are denoted by open circles)
and (c2) the homogeneous Watts–Strogatz SWN [consisting of N(=103) interneurons] for pwiring = 0.003. Histograms for axonal wiring lengths lw of outward connections
of (d1) the SR (crosses) and the LR (open circles) interneurons in the inhomogeneous SWN for plong = 0.003 and (d2) the interneurons (solid circles) in the homogeneous
Watts–Strogatz SWN for pwiring = 0.003. Here, l∗w(=100) is the threshold value for determiningwhether connections are SR or LR. (e) Schematic representation of the inward
and the outward connections of the SR and LR interneurons. Long heavy solid lines denote LR connections, while others represent SR connections.
300 realizations, and the bin size for the histograms is 1. As shown
well in the narrow bell-shaped distributions, the SR (crosses) and
the LR (circles) interneurons have the same average in- and out-
degrees whose values are 50. For comparison, we also consider
the Watts–Strogatz SWN [composed of N(=103) interneurons]
with the same average number of synaptic inputs Msyn(=50). LR
connections in the inhomogeneous SWN come non-uniformly out
of the LR interneurons, in contrast to the Watts–Strogatz SWN
where LR connections come uniformly from all the interneurons,
as shown in Fig. 1(c1) and (c2) for plong = pwiring = 0.003. Fig. 1(d1)
shows histograms for axonal wiring lengths lw of outward
connections [given in Eq. (A.6)] of the SR (crosses) and the LR
(circles) interneurons for plong = 0.003. These histograms for lw are
obtained through 103 realizations, the bin sizes for the histograms
are 1. Here, we set the threshold value l∗w (=100) for determining
whether or not connections are LR, which corresponds to be twice
as much as the average in- and out-degrees (=50). As can be
expected from the connection distributions P(d), the distributions
for wiring lengths lw of outward connections for the SR (crosses)
and LR (circles) interneurons are well fitted with the narrow
Gaussian solid curve [Ae−l

2
w/2σ 2
; A = 0.2 and σ = 20] and

the slowly-decreasing power-law solid curve [A(lw + 100)−1;
A = 2.8], respectively. Hence, for the SR interneurons, only SR
connections appear, while in the case of LR interneurons, about
61% of the total outward connections are LR connections. For
comparison, in the case of the homogeneous Watts–Strogatz SWN
with pwiring = 0.003, the histogram for axonal wiring lengths
lw of outward connections of the interneurons is also given in
Fig. 1(d2); the number of realizations for this histogram is 103,
and the bin size for the histogram is 1. The Watts–Strogatz SWN
interpolates between the regular lattice and the random network
via random uniform rewiring (Watts & Strogatz, 1998). For the
case of regular network, each interneuron is connected to its first
Msyn (=50) neighbors (Msyn/2 on either side) on a ring via outward
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Fig. 2. Clustering coefficient C and average path length Lp in the inhomogeneous and the homogeneous Watts–Strogatz SWNs; N (total number of interneurons) for each
SWN is 103 . Circles and crosses denote values for the cases of the inhomogeneous and homogeneous SWNs with the parameters plong and pwiring , respectively. (a) Plots of
the clustering coefficient ⟨C⟩r versus plong and pwiring . (b) Plots of the average path length


Lp

r versus plong and pwiring . (c) Plot of the fraction of LR outward connections

⟨FLR⟩r in the whole population of interneurons versus plong and pwiring . (d) Plot of the ensemble-averaged mean wiring length

⟨lw

⟩r of the outward connections in the whole

population of interneurons versus plong and pwiring ; for more clear presentation, a magnified inset is given for small plong and pwiring .
connections, and then rewires each outward connection uniformly
at random over the entire ring with the probability pwiring such
that self-connections and duplicate connections are excluded. We
note that such random uniform rewiring (independent of the
distance between interneurons) is in contrast to the connection
probabilities (dependent on the distance) for the SR and LR
interneurons in the inhomogeneous SWN. For pwiring = 0,
the wiring lengths of the total 50 000 outward connections are
distributed with equal fraction (=0.04) in the range of 1 ≤ lw ≤
25; otherwise, the fraction is zero. For pwiring = 0.003%, 0.3% of the
total connections (=150) are rewired uniformly at random in the
range of 1 ≤ lw ≤ 500 without self-connections and duplicate
connections. However, the possibility that wiring lengths of the
rewired connections lie in the range of 1 ≤ lw ≤ 25 is negligibly
small, because the value of pwiring is very small. Most of them are
equally distributed in the range of 26 ≤ lw ≤ 500. Hence, the
equal fraction for the wiring lengths of the outward connections in
the range of 1 ≤ lw ≤ 25 is reduced to 0.0399, while the wiring
lengths of the rewired connections are equally distributedwith the
fraction (≃6.32× 10−6) in the range of 26 ≤ lw ≤ 500.

For illustrative purpose, an example of the inward and the
outward connections for the SR and LR interneurons is shown
in Fig. 1(e). In this example, the average in- and out-degrees
(=6) are the same for both the SR and LR interneurons. For
the case of outward connections, the SR interneuron has no LR
connections, while some connections (=4) of the LR interneuron
are LR connections (denoted by long heavy solid lines). However,
in the case of inward connections, there is no particular difference
between the SR and LR interneurons (i.e., the LR and SR inward
connections may appear for both the SR and LR interneurons). As
a result, the mean wiring length lw of outward connections for the
LR interneuron is longer than that for the SR interneuron, which
might lead to some difference in the betweenness centralities B of
the SR and the LR interneurons [e.g., refer to Fig. 3(b)].

2.2. Governing equations for the population dynamics

Using a Hodgkin–Huxley-type conductance-based model is
biophysically accurate, but it is computationally inefficient. In con-
trast, using an integrate-and-fire model is computationally effi-
cient, but it is unrealistically simple and incapable of reproducing
rich firing patterns exhibited by real biological neurons. Recently,
Izhikevich introduced a simple spiking neuron model which is
not only biologically plausible, but also computationally efficient
(Izhikevich, 2003, 2004, 2007, 2010). Here, as an element in
our SWN, we choose the fast spiking (FS) Izhikevich interneuron
model. Eqs. (3)–(9) govern the population dynamics in the SWN:

C
dvi

dt
= k(vi − vr)(vi − vt)− ui + IDC + Dξi − Isyn,i + Si(t), (3)

dui

dt
= a{U(vi)− ui}, i = 1, . . . ,N, (4)

with the auxiliary after-spike resetting:
if vi ≥ vp, then vi ← c and ui ← ui + d, (5)
where

U(v) =


0 for v < vb

b(v − vb)
3 for v ≥ vb,

(6)

Isyn,i =
J

d(in)
i

N
j=1(≠i)

wijsj(t)(vi − Vsyn), (7)

sj(t) =
Fj

f=1

E(t − t(j)f − τl);

E(t) =
1

τd − τr
(e−t/τd − e−t/τr )Θ(t), (8)

Si(t) = αiA sin(ωdt). (9)

Here, vi(t) and ui(t) are the state variables of the ith interneuron
at a time t which represent the membrane potential and the
recovery current, respectively. This membrane potential and the
recovery variables, vi(t) and ui(t), are reset according to Eq. (5)
when vi(t) reaches its cutoff value vp. C , vr , and vt in Eq. (3) are
the membrane capacitance, the resting membrane potential, and
the instantaneous threshold potential, respectively. The parameter
values used in our computations are listed in Table 1. More details
on the FS Izhikevich interneuron model, the external common
stimulus to all the FS interneuron, the synaptic currents, the
external time-periodic stimulus to sub-populations of the LR
and SR interneurons, and numerical integration of the governing
equations are given in the following subsubsections.
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Fig. 3. Mean wiring length lw , betweenness centrality B, and betweenness centralization Cb . Histograms for (a) the mean wiring length lw of outward connections and
(b) the betweenness centrality B of the SR and the LR interneurons in the inhomogeneous SWN for plong = 0.06. Histograms for (c) the mean wiring length lw of outward
connections and (d) the betweenness centrality B of the interneurons in the homogeneousWatts–Strogatz SWN for pwiring = 0.06. (e) Plots of average betweenness centrality
⟨⟨B⟩⟩r versus plong and pwiring ; upper and lower triangles denote the average betweenness centralities


⟨⟨B⟩LR⟩r and ⟨⟨B⟩SR⟩r


of the LR and SR interneurons, respectively,

in the inhomogeneous SWN, and crosses represents the average betweenness centrality ⟨⟨B⟩WS⟩r of the interneurons in the homogeneous Watts–Strogatz SWN. (f) Plot
of betweenness centralization ⟨Cb⟩r versus plong and pwiring ; circles and crosses represent the values in the inhomogeneous and the homogeneous Watts–Strogatz SWNs,
respectively.
Table 1
Parameter values used in our computations; units of the capacitance, the potential,
the current, the time, and the angular frequency are pF, mV, pA, ms, and rad/ms
respectively.

(1) Single Izhikevich FS interneurons (Izhikevich, 2007)
C = 20 vr = −55 vt = −40 vp = 25 vb = −55
k = 1 a = 0.2 b = 0.025 c = −45 d = 0

(2) External common stimulus to Izhikevich FS interneurons
IDC = 1500 D = 400

(3) Inhibitory GABAergic synapse (Brunel & Wang, 2003)
τl = 1 τr = 0.5 τd = 5 Vsyn = −80

(4) Synaptic connections between interneurons in
inhomogeneous and homogeneous SWNs
σ = 20 κ = 100 α = 1 (inhomogeneous SWN)
Msyn = 50 (homogeneous SWN)
J = 1600
plong (inhomogeneous SWN) and pwiring (homogeneous SWN): Varying

(5) External time-periodic stimulus to the LR and SR
interneurons
ωd = 0.2 A: Varying

2.2.1. FS Izhikevich interneuron model
The Izhikevichmodelmatches neuronal dynamics phenomeno-

logically by tuning the parameters (k, a, b, c, d) instead of match-
ing neuronal electrophysiology, unlike the Hodgkin–Huxley-type
conductance-based models including ionic currents. The parame-
ters k and b are related to the neuron’s rheobase and input resis-
tance, and a, c , and d are the recovery time constant, the after-spike
reset value of v, and the after-spike jump value of u, respectively.
Depending on the values of these parameters, the Izhikevich phe-
nomenological neuron model may exhibit 20 of the most promi-
nent neuro-computational features of cortical neurons. Here, we
use the parameter values for the FS interneurons in the layer 5 rat
visual cortex (Izhikevich, 2007), which are listed in the 1st item of
Table 1.

2.2.2. External common stimulus to the FS Izhikevich interneuron
Each Izhikevich interneuron is stimulated by both a common

DC current IDC and an independent Gaussian white noise ξi [see
the 3rd and 4th terms in Eq. (3)]. The Gaussianwhite noise satisfies
⟨ξi(t)⟩ = 0 and ⟨ξi(t) ξj(t ′)⟩ = δij δ(t − t ′), where ⟨· · · ⟩ denotes
the ensemble average. Here, the Gaussian noise ξ may be regarded
as a parametric one which randomly perturbs the strength of the
applied current IDC , and its intensity is controlled by the parameter
D. For D = 0, the Izhikevich interneuron exhibits a jump from a
resting state to a spiking state via subcritical Hopf bifurcation at a
higher threshold IDC,h(≃73.7) by absorbing an unstable limit cycle
born through a fold limit cycle bifurcation for a lower threshold
IDC,l(≃72.8). Hence, the Izhikevich interneuron exhibits type-II
excitability because it begins to fire with a non-zero frequency
(Hodgkin, 1948; Izhikevich, 2000). As IDC is increased from IDC,h,
the mean firing rate f increases monotonically. The values of IDC
and D used in this paper are given in the 2nd item of Table 1.

2.2.3. Synaptic currents
The 5th term in Eq. (3) denotes the synaptic couplings of

inhibitory FS interneurons. Ii,syn of Eq. (7) represents the synaptic
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current injected into the ith interneuron. The synaptic connectivity
is given by the connection weight matrixW (={wij}) where wij =

1 if the neuron j is presynaptic to the interneuron i; otherwise,
wij = 0. Here, the synaptic connection is modeled in terms of the
inhomogeneous SWN. Among theN interneurons, LR interneurons
are randomly chosen with the fraction of LR interneurons plong .
Then, connections from the SR and LR interneurons to other
interneurons are made with the connection probabilities P(d) of
Eqs. (1) and (2), respectively. Through this process, the connection
weight matrixW may be completed. Then, the in-degree of the ith
neuron, d(in)

i (i.e., the number of synaptic inputs to the neuron i) is
given by d(in)

i =
N

j=1(≠i) wij. For this case, the average number of

synaptic inputs per interneuron isMsyn =
1
N

N
i=1 d

(in)
i .

The fraction of open synaptic ion channels at time t is denoted
by s(t). The time course of sj(t) of the jth interneuron is given by a
sum of delayed double-exponential functions E(t − t(j)f − τl) [see

Eq. (8)], where τl is the synaptic delay, and t(j)f and Fj are the
f th spiking time and the total number of spikes of the jth
interneuron at time t , respectively. Here, E(t) [which corresponds
to contribution of a presynaptic spike occurring at time 0 to s(t)
in the absence of synaptic delay] is controlled by the two synaptic
time constants: synaptic rise time τr and decay time τd, and Θ(t)
is the Heaviside step function: Θ(t) = 1 for t ≥ 0 and 0 for t <
0. The synaptic coupling strength is controlled by the parameter
J , and Vsyn is the synaptic reversal potential. For the inhibitory
GABAergic synapse (involving the GABAA receptors), the values of
τl, τr , τd, and Vsyn are listed in the 3rd item of Table 1.

For comparison, we also consider the connectivity of the
Watts–Strogatz SWN which interpolates between regular lattice
(corresponding to the case of pwiring = 0) and random graph
(corresponding to the case of pwiring = 1) via random uniform
rewiring with the probability pwiring (Strogatz, 2001; Watts, 2003;
Watts & Strogatz, 1998). For pwiring = 0, we start with a
directed regular ring lattice with N FS Izhikevich interneurons
where each Izhikevich interneuron is coupled to its first Msyn
neighbors (Msyn/2 on either side) via outward synapses, and rewire
each outward connection uniformly at random over the whole
ring with the probability pwiring (without self-connections and
duplicate connections). This random uniform rewiring is made
independently of the distance between interneurons, in contrast to
the connection probabilities (varying depending on the distance)
for the SR and LR interneurons in the inhomogeneous SWN. Here,
we setMsyn = 50which is the same as the average in-degree in the
inhomogeneous SWN.

2.2.4. External time-periodic stimulus
The last term in Eq. (3) represents the external time-periodic

stimulus to the ith interneuron, Si(t), the explicit form of which is
given in Eq. (9). If stimulated to the ith interneuron, αi = 1; other-
wise, αi = 0. (In the absence of external stimulus, αi = 0 for all i.)
The driving angular frequency of the stimulus is ωd, and its ampli-
tude is A. We apply Si(t) to two sub-populations of the LR and SR
interneuronswith different betweenness centralities, respectively,
and investigate their dynamical responses in connection with the
betweenness centralities of stimulated interneurons.

2.2.5. Numerical method for integration
Numerical integration of stochastic differential equations (3)–

(9) is done by employing the Heun method (San Miguel & Toral,
2000) with the time step 1t = 0.01ms. For each realization of the
stochastic process, we choose a random initial point [vi(0), ui(0)]
for the ith (i = 1, . . . ,N) interneuron with uniform probability in
the range of vi(0) ∈ (−50,−45) and ui(0) ∈ (10, 15).
3. Effect of network architecture on emergence of ultrafast
sparsely synchronized rhythms in an inhomogeneous SWN

In the absence of external stimulus S(t), we study the effect of
network architecture on emergence of ultrafast sparsely synchro-
nized rhythms by varying plong in an inhomogeneous SWN. In Sec-
tion 3.1, we first study the network topology, and then the effect of
network topology on emergence of ultrafast sparsely synchronized
rhythms is investigated in Section 3.2.

3.1. Topological characterization of an inhomogeneous SWN

We study the network topology of the inhomogeneous SWN in
comparisonwith that of theWatts–Strogatz SWN;N (total number
of interneurons) for each SWN is 103. Methods and relevant
equations for characterization of network topology and geometry
are given in Appendix A. The clustering coefficient C of Eq. (A.2)
(representing cliquishness of a typical neighborhood in the
network) characterizes the local efficiency of information transfer,
while the average path length Lp of Eq. (A.3) (denoting typical
separation between two nodes in the network) characterizes the
global efficiency of information transfer between distant nodes.
Fig. 2(a) and (b) show plots of the clustering coefficient ⟨C⟩r and
the average path length


Lp

r versus plong and pwiring , respectively,

in the inhomogeneous SWN (circles) and the Watts–Strogatz
SWN (crosses). Hereafter, ⟨· · · ⟩r represents an average over 20
realizations. For plong = pwiring = 0, both ⟨C⟩r and


Lp

r in the

inhomogeneous SWN are smaller than those in theWatts–Strogatz
SWN, and this tendency continues to be valid for sufficiently small
plong and pwiring . No LR connections appear for both cases of plong =
pwiring = 0 [see Fig. 2(c)]. However, the ensemble-averaged mean
geometrical wiring length


lw

of outward connections [given in

Eq. (A.10)] coming from the SR interneurons via the Gaussian
connection probability for plong = 0 is longer than that of local
connections of interneurons in the regular lattice for pwiring = 0
[see Fig. 2(d)]; for the case of regular lattice, each interneuron is
coupled to its first Msyn(=50) neighbors (Msyn/2 on either side)
via outward connections on a ring. Hereafter, ⟨· · · ⟩ denotes an
ensemble average over interneurons. As a result of appearance of
a little longer connections, both ⟨C⟩r and


Lp

r become smaller for

the case of plong = 0.
As plong and pwiring are increased from 0, LR connections be-

gin to appear. For the case of inhomogeneous SWN, LR connec-
tions come from LR interneurons via the power-law connection
probability, while in the case of the Watts–Strogatz SWN, LR con-
nections appear via random uniform rewiring (which is made in-
dependently of the distance between interneurons). Consequently,
the fraction of LR outward connections (i.e., the ratio of the LR
outward connections to the total outward connections) ⟨FLR⟩r in
the Watts–Strogatz SWN is larger than that in the inhomogeneous
SWN, as shown in Fig. 2(c). Due to appearance of more LR con-
nections, when passing plong = pwiring ≃ 0.04, the ensemble-
averaged mean wiring length


lw

of outward connections for the

case of Watts–Strogatz SWN becomes longer than that in the in-
homogeneous SWN (i.e., a crossing occurs), as shown in the inset
in Fig. 2(d).

With increasing plong and pwiring from 0, LR short-cuts that
connect distant interneurons appear. Then, the average path length
Lp

r may be dramatically decreased only by a few short-cuts

when passing a lower threshold [p(th)
long,l ≃ 0.0008 and p(th)

wiring,l ≃

3 × 10−5 which are denoted by solid circles in Fig. 2(b)], where
the clustering coefficient ⟨C⟩r remains to be high. However, as a
higher threshold [p(th)

long,h ≃ 0.023 and p(th)
wiring,h ≃ 0.015 which

are also represented by solid circles in Fig. 2(a)] is passed, the
cliquishness of a typical neighborhood in the network also begins
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to break up due to appearance of more LR connections, and then
⟨C⟩r decreases rapidly. When the two parameters are the same
(i.e., plong = pwiring ), the fraction of LR outward connections ⟨FLR⟩r
for the case of the Watts–Strogatz SWN is larger than that for
the case of inhomogeneous SWN [see Fig. 2(c)]. Hence, the effect
of LR connections occurs first in the case of the Watts–Strogatz
SWN. As a result, the threshold values for theWatts–Strogatz SWN
become less than those for the inhomogeneous SWN. Furthermore,
when passing crossing values (plong = pwiring ≃ 0.0004 for


Lp

r

and plong = pwiring ≃ 0.21 for ⟨C⟩r ), the values of

Lp

r and

⟨C⟩r for the Watts–Strogatz SWN become smaller than those for
the inhomogeneous SWN [i.e., crossings occur between the two
curves in Fig. 2(a) and (b)]. After such crossings, due to the effect
of continually increased number of LR connections, the clustering
coefficient ⟨C⟩r continues to decrease rapidly, while the average
path length


Lp

r begins to decrease slowly after appearance of

sufficient number of LR connections (affecting

Lp

r ).

In the network science, centrality refers to indicators which
identify themost important nodeswithin the network. In Fig. 1(b1)
and (b2),we consider the simplest degree centrality,which is given
by the number of edges of a node. This degree centrality rep-
resents the potentiality in communication activity. As explained
above, all the SR and LR interneurons in the inhomogeneous SWN
have nearly the same in- and out-degrees due to narrow bell-
shaped distributions, like the case of theWatts–Strogatz SWN. Be-
tweenness is also another centrality measure of a node within the
network. Betweenness centrality Bi of Eq. (A.4) for the node i de-
notes the fraction of all the shortest paths between any two other
nodes that pass through the node i. This betweenness centrality
characterizes the potentiality in controlling communication be-
tween other interneurons. Unlike the case of the degree central-
ity, the distribution of betweenness centralities for the case of
the inhomogeneous SWN is inhomogeneous, in contrast to the
case of the Watts–Strogatz SWN with nearly same centralities.
Fig. 3(a) shows histograms of the mean wiring length lw of out-
ward connections for both cases of the SR and LR interneurons
for plong = 0.06. As shown in the figure with two peaks, the
ensemble-averaged mean wiring length


lw

LR (≃180.6) over all

LR interneurons is much longer than the ensemble-averagedmean
wiring length


lw

SR (≃16.3) over all SR interneurons, because

LR connections appear non-uniformly from the LR interneurons
with the power-law connection probability. Although the mean
wiring length is not the only factor affecting the betweenness cen-
trality, it is expected that, in an average sense LR interneurons
with longer mean wiring lengths might have larger betweenness
centralities. Fig. 3(b) shows histograms of the betweenness cen-
trality B of the SR and LR interneurons for plong = 0.06. It is
thus found that the ensemble-averaged betweenness centrality
⟨B⟩LR (≃13 482) for the case of LR interneurons ismuch larger than
the ensemble-averaged betweenness centrality ⟨B⟩SR (≃1095) for
the case of SR interneurons. Hereafter, ⟨· · · ⟩SR and ⟨· · · ⟩LR rep-
resent the ensemble averages over the SR and LR interneurons,
respectively. In this way, the two sub-populations of the SR and
LR interneurons have distinctly different distributions of the be-
tweenness centralities. For comparison, we also consider the case
of the Watts–Strogatz SWN. Fig. 3(c) and (d) show the histograms
of the mean wiring length lw and the betweenness centrality B
for pwiring = 0.06. Each histogram has only one peak, in contrast
to the case of the inhomogeneous SWN with double peaks. Their
ensemble-averaged values are


lw

WS (≃28) and ⟨B⟩WS (≃1574).

Hereafter, ⟨· · · ⟩WS denotes an ensemble average over interneurons
in the Watts–Strogatz SWN. These ensemble-averaged values are
much smaller than those for the case of the LR interneurons, while
they are a little larger than those for the case of the SR interneurons.
The dispersions of the distributions in theWatts–Strogatz SWN are
also smaller than those in the whole population of the inhomoge-
neous SWN. All the histograms in Fig. 3(a)–(d) are obtained via 300
realizations, and the bin sizes for the histograms in Fig. 3(a)–(d) are
1, 100, 2, and 100, respectively.

By varying the parameters plong and pwiring , we also obtain the
average betweenness centralities in Fig. 3(e). For sufficiently small
plong , the average betweenness centrality ⟨⟨B⟩LR⟩r (denoted by the
upper triangles) of the LR interneurons ismuch larger than ⟨⟨B⟩SR⟩r
(denoted by the lower triangles) of the SR interneurons. Conse-
quently, load of communication traffic between interneurons is
much concentrated on a fewLR interneuronswith higher between-
ness centralities. However, as plong is increased, at first ⟨⟨B⟩LR⟩r de-
creases very rapidly, and then its decreasing rate becomes very
slow after plong ∼ 0.3. For the case of the SR interneurons, ⟨⟨B⟩SR⟩r
also decreases a little, but soon it becomes nearly saturated after
plong ∼ 0.1. For comparison, the average betweenness centrali-
ties ⟨⟨B⟩WS⟩r in the Watts–Strogatz SWN are also represented by
crosses, and they are so close to ⟨⟨B⟩SR⟩r (but, a little larger than
⟨⟨B⟩SR⟩r ). For sufficiently large plong and pwiring (larger than about
0.9), LR interneurons become dominant, and they share the load
of communication traffic. As a result, the three types of average
betweenness centralities become nearly the same (i.e., the load
of communication traffic is nearly evenly distributed between in-
terneurons). To examine how evenly the betweenness centrality
is distributed among interneurons (i.e., how evenly the load of
communication traffic is distributed among interneurons), we con-
sider the group betweenness centralization, representing the de-
gree to which the maximum betweenness centrality Bmax of the
‘‘head’’ LR interneuron exceeds the betweenness centralities of
all the other interneurons. The betweenness centralization Cb of
Eq. (A.5) is given by the sum of differences between the maximum
betweenness centrality Bmax of the head LR interneuron and the be-
tweenness centrality Bi of other interneuron i and normalized by
dividing the sum of differences with its maximum possible value.
Fig. 3(f) shows plots of ⟨Cb⟩r versus plong and pwiring in the inhomo-
geneous SWN (denoted by circles) and the Watts–Strogatz SWN
(represented by crosses). For small plong , ⟨Cb⟩r is large, which im-
plies that load of communication is concentrated on the head LR
interneuron, and hence the head LR interneuron tends to become
overloaded by the communication traffic passing through it. In this
case, it becomes difficult to get efficient communication between
interneurons due to destructive interference between somany sig-
nals passing through the head LR interneuron (Kim & Lim, 2015a;
Nishikawa et al., 2003). However, as plong is increased, ⟨Cb⟩r de-
creases very rapidly, and then the load of communication traffic be-
comesmore andmore evenly distributed between interneurons. In
contrast, for the case of theWatts–Strogatz SWN, ⟨Cb⟩r is very small
evenwhen pwiring is small. With increasing pwiring , ⟨Cb⟩r decreases a
little, and soon it becomes nearly saturated. Consequently, load of
communication is evenly distributed between interneurons in the
nearly whole range of pwiring .

To summarize the network topology of the inhomogeneous
SWN, as plong is increased, the average path length


Lp

r becomes

shorter [see Fig. 2(b)] and load of global communication traffic
becomes less concentrated on the head LR interneuron due
to decrease in the betweenness centralization ⟨Cb⟩r [Fig. 3(f)]
(i.e., the load of communication traffic is more evenly distributed
between interneurons due to decrease in the average betweenness
centrality ⟨⟨B⟩LR⟩r of LR interneurons [see Fig. 3(e)]). Consequently,
with increasing plong , efficiency of communication between
interneurons becomes better, which may result in emergence
of sparsely synchronized rhythms, as shown in Section 3.2. The
inhomogeneous SWN and theWatts–Strogatz SWNhave distinctly
different distributions of betweenness centralities. Unlike the case
of Watts–Strogatz SWN with a single-peaked distribution, the
distribution of betweenness centralities in the inhomogeneous
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Fig. 4. Population states in the inhomogeneous SWN. Unsynchronized state for plong = 0: raster plots of spikes for N = (a1) 103 and (b1) 104 and IPSR kernel estimates
R(t) for N = (a2) 103 and (b2) 104 . Synchronized state for plong = 0.27: raster plots of spikes for N = (c1) 103 and (d1) 104 and IPSR kernel estimates R(t) for N = (c2) 103

and (d2) 104 . In (e)–(g), plong = 0.27 and N = 103 . (e) One-sided power spectrum of 1R(t)[=R(t) − R(t)] (the overbar represents the time average) with mean-squared
amplitude normalization. (f) Interspike interval (ISI) histograms of the SR and LR interneurons. Vertical dotted lines denote integer multiples of global period TG(≃7.2ms) of
R(t). Open circles and crosses represent ISIs for the LR and SR interneurons, respectively. (g) Histograms for themean firing rates (MFRs) of individual SR and LR interneurons.
Open circles and crosses represent MFRs for the LR and SR interneurons, respectively.
SWN is double-peaked: LR interneurons have higher betweenness
centralities, while SR interneurons have lower betweenness
centralities. Since the betweenness centrality represents the
effectiveness of information transfer, the degree of dynamical
responses is expected to vary depending on whether external
stimuli are applied to LR interneurons or SR interneurons, which
will be investigated in Section 4.

3.2. Effect of network topology on emergence of ultrafast sparsely
synchronized rhythms

In the absence of external stimulus S(t), we investigate the
effect of network topology on emergence of ultrafast sparsely
synchronized rhythms by varying plong . Methods and relevant
equations for characterization of individual and population
dynamics in the network composed of N interneurons are given
in Appendix B. We first consider the population state for plong = 0.
As shown in Fig. 4(a1) and (a2) forN = 103, the raster plot shows a
zigzag pattern intermingled with inclined partial stripes of spikes
with diverse inclinations and widths, and the IPSR kernel estimate
R(t) of Eq. (B.2) is composed of irregular parts with fluctuating
amplitudes. For plong = 0, the clustering coefficient ⟨C⟩r in Fig. 2(a)
is high, and hence partial stripes (indicating local clustering of
spikes) seem to appear in the raster plot of spikes. AsN is increased
to 104, partial stripes become more inclined from the vertical
[see Fig. 4(b1)], and then spikes become more difficult to keep
pace with each other. For this case, R(t) shows noisy fluctuations
with smaller amplitudes, as shown in Fig. 4(b2). Consequently,
the population state for plong = 0 seems to be unsynchronized
because R(t) tends to be nearly stationary as N increases to the
infinity. As plong is increased from 0, LR connections begin to
appear non-uniformly from LR interneurons. Due to the effect
of these LR connections, the average path length


Lp

r becomes

shorter, and the betweenness centralization ⟨Cb⟩r becomes smaller
(i.e., the load of communication traffic becomes less concentrated
on LR interneurons due to decrease in the average betweenness
centrality ⟨⟨B⟩LR⟩r of LR interneurons) [see Figs. 2(b), 3(e), and (f)].
Hence, with increasing plong efficiency of global communication
between interneurons becomes better. Eventually, when passing a
critical value p(c)

long ≃ 0.16, synchronized population state emerges
because of sufficient efficiency of information transfer between
distant interneurons, which will be discussed in more detail in
Fig. 5.

As an example of a synchronized state, we consider the case of
plong = 0.27. For N = 103, the degree of zigzagness for partial
stripes in the raster plot is much reduced, and hence R(t) shows
a regular oscillation, as shown in Fig. 4(c1)–(c2). Its amplitudes
are much larger than those for plong = 0, although there is a
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Fig. 5. Transitions from desynchronization to synchronization in the inhomoge-
neous and the homogeneous Watts–Strogatz SWNs. Plots of the thermodynamic
order parameter log10 ⟨O⟩r versus (a) plong and (b) pwiring .

little variation in the amplitude. As N is increased to N = 104,
stripes become more vertically aligned, in contrast to the case
of N = 103 [see Fig. 4(d1)]. Hence, R(t) shows more regular
oscillations, and the amplitudes in each oscillating cycle are nearly
the same, as shown in Fig. 4(d2). Consequently, the population
state for plong = 0.27 seems to be synchronized because R(t)
tends to show regular oscillations as N goes to the infinity. For this
case, the population frequency fp of R(t) is ultrafast (about 139 Hz)
[see Fig. 4(e)]. For individual behaviors of spiking interneurons,
histograms for interspike intervals (ISIs) and mean firing rates
(MFRs) of the LR (denoted by circles) and the SR (represented
by crosses) interneurons are also shown in Fig. 4(f) and (g),
respectively. Both ISI histograms of the LR and SR interneurons
have multiple peaks appearing at multiples of the global period
TG (≃7.2 ms) of R(t), because the LR and SR interneurons exhibit
intermittent spikings phase-locked to R(t) at random multiples
of the global period TG of R(t). Similar skipping phenomena of
spikings (characterized with multi-peaked ISI histograms) have
also been found in networks of coupled inhibitory neurons in the
presence of noise where noise-induced hopping from one cluster
to another one occurs (Golomb & Rinzel, 1994), in single noisy
neuron models exhibiting stochastic resonance due to a weak
periodic external force (Longtin, 1995, 2000), and in inhibitory
networks of coupled subthreshold neurons showing stochastic
spiking coherence (Kim & Lim, 2013; Lim & Kim, 2011). Due to
this type of stochastic spike skippings (i.e., randomphase lockings),
partial occupation occurs in the stripes of the raster plot of spikes
(i.e., sparse stripes appear). Thus, the ensemble-averaged MFR
⟨⟨fi⟩⟩r(≃31 Hz) of the individual LR and SR interneurons become
much lower than the population frequency fp(≃139 Hz), which
results in the occurrence of sparse synchronization. This type of
sparsely synchronized rhythms (with partially-occupied stripes of
spikes) is in contrast to fully synchronized rhythms (with fully-
occupied stripes) where individual neurons fire regularly at the
same firing rate as the population frequency.
To determine the critical value for the desynchronization–
synchronization transition, we employ a realistic thermodynamic
order parameterO of Eq. (B.4), given by themean square deviation
of the IPSR kernel estimate R(t). For a synchronized state, R(t) ex-
hibits an oscillation with a nonzero amplitude, while in the case
of desynchronization R(t) becomes nearly stationary, as shown
in Fig. 4. Hence, the order parameter O approaches a nonzero
(zero) limit value for the synchronized (unsynchronized) state in
the thermodynamic limit of N → ∞. Fig. 5(a) and (b) show
plots of the order parameter O versus plong and pwiring for both
cases of the inhomogeneous SWN and the Watts–Strogatz SWN,
respectively. For plong < p(c)

long (pwiring < p(c)
wiring), unsynchronized

states exist because the values of O tend to zero as N → ∞;
p(c)
long ≃ 0.16 and p(c)

wiring ≃ 0.12. As plong (pwiring) passes the
critical value p(c)

long (p(c)
wiring), a transition to synchronization occurs

because O becomes saturated to a nonzero limit value for N ≥
3 × 103. As explained in Section 3.1, the effect of LR connections
for the Watts–Strogatz SWN is stronger than that for the inhomo-
geneous SWN, and hence the desynchronization–synchronization
transition occurs at a smaller critical value in the case of the
Watts–Strogatz SWN.

For various values of plong > p(c)
long , we study fast sparsely syn-

chronized rhythms via comparison of their population behaviors
with individual behaviors. As plong is increased, the zigzagness de-
gree of partial stripes in the raster plots of spikes becomes reduced,
as shown in Fig. 6(a1)–(a5), and hence the pacing degrees be-
tween spikes in the stripes become increased. Consequently, with
increasing plong the amplitudes of the IPSR kernel estimate R(t) in-
crease [see Fig. 6(b1)–(b5)], which implies increase in the degree
of population synchronization. Fig. 6(c1)–(c5) show power spectra
of1R(t)[=R(t)−R(t)] (the overbar denotes the time average). For
all values of plong , single peaks appear at the population frequency
fp (≃139Hz). As plong is increased, the heights of the peaks increase,
while their widths decrease, thanks to the increase in the synchro-
nization degree. As a result, with increasing plong the IPSRs R(t)
show more and more regular oscillations with larger amplitudes
at the population frequency fp (≃139 Hz), corresponding to the ul-
trafast rhythms. In contrast to fully synchronized rhythms (where
individual neurons exhibit fire regularly like the clock oscillators
at the same firing rate as the population frequency), the individual
LR and SR interneurons exhibit stochastic and sparse discharges
as Geiger counters. Fig. 6(d1)–(d5) and Fig. 6(e1)–(e5) show his-
tograms for ISIs and MFRs of the LR (denoted by circles) and SR
(represented by crosses) interneurons, respectively. Both the LR
and SR interneurons exhibit intermittent spikings phase-locked to
the IPSR R(t) at randommultiples of the global period TG (≃7.2ms)
of R(t), and hence their ISI histograms havemultiple peaks appear-
ing at multiples of the global period TG of R(t). Due to this kind of
stochastic spike skipping (i.e., random phase lockings), sparse syn-
chronization emerges (i.e., sparse stripes appear in the raster plot
of spikes). Hence, the ensemble-averaged MFR ⟨⟨fi⟩⟩r(≃31 Hz) of
the LR and SR interneurons become much lower than the popu-
lation frequency fp(≃139 Hz), which implies that the LR and SR
interneurons make an average firing very sparsely about once dur-
ing 4.5 global cycles. As plong is increased, ‘‘valleys’’ (corresponding
to local minima) in the ISI histograms become lowered (i.e., they
become deeper), and then multiple peaks have more clear shapes.
(Conversely, with decreasing plong neighboring peaks overlap, and
hence their shapes become less clear.) Accordingly, with increas-
ing plong the widths of the MFR distributions become reduced, and
the heights of the single peaks increase (i.e., they become sharper).
In this way, as plong is increased stochastic spike skipping occurs in
a more clear way.

By varying plong in thewhole range of ultrafast sparsely synchro-
nized rhythms, we alsomeasure the degree of ultrafast sparse syn-
chronization in terms of a realistic statistical–mechanical spiking
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Fig. 6. Ultrafast sparsely-synchronized rhythms for various values of plong in the inhomogeneous SWN with N = 103 . Raster plots of neural spikes in (a1)–(a5) and IPSR
kernel estimates R(t) in (b1)–(b5) for various values of plong . One-sided power spectrumof1R(t) [=R(t)−R(t)] (the overbar represents the time average)withmean-squared
amplitude normalization for various values of plong in (c1)–(c5). Interspike interval (ISI) histograms of the LR and SR interneurons for various values of plong in (d1)–(d5) (only
LR interneurons exist for plong = 1.0). Open circles and crosses represent ISIs for the LR and SR interneurons, respectively, and vertical dotted lines denote integer multiples
of global period TG (≃7.2 ms) of R(t). Histograms for the mean firing rates (MFRs) of the individual SR and LR interneurons for various values of plong = in (e1)–(e5). Open
circles and crosses represent MFRs for the LR and SR interneurons, respectively. Characterization of ultrafast sparsely synchronized rhythms for N = 103: plots of (f1) the
average occupation degree ⟨⟨Oi⟩⟩r , (f2) the average pacing degree ⟨⟨Pi⟩⟩r , and (f3) the statistical–mechanical spiking measure ⟨Ms⟩r .
measureMs, which was developed in our recent work (Kim & Lim,
2014). As shown in Fig. 6(a1)–(a5), population spike synchroniza-
tion may be well visualized in a raster plot of spikes. For a syn-
chronized case, the raster plot is composed of partially-occupied
stripes (indicating sparse synchronization). To measure the de-
gree of the sparse synchronization seen in the raster plot, a sta-
tistical–mechanical spiking measure Ms of Eq. (B.5), based on the
IPSR kernel estimate R(t), was introduced by considering the oc-
cupation degrees (representing the density of stripes) and the pac-
ing degrees (denoting the smearing of stripes) of the spikes in the
stripes (Kim & Lim, 2014): for more details on the occupation and
the pacing degrees, refer to Eqs. (B.6) and (B.9) in Appendix B.4.
For each plong , we characterize sparse synchronization in terms of
⟨⟨Oi⟩⟩r (average occupation degree), ⟨⟨Pi⟩⟩r (average pacing degree),
and the average statistical–mechanical spiking measure ⟨Ms⟩r via
20 realizations for various values of plong in the sparsely synchro-
nized region; in each realization, ⟨Oi⟩, ⟨Pi⟩, and Ms are obtained by
following 3 × 103 stripes in the raster plot of spikes. The results
(represented by circles) are shown in Fig. 6(f1)–(f3), along with
the results (denoted by crosses) in the Watts–Strogatz SWN. We
note that the average occupation degree ⟨⟨Oi⟩⟩r in Fig. 6(f1) (denot-
ing the average density of stripes in the raster plot) is nearly the
same (⟨⟨Oi⟩⟩r ≃ 0.22), independently of plong . Hence, only a frac-
tion (about 1/4.5) of the total interneurons fire in each stripe,which
implies that individual interneurons fire about once during the
4.5 global cycles of the population rhythm, agreeing well with the
ensemble-averagedMFR ⟨⟨fi⟩⟩r (≃31 Hz). This partial occupation in
the stripes results from stochastic spike skipping of individual in-
terneurons which is seen well in the multi-peaked ISI histograms
in Fig. 6(d1)–(d5). Hence, the average occupation degree ⟨⟨Oi⟩⟩r
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characterizes the sparseness degree of population synchronization
well. On the other hand, as plong is increased, the average pacing
degree ⟨⟨Pi⟩⟩r in Fig. 6(f2) (representing the average smearing of
stripes in the raster plot) between spikes in the stripes increases
due to appearance of LR connections increasing the efficiency of
global communication between interneurons. However, with in-
creasing plong , the increasing rate for ⟨⟨Pi⟩⟩r becomes slower because
the effect of LR connections decreases. Fig. 6(f3) shows the average
statistical–mechanical spiking measure ⟨Ms⟩r (taking into account
both the occupation and the pacing degrees of spikes) versus plong .
Like the case of ⟨⟨Pi⟩⟩r , ⟨Ms⟩r also makes an increase, because ⟨⟨Oi⟩⟩r
is nearly independent of plong . ⟨Ms⟩r is nearly equal to ⟨⟨Pi⟩⟩r/4.5
due to sparse occupation [⟨⟨Oi⟩⟩r ≃ 0.22]. TheWatts–Strogatz SWN
has more LR connections than the inhomogeneous SWN because
LR connections for the Watts–Strogatz SWN appear via random
uniform rewiring (which is made independently of the distance
between interneurons), in contrast to the power-law connection
probability (which decreases slowly with respect to the distance)
for the inhomogeneous SWN. Thanks to the larger effect of these LR
connections, the average statistical–mechanical spiking measure
⟨Ms⟩r of sparse synchronization in the Watts–Strogatz (denoted
by crosses) is higher than that in the inhomogeneous SWN (rep-
resented by circles), as shown in Fig. 6(f1)–(f3): the average pac-
ing degree ⟨⟨Pi⟩⟩r for the case of the Watts–Strogatz SWN is higher,
although the occupation degree ⟨⟨Oi⟩⟩r is the same (i.e., the
ensemble-averaged MFRs are the same) for both cases. However,
with increasing plong and pwiring , the effect of LR connections de-
creases, and hence the difference in the synchronization degree for
both cases becomes reduced.

4. Dynamical responses to external time-periodic stimuli

In this section, we study the effect of the betweenness cen-
tralities B of stimulated interneurons on the dynamical response
to the external stimulus. Since B characterizes the potentiality in
controlling communication between other nodes in the rest of
the network, effectiveness for transfer of stimulation effect in the
whole network may vary depending on B. In the inhomogeneous
SWN, LR interneurons have higher betweenness centralities than
SR interneurons [see Fig. 3(e)], in contrast to the homogeneous
Watts–Strogatz SWN (where interneurons have nearly the same
betweenness centralities). Hence, it is expected that the degree of
dynamical response may be larger for the case when the external
stimuli are applied to LR interneurons with higher B.

For an ultrafast sparsely synchronized case of plong = 0.27 in
Fig. 6, we apply external time-periodic stimuli S(t)[=A sin(ωdt)] of
Eq. (9) to two sub-populations of the LR and SR interneurons with
different betweenness centralities, respectively and investigate
their dynamical responses (suppression or enhancement) to S(t).
We also discuss the differences in their responses in relation
to their betweenness centralities. Dynamical responses to such
external periodic driving were studied in many works (e.g., in
ensembles of bursting neurons with various types of coupling
Batista, Batista, de Pontes, Viana, & Lopes, 2007; Ivanchenko,
Osipov, Shalfeev, & Kurths, 2004; Viana et al., 2012). Here, we
set the driving angular frequency as ωd(=2π fd) = 0.2 rad/ms,
corresponding to the ensemble-averaged MFR ⟨⟨fi⟩⟩r (≃31 Hz) of
the LR and SR interneurons [see Fig. 6(e2)]. Then, we investigate
dynamical responses to S(t) by varying the driving amplitude A.

We first apply S(t) to Ns(=50) selected LR interneurons
which have their betweenness centralities B in the range of
[2502, 3043] near the ensemble-averaged betweenness centrality
⟨B⟩LR (≃2711) in the ensemble of LR interneurons. By varying A, we
investigate dynamical responses to S(t) for a fixedωd(=0.2). Here,
we choose an appropriate number of stimulated interneurons
as Ns = 50: for small Ns ≪ 50 the stimulation effect is
very weak, and for Ns ∼ 50 the stimulation effect becomes
appreciable. Fig. 7(a1)–(a8) show raster plots of spikes for various
values of A. Their corresponding IPSR kernel estimates R(t) are
shown in Fig. 7(b1)–(b8), and the power spectra of1R(t) [=R(t)−
R(t)] (the overbar represents the time average) are also given in
Fig. 7(c1)–(c8). Then, the type and degree of dynamical response
may be characterized in terms of a dynamical response factor Df
(Rosenblum & Pikovsky, 2004a, 2004b):

Df =


Var(RA)

Var(R0)
, (10)

where Var(RA) and Var(R0) represent the variances of the IPSR
kernel estimate R(t) in the presence and absence of stimulus,
respectively. If the dynamical response factor Df is less than 1,
then synchronization suppression occurs; otherwise (i.e., Df >
1), synchronization enhancement takes place. Fig. 7(d) shows a
plot of Df versus A. Three stages are found to appear. Monotonic
synchronization suppression (i.e., monotonic decrease in Df from
1), decrease in synchronization suppression (i.e., increase inDf , but
still Df < 1), and synchronization enhancement (i.e., increase in
Df from 1) occur in the 1st (I) stage (0 < A < A∗1,LR), the 2nd
(II) stage (A∗1,LR < A < A∗2,LR), and the 3rd (III) stage (A > A∗2,LR),
respectively; A∗1,LR ≃ 2186 and A∗2,LR ≃ 5390. Examples are given
for various values of A; 1st stage (A = 400, 1000, and 1500), 2nd
stage (A = 4000 and 5000), and 3rd stage (A = 6000, 8000, and
10000).

In the 1st stage, sparse stripes (which exist originally for A = 0)
in the raster plot of spikes begin to break up due to the effect of the
external AC stimulus S(t). Since MFRs of stimulated interneurons
increase, partially increased number of spikes appear at the sites
of stimulated interneurons of the stripes, and then stripes begin
to become partially horizontally scattered and merged to neigh-
boring stripes. Many non-stimulated interneurons (i.e., major non-
stimulated interneurons) which have synaptic connections with
fast-firing stimulated interneurons fire slowly due to increased in-
hibition. On the other hand, a small number of non-stimulated in-
terneurons (i.e. minor non-stimulated interneurons) which have
no direct synaptic connections with stimulated interneurons re-
ceive synaptic inputs from major slowly-firing non-stimulated in-
terneurons, andhenceMFRs ofminor non-stimulated interneurons
become fast due to decreased inhibition. Consequently, the distri-
bution of MFRs of non-stimulated interneurons becomes broad-
ened (i.e., their dispersion increases). Due to the broadening of
the MFR distribution, smearing and partial scattering occur at the
sites of non-stimulated interneurons of the stripes in the raster
plot of spikes. As A is increased, the degree of this type of break-
up of sparse stripes increases, as shown in Fig. 7(a1)–(a3). In this
1st stage, with increasing A the amplitudes of the correspond-
ing IPSR kernel estimates R(t) decrease because of break-up of
sparse stripes [see Fig. 7(b1)–(b3)]. Consequently, synchronization
suppression occurs, which is well shown in the power spectra of
Fig. 7(c1)–(c3). There appear two kinds of peaks in the power spec-
tra: one is associated with ultrafast sparse synchronization and
the other one is related to the external stimulus. Due to suppres-
sion of sparse synchronization, the height of the peak near 139 Hz
(corresponding to ultrafast sparse synchronization) begins to de-
crease, and its width tends to increase. Hereafter, this type of peak
will be called the ‘‘sparse-synchronization’’ peak. Additional main
peak and its harmonics, associatedwith the external driving of fre-
quency fd(≃31 Hz), also begin to appear. These peaks will be re-
ferred to as ‘‘stimulus’’ peaks. With increasing A, the heights of
these stimulus peaks increase due to the increased stimulus. In this
way, the degree of sparse synchronization decreases due to a de-
structive effect of the external AC stimulus S(t) (breaking up sparse
stripes).
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Fig. 7. Dynamical response for plong = 0.27when an external time-periodic stimulus S(t) is applied to 50 LR interneuronswith higher betweenness centralities B distributed
near the average value ⟨B⟩LR (=2711) of the LR interneurons. Raster plots of spikes and IPSR kernel estimates R(t) for various values of A are shown in (a1)–(a8) and
(b1)–(b8), respectively. One-sided power spectra of 1R(t)[=R(t) − R(t)] (the overbar represents the time average) with mean-squared amplitude normalization are also
given in (c1)–(c8). (d) Plot of dynamical response factor


Df

r (solid circles) versus A, where I , II , and III represent the 1st (synchronization suppression), 2nd (decrease in

synchronization suppression), and 3rd (synchronization enhancement) stages, respectively.
However, when passing a threshold A∗1,LR(≃2186), a 2nd stage
occurs where synchronization suppression stops and conversely
synchronization degree begins to increase. For this case, the
strength of the external AC stimulus becomes moderately in-
creased and it begins to make a constructive effect. Stimulated
interneurons begin to exhibit bursting-like firing behaviors in ac-
cordance to the external AC driving. As a result, partially scattered
stripes of stimulated interneurons become more and more devel-
oped and ‘‘bursting-like’’ bands of spikes (without ‘‘old’’ sparse
stripes) appear successively in accordance to the external AC
stimulus frequency [e.g., see Fig. 7(a4)–(a5)]. Hence, stimulated in-
terneurons exhibit a kind of external phase lockings. With increas-
ing A, density of spikes in the bursting-like bands increases.Within
the bursting-like bands, spikes of major non-stimulated interneu-
rons are very sparse due to strong inhibition. When getting out
of a bursting-like band, inhibition is much decreased, and hence
a type of ‘‘rebouncing effect’’ occurs for the major non-stimulated
interneurons. Thus, a little clear stripes, composed of increased
number of spikes of non-stimulated interneurons, appear between
bursting-like bands: the degree of clearness of stripes tends to in-
crease when approaching the neighboring bursting-like band. As a
whole, under the moderate strength of external AC stimulus, both
appearance of bursting-like bands of stimulated interneurons and
occurrence of rebouncing effect outside the bands for major non-
stimulated interneurons lead to increase in synchronization degree
(i.e., synchronization suppression stops and then synchronization
degree begins to increase). The IPSR kernel estimates R(t), reflect-
ing the structure of the raster plots of spikes, are well shown in
Fig. 7(b4)–(b5). Large-amplitude oscillations appear in the regions
of bursting-like bands:with increasingA, these amplitudes become
larger. Due to the rebouncing effect for the major non-stimulated
interneurons, small-amplitude oscillations also occur outside the
regions of bursting-like bands. Mainly due to the bursting-like
band effect, the synchronization degree is larger than that in the
1st stage. These behaviors are well shown in the power spectra of
Fig. 7(c4)–(c5).When comparedwith the 1st stage, stimulus peaks,
associated with the external AC stimulus, become distinct. These
clear stimulus peaks are related to formation of bursting-like bands
(without ‘‘original’’ sparse stripes). Since no original sparse stripes
exist in the bursting-like bands, the overall degree in sparse syn-
chronization decreases, although sparse stripes appear outside the
bursting-like bands via the rebouncing effect for the major non-
stimulated interneurons. Hence, the sparse-synchronization peak
near 139Hz becomes decreased andwidened. Consequently, in the
2nd stage the external AC stimulus effect becomes dominant and
leads to formation of bursting-like bands of stimulated interneu-
rons via external phase lockings. Thanks to this constructive role
of the external AC stimulus, synchronization suppression (occur-
ring in the 1st stage) stops, and conversely degree in population
synchronization begins to increase.

As A is further increased, the above tendency continues.
Eventually, when passing another threshold A∗2,LR(≃5390), the
dynamical response factor Df becomes larger than unity, and
hence a 3rd stage, where synchronization enhancement occurs,
emerges. As shown in Fig. 7(a6)–(a8), with increasing A, bursting-
like bands become more distinct due to increased density of
spikes. However, spikes of major non-stimulated interneurons
becomemuchmore sparse within the bursting-like bands because
of increased strong inhibition. Hence, when getting out of a
band, a decreased rebouncing effect occurs for the major non-
stimulated interneurons and less clear (i.e., more smeared) stripes
appear outside the bursting-like bands when compared with the
2nd stage. Since the effect of bursting-like bands is much more
dominant, overall enhancement in population synchronization
occurs in the 3rd stage. The IPSR kernel estimates R(t), reflecting
these structures in the raster plots of spikes, are shown well
in Fig. 7(b6)–(b8). As A is increased, oscillations with larger
amplitudes occur in the regions of bursting-like bands. On the
other hand, the amplitudes of oscillations outside the bands
become smaller. Thanks to the dominant effect in the bursting-like
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Fig. 8. Dynamical response for plong = 0.27when an external time-periodic stimulus S(t) is applied to 50 SR interneuronswith lower betweenness centralities B distributed
near the average value ⟨B⟩SR (=712) of the SR interneurons. Raster plots of spikes and IPSR kernel estimates R(t) for various values of A are shown in (a1)–(a8) and
(b1)–(b8), respectively. One-sided power spectra of 1R(t)[= R(t) − R(t)] (the overbar represents the time average) with mean-squared amplitude normalization are
also given in (c1)–(c8). (d) Plot of dynamical response factor


Df

r (solid circles) versus A, where I , II , and III represent the 1st (synchronization suppression), 2nd (decrease

in synchronization suppression), and 3rd (synchronization enhancement) stages, respectively. For comparison, the dynamical response factor Df (gray line) for the case of
stimulated LR interneurons in Fig. 7(d) is also given.
bands, synchronization enhancement occurs. Due to the increased
effect of bursting-like bands, stimulus peaks, associated with the
external AC stimulus, become much more distinct. On the other
hand, the sparse-synchronization peak near 139 Hz becomesmore
reduced, because no sparse stripes exist in the bursting-like bands
and stripes outside the bands become smeared.

Based on the above results, it is found that the three stages ap-
pear through competition between the (original) ultrafast sparse
(mutual) synchronization and the external phase locking. Ultrafast
sparse synchronization breaks up gradually via occurrence of ex-
ternal phase lockings of stimulated interneurons. In the 1st stage,
decrease in the sparse synchronization is dominant than the weak
external phase lockings, and hence synchronization suppression
occurs. However, in the 2nd stage the external phase lockings be-
gin to be dominant. Hence, the suppression of synchronization
stops, and conversely synchronization degree begins to increase.
Finally, in the 3rd stage the external phase lockings become much
more dominant, and consequently synchronization enhancement
appears.

Next, we apply the external AC stimulus S(t) to Ns(=50) se-
lected SR interneurons which have their betweenness centralities
B in the range of [697, 733] near the ensemble-averaged between-
ness centrality ⟨B⟩SR (≃712) in the ensemble of SR interneurons.
We note that ⟨B⟩LR is about 3.8 times as large as ⟨B⟩SR. Hence, trans-
fer of stimulation effect from stimulated SR interneurons to the
whole non-stimulated interneurons is expected to be less effec-
tive when compared with the case of stimulated LR interneurons.
We investigate dynamical responses to S(t) by varying A for a fixed
ωd (=0.2). For various values ofA, raster plots of spikes, IPSR kernel
estimates R(t), and the power spectra of 1R(t) [=R(t)− R(t)] are
shown in Fig. 8(a1)–(a8), (b1)–(b8), and (c1)–(c8), respectively. All
of them are similar to those in Fig. 7 for the above ‘‘LR-stimulated’’
case. Hence, the evolution of dynamical response to S(t) follows
the same three stages as in the LR-stimulated case. But, due to the
difference in the effectiveness of transfer of stimulation effect, the
degree of dynamical response in each stagemaybedifferent,which
can be quantitatively examined in terms of the dynamical response
factor Df . A plot of Df versus A is shown in Fig. 8(d). For compari-
son, Df for the LR-stimulated case (denoted by a gray line) is also
given. Since the transfer of stimulation effect to the non-stimulated
interneurons is less effective, change in the degree of dynamical
response is less made in a slow way. Hence, the threshold val-
ues, A∗1,SR(≃2921) and A∗2,SR(≃5942), for the 2nd and 3rd stages are
larger than those for the LR-stimulated case (i.e., the 2nd and 3rd
stages begin at larger threshold values due to the relatively slow
evolution). Particularly, the degree of dynamical response (repre-
sented by Df ) is also reduced. In the 1st stage, the degree of syn-
chronization suppression is less than that for the LR-stimulated
case (i.e., less suppressed for the case of ‘‘SR-stimulated’’ case
where the value of Df is larger than that for the LR-stimulated
case). In the 2nd stage, the increasing rate for Df is larger for the
LR-stimulated case, and when passing a threshold A∗cr(≃3163), the
gray line (representing Df for the LR-stimulated case) crosses the
black line (denoting Df for the SR-stimulated case). Consequently,
in the 2nd and 3rd stages for A > A∗cr , Df for the SR-stimulated
case becomes less than that for the LR-stimulated case (i.e., less
enhanced for the SR-stimulated case). In thisway, the degree of dy-
namical response (suppression or enhancement of population syn-
chronization) is reduced because stimulated SR interneurons have
lower betweenness centralities (leading to less effective transfer
of stimulation effect). For sufficiently large A, the population syn-
chronization is governed mainly by the external phase lockings of
stimulated interneurons (i.e., contributions of non-stimulated in-
terneurons to population synchronization may be negligible), and
hence the two black and gray curves ofDf for both stimulated cases
approach each other (i.e., synchronization enhancements for both
stimulated cases become very close for sufficiently large A).
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5. Summary

In contrast to the homogeneousWatts–Strogatzmodel, we take
into consideration the inhomogeneous population of interneurons
in real neural circuits: a majority of SR interneurons with mainly
local connections coordinate multiple operations in principal cells,
while a smaller fraction of LR interneurons, with their axons dis-
tributed over large areas, innervate and coordinate all interneuron
classes for generation of population synchronization in interneu-
ronal networks (Bonifazi et al., 2009; Buzsáki, 2006; Buzsáki et al.,
2004; Gulyás et al., 1996, 2003; Jinno et al., 2007; Melzer et al.,
2012; Sik et al., 1994). Thus, we considered an inhomogeneous
SWN composed of the SR and LR interneurons which is more real-
istic in comparison with the Watts–Strogatz SWN. LR connections
appear non-uniformly from the LR interneurons, in contrast to the
case of the homogeneous Watts–Strogatz SWN (where LR connec-
tions appear uniformly from all interneurons). For small plong , LR
interneurons have higher betweenness centralities (characterizing
the potentiality in controlling communication of neural signals be-
tween other interneurons) than SR interneurons. Hence, the load
of communication traffic is much concentrated on a few LR in-
terneurons. However, with further increase in plong , the number of
LR interneurons increases, they share load of communication traf-
fic, and hence the average betweenness centrality ⟨B⟩LR of LR in-
terneurons decreases [i.e., the (group) betweenness centralization
Cb also decreases]. As a result, the average path length Lp becomes
shorter, and the load of communication traffic is less concentrated
on LR interneurons due to their decreased average betweenness
centrality ⟨B⟩LR (or equivalently due to decrease in the between-
ness centralization Cb), which leads to better efficiency of global
communication between interneurons.

We investigated the effect of the network topology (e.g., av-
erage path length and betweenness centrality) on emergence of
synchronized brain rhythms by varying plong . As plong is increased,
effective global communication between distant interneurons be-
gins to become available due to appearance of LR connections
from the LR interneurons. Eventually, when passing a small critical
value p(c)

long (≃0.16), ultrafast sparsely synchronized rhythms with
stochastic and intermittent neural discharges have been found
to emerge because efficiency of global communication between
interneurons becomes enough for occurrence of population syn-
chronization thanks to shorter average path length Lp and smaller
average betweenness centrality ⟨B⟩LR of LR interneurons. This tran-
sition to ultrafast sparse synchronization has been well described
via calculation of the realistic thermodynamic order parameter O,
based on the IPSR kernel estimate R(t). For plong > p(c)

long , the IPSR
kernel estimate R(t) oscillates with the ultrafast population fre-
quency of 139 Hz, while the individual SR and LR interneurons dis-
charge spikes stochastically at low rates (∼31 Hz). The degree of
ultrafast sparse synchronization has also been well measured in
terms of the realistic statistical–mechanical spiking measure Ms.
With increasing plong the degree of ultrafast sparse synchronization
increases, but its increasing rate becomes slower due to sufficient
number of LR connections. These dynamical behaviors have also
been compared with those in theWatts–Strogatz SWN, in connec-
tionwith their network topologies.We note that the homogeneous
Watts–Strogatz SWN has more LR connections than the inho-
mogeneous SWN, because LR connections for the Watts–Strogatz
SWN appear via random uniform rewiring (which is made inde-
pendently of the distance between interneurons), in contrast to
the power-law connection probability (decreasing slowly with re-
spect to the distance) for the inhomogeneous SWN. Thanks to the
larger effect of these LR connections, ultrafast sparsely synchro-
nized rhythms have been found to appear when passing a smaller
critical value p(c)

wiring(≃0.12), and the degree of sparse synchroniza-
tion has also been found to become higher for the case of the
Watts–Strogatz SWN. However, with increasing plong and pwiring ,
the effect of LR connections decreases, and hence the difference
in the synchronization degree for both cases becomes reduced.

Particularly, we note that the main difference between the
inhomogeneous SWN and the homogeneous Watts–Strogatz SWN
lies in the distributions of the betweenness centralities. Unlike the
Watts–Strogatz SWN, dynamical responses to external AC stimulus
vary depending on the type of stimulated interneurons (LR or SR
interneurons) in the inhomogeneous SWN. We considered two
cases of external AC stimuli applied to sub-populations of the LR
and SR interneurons, respectively. Dynamical responses to these
two cases of stimuli were investigated by varying the driving
amplitude A for a fixed driving angular frequency ωd (=0.2), and
they were discussed in relation to the betweenness centralities B
of stimulated interneurons, representing the effectiveness of the
transfer of stimulation effect in the whole network (i.e., higher
betweenness centralities imply more effectiveness for the transfer
of stimulation effect). Three stages have thus been found to
appear: monotonic synchronization suppression, decrease in
synchronization suppression, and synchronization enhancement
occur in the 1st, 2nd, and 3rd stages, respectively. The degree
of dynamical response (such as synchronization suppression and
enhancement) for the case of stimulated LR interneurons has
been found to be larger (i.e., more suppressed or enhanced)
than that for the case of stimulated SR interneurons, because
stimulated LR interneurons with higher betweenness centralities
make transfer of stimulation effect in the whole network
more effectively in comparison with stimulated SR interneurons
with lower betweenness centralities. In contrast, interneurons
in the homogeneous Watts–Strogatz SWN have nearly same
betweenness centralities, and hence dynamical responses to
external stimuli have no particular dependence on randomly
chosen interneurons. In this way, dynamical response to external
stimuli is distinctly different for both cases of the inhomogeneous
SWN and the Watts–Strogatz SWN, although the differences in
their ultrafast sparse mutual synchronization (in the absence of
external stimuli) are not significantly large. In view of practical
applications, synchronization suppression may be effective in
suppressing pathological brain rhythms, while synchronization
enhancement might be useful for the cases of failures of cardiac or
neural pacemakers. Particularly, deepbrain stimulation techniques
have been used to suppress pathological rhythms in patients
with neural diseases such as Parkinson’s disease, essential tremor,
and epilepsy (Benabid, Chabardes, Mitrofanis, & Pollak, 2009;
Hamani, Neimat, & Lozano, 2006; Milton & Jung, 2003). Our results
on dynamical responses to external stimuli might be useful in
clinical application for controlling (i.e., suppressing or enhancing)
population synchronization because such control may be more
effective when time-periodic electric signal is injected to a sub-
population of LR interneurons (withhigher between centralities) in
comparison with a sub-population of SR interneurons (with lower
betweenness centralities).
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Appendix A. Methods for characterization of network topology
and geometry

In this Appendix A, methods used for characterization of
topology and geometry in the network with N nodes are briefly
explained.



72 S.-Y. Kim, W. Lim / Neural Networks 93 (2017) 57–75
A.1. Clustering coefficient

The clustering coefficient Ci of a node i in the network,
representing the extent to which the neighborhood of the node i is
clustered,may bemeasured by the percentage of pairs of neighbors
of the node i that are also themselves neighbors (Fagiolo, 2007):

Ci =
the number of triangles in the network with the node i as one vertex
the number of all possible triangles that the node i could have formed

.

(A.1)

Then, the clustering coefficient C in the whole network, denoting
cliquishness of a typical neighborhood in the network, is given
by the average of the clustering coefficients of all nodes (Watts &
Strogatz, 1998):

C =
1
N

N
i=1

Ci. (A.2)

We note that C characterizes the local efficiency of information
transfer: higher clustering effect occurs for large C .

A.2. Average path length

The average path length Lp, representing typical separation
between two nodes in the network, is given by the average number
of connections between two nodes along the shortest path (Watts
& Strogatz, 1998):

Lp =
1

N(N − 1)

N
i=1

N
j=1(j≠i)

l(ij)p , (A.3)

where l(ij)p is the shortest path length from the node i to the node
j which may be easily obtained by employing the breadth-first
searching algorithm (Brandes, 2001; Newman, 2001). We note
that Lp characterizes the global efficiency of information transfer
between distant nodes: global efficiency is better for shorter Lp.

A.3. Betweenness centrality and centralization

In the network science, centrality refers to indicators which
identify the most important nodes within the network (i.e., the
centrality indices are answers to the question ‘‘which nodes are
most central?’’). Historically first and conceptually simplest one
is the degree centrality, which is defined by the number of edges
of a node. This degree centrality represents the potentiality in
communication activity. Betweenness is also another centrality
measure of a node within the network (Freeman, 1977, 1978).
Betweenness centrality of the node i is given by the fraction of all
the shortest paths between any two other nodes that pass through
the node i (Freeman, 1977, 1978):

Bi =

N
j=1(j≠i)

N
k=1(k≠j&k≠i)

σjk(i)
σjk

, (A.4)

where σjk(i) is the number of shortest paths from the node j to
the node k passing through the node i, σjk is the total number of
shortest paths from the node j to the node k, and the number of
shortest paths between two nodesmay be easily obtained by using
the breadth-first searching algorithm (Brandes, 2001; Newman,
2001). This betweenness centrality Bi characterizes the potential-
ity in controlling communication between other nodes in the rest
of the network. In the inhomogeneous SWN, LR interneurons are
found to have higher betweenness centralities than SR interneu-
rons. Hence, the load of communication traffic is concentrated on
LR interneurons. To examine how evenly the betweenness central-
ity is distributed among nodes (i.e., how evenly the load of com-
munication traffic is distributed among nodes), we consider the
group betweenness centralization, denoting the degree to which
the maximum betweenness centrality Bmax of the ‘‘head’’ LR in-
terneuron exceeds the betweenness centralities of all the other in-
terneurons. The betweenness centralization Cb is given by the sum
of differences between the maximum betweenness centrality Bmax
of the head LR interneuron and the betweenness centrality Bi of
other interneuron i and normalized by dividing the sum of differ-
ences with its maximum possible value (Freeman, 1977, 1978):

Cb =

N
i=1

(Bmax − Bi)

max
N
i=1

(Bmax − Bi)

;

max
N
i=1

(Bmax − Bi) =
(N − 1)(N2

− 3N + 2)
2

,

(A.5)

where the maximum sum of differences in the denominator cor-
responds to that for the star network. Large Cb implies that load of
communication traffic is concentrated on the head LR interneuron,
and hence the head LR interneuron tends to become overloaded
by the communication traffic passing through it. For this case, it
becomes difficult to get efficient communication between nodes
due to destructive interference between so many signals passing
through the head LR interneurons (Kim & Lim, 2015a; Nishikawa
et al., 2003). On the other hand, for small Cb the load of traffic com-
munication is less concentrated on the head LR interneuron (i.e., it
is more evenly distributed between nodes), and hence efficiency of
communication between nodes becomes better.

A.4. Wiring length

N interneurons are equidistantly placed on a ring of radius
r (=N/2π). Then, axonal wiring length l(ij)w (i.e., geometrical wiring
length of connection) between node i and node j is given by the arc
length between two vertices i and j on the ring (Kim & Lim, 2015a,
2015b):

l(ij)w =


|j− i| for |j− i| ≤

N
2

N − |j− i| for |j− i| >
N
2

.
(A.6)

Then, the total wiring length in the whole network L(total)
w is given

by:

L(total)
w =

N
i=1

N
j=1(j≠i)

aijl(ij)w , (A.7)

where aij is the ij element of the adjacencymatrix A of the network.
The connection between vertices in the network is denoted by
its N × N adjacency matrix A(={aij}) whose element values are
0 or 1. If aij = 1, then an edge from the vertex i to the vertex
j exists; otherwise no such edges exist. This adjacency matrix A
corresponds to the transpose of the connection weight matrix W
in Section 2.2.

We are also interested in thewiring lengths of outward connec-
tions from individual interneurons. The total wiring length l(total)w (i)
of the outward connections from the interneuron i is given by:

l(total)w (i) =
N

j=1(j≠i)

aijl(ij)w . (A.8)
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Then, the mean wiring length lw(i) of the outward connections
from the interneuron i is:

lw(i) =
l(total)w (i)

N (i)
c

, (A.9)

where N (i)
c (=

N
j=1(j≠i) aij) is the total number of outward connec-

tions from the interneuron i. Then, the ensemble-averaged mean
wiring length


lw

in the whole network is given by the average

of the mean wiring lengths of all interneurons (Watts & Strogatz,
1998):


lw

=

1
N

N
i=1

lw(i). (A.10)

In the inhomogeneous SWN, the ensemble-averaged mean wiring
length


lw(i)


LR

of the outward connections in the sub-population

of LR interneurons is longer than

lw(i)


SR

in the sub-population
of SR interneurons, because LR connections appear non-uniformly
from the LR interneurons.

Appendix B. Methods for characterization of individual and
population dynamics

In Appendix B, methods used for characterization of individual
and population dynamics in the network of N interneurons are
explained.

B.1. Characterization of individual firing behaviors

Firing behaviors of the individual SR and LR interneurons are
characterized in terms of the inter-spike interval (ISI) histogram
and the mean firing rate (MFR) histogram (Brunel, 2000; Brunel
& Hakim, 1999, 2008; Brunel & Hansel, 2006; Brunel & Wang,
2003; Geisler et al., 2005; Kim & Lim, 2015a, 2015b). For each
interneuron, 5 × 104 ISIs are collected through 50 realizations
for the ISI histograms of the SR and LR interneurons, and the
bin size for the histogram is 0.5 ms. The MFR for each SR or LR
interneuron is calculated by following the membrane potential
during the averaging time of 104 ms after discarding the transient
time of 103 ms, and the bin size for the histogram is 0.5 Hz.

B.2. Population variables

In computational neuroscience, an ensemble-averaged global
potential VG(t) in thewhole population, containingN FS Izhikevich
interneurons,

VG(t) =
1
N

N
i=1

vi(t) (B.1)

is often used for describing emergence of population neural syn-
chronization in the whole population (e.g., sparse synchroniza-
tion in a population of subthreshold neurons was described in
terms of an ensemble-averaged global potential Kim & Lim, 2013;
Lim & Kim, 2011). However, to directly obtain VG(t) in real ex-
periments is very difficult. To overcome this difficulty, instead of
VG(t), we employ experimentally-obtainable instantaneous popu-
lation spike rates (IPSRs) which are often used as collective quanti-
ties showing population behaviors (Brunel, 2000; Brunel & Hakim,
1999, 2008; Brunel & Hansel, 2006; Brunel & Wang, 2003; Geisler
et al., 2005; Kim & Lim, 2014, 2015b; Wang, 2010). The IPSR is ob-
tained from the raster plot of neural spikes which is a collection of
spike trains of individual interneurons. Such raster plots of spikes,
where population spike synchronization may be well visualized,
are fundamental data in experimental neuroscience. For the syn-
chronous case, ‘‘stripes’’ (composed of spikes and indicating pop-
ulation synchronization) are found to be formed in the raster plot.
Hence, for a synchronous case, an oscillating IPSR appears, while
for an unsynchronized case the IPSR is nearly stationary. To obtain
a smooth IPSR, we employ the kernel density estimation (kernel
smoother) (Shimazaki & Shinomoto, 2010). Each spike in the raster
plot is convoluted (or blurred) with a kernel function Kh(t) to ob-
tain a smooth estimate of IPSR R(t):

R(t) =
1
N

N
i=1

ni
s=1

Kh(t − t(i)s ), (B.2)

where t(i)s is the sth spiking time of the ith interneuron, ni is
the total number of spikes for the ith interneuron, and we use a
Gaussian kernel function of band width h:

Kh(t) =
1
√
2πh

e−t
2/2h2 , −∞ < t <∞. (B.3)

Throughout the paper, the band width of the Gaussian kernel
estimate is h = 1 ms. Moreover, for the synchronous case, the
population frequency fp of the regularly-oscillating IPSR kernel
estimate R(t)maybe obtained from the one-sided power spectrum
of 1R(t) [=R(t) − R(t)] with the mean-squared amplitude
normalization. The number of data for the power spectrum is
216(=65 536), and the overline represents the time average.

B.3. Thermodynamic order parameter

As is well known, a conventional order parameter, based on
the ensemble-averaged global potential VG(t), is often used for
describing transition from synchronization to desynchronization
in computational neuroscience (Ginzburg & Sompolinsky, 1994;
Hansel & Mato, 2003; Hansel & Sompolinsky, 1992; Kim &
Lim, 2013; Lim & Kim, 2011). Recently, instead of the global
potential, we used an experimentally-obtainable IPSR kernel
estimate R(t), and developed a realistic order parameter, which
may be applicable in both the computational and the experimental
neuroscience (Kim & Lim, 2014). The mean square deviation of the
IPSR kernel estimate R(t),

O ≡ (R(t)− R(t))2, (B.4)

plays the role of realistic order parameters O to determine a
threshold for the synchronization–desynchronization transition,
where the overbar represents the time average. Here, each order
parameter is obtained through average over 20 realizations, and
the averaging time for the calculation of the order parameter in
each realization is 3 × 104 ms. Then, the order parameter O,
representing the time-averaged fluctuations of R(t), approaches a
nonzero (zero) limit value for the synchronized (unsynchronized)
state in the thermodynamic limit of N → ∞. This order
parameter may be regarded as a thermodynamic measure because
it concerns just the macroscopic IPSR kernel estimate R(t) without
any consideration between the macroscopic IPSR kernel estimate
and microscopic individual spikes.

B.4. Statistical–mechanical spiking measure

Wemeasure the degree of sparse synchronization in terms of a
realistic statistical–mechanical spikingmeasure, based on the IPSR
kernel estimate R(t) (Kim& Lim, 2014). Spike synchronizationmay
be well visualized in the raster plot of spikes. For a synchronized
case, the raster plot is composed of partially-occupied stripes
(indicating sparse synchronization), and the corresponding IPSR
kernel estimate, R(t), exhibits a regular oscillation. Each ith (i =
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1, 2, 3, . . .) global cycle of R(t) begins from its left minimum,
passes the central maximum, and ends at the rightminimum [also,
corresponding to the beginning point of the next (i + 1)th global
cycle]; the 1st global cycle of R(t) appears after transient times of
103 ms. Spikes which appear in the ith global cycle of R(t) form
the ith stripe in the raster plot. To measure the degree of spike
synchronization seen in the raster plot, a statistical–mechanical
measure Ms, based on R(t), was introduced by considering the
occupation pattern and the pacing pattern of spikes in the stripes
(Kim & Lim, 2014). The spiking measure Mi of the ith stripe
[appearing in the ith global cycle of R(t)] is defined by the product
of the occupation degree Oi of spikes (representing the density of
the ith stripe) and the pacing degree Pi of spikes (denoting the
smearing of the ith stripe):

Mi = Oi · Pi. (B.5)

The occupationdegreesOi in the ith stripe are givenby the fractions
of spiking interneurons in the ith stripe:

Oi =
N (s)

i

N
, (B.6)

where N (s)
i is the number of spiking interneurons in the ith stripe.

For sparse synchronization with partially-occupied stripes, Oi ≪

1. The pacing degree Pi of sparse spikes in the ith stripe can be
determined in a statistical–mechanical way by taking into account
their contributions to the macroscopic IPSR kernel estimate R(t).
An instantaneous global phase Φ(t) of R(t) was introduced via
linear interpolation in the two successive subregions forming
global cycles (Kim & Lim, 2014). The global phase Φ(t) between
the left minimum (corresponding to the beginning point of the ith
global cycle) and the central maximum is given by

Φ(t) = 2π(i− 3/2)

+π


t − t(min)

i

t(max)
i − t(min)

i


for t(min)

i ≤ t < t(max)
i , (B.7)

and Φ(t) between the central maximum and the right minimum
[corresponding to the beginning point of the (i+1)th global cycle]
is given by

Φ(t) = 2π(i− 1)

+π


t − t(max)

i

t(min)
i+1 − t(max)

i


for t(max)

i ≤ t < t(min)
i+1 , (B.8)

where t(min)
i is the beginning time of the ith (i = 1, 2, 3, . . .)

global cycle of R(t) [i.e., the time at which the left minimum
of R(t) appears in the ith global cycle], and t(max)

i is the time
at which the maximum of R(t) appears in the ith global cycle.
Then, the contributions of the kth microscopic spikes in the ith
stripes occurring at the times t(s)k to R(t) are given by cosΦk,
where Φk are the global phases at the kth spiking time [i.e., Φk ≡

Φ(t(s)k )]. Microscopic spikesmake themost constructive (in-phase)
contributions to R(t)when the corresponding global phasesΦk are
2πn (n = 0, 1, 2, . . .), while theymake themost destructive (anti-
phase) contribution to R(t) when Φk is 2π(n− 1/2). By averaging
the contributions of all microscopic spikes in the ith stripes to R(t),
we obtain the pacing degrees Pi of spikes in the ith stripe:

Pi =
1
Si

Si
k=1

cosΦk (B.9)

where Si is the total number of microscopic spikes in the ith stripe.
By averaging Mi of Eq. (B.5) over a sufficiently large number Ns of
stripes, we obtain the statistical–mechanical spiking measureMs:

Ms =
1
Ns

Ns
i=1

Mi. (B.10)

Here, we follow 3×103 global cycles in each realization, and obtain
the average occupation degree, the average pacing degree, and the
average statistical–mechanical spiking measure via average over
20 realizations.
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