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We consider a large ensemble of globally coupled subthreshold Morris–Lecar neurons.
We numerically investigate collective coherence of noise-induced spikings by varying the
coupling strength J . As J passes a lower threshold, a transition to collective spiking
coherence, which is described in terms of an order parameter, occurs because the cou-
pling stimulates coherence between noise-induced spikings. However, when passing a
higher threshold, the coupling induces oscillator death (i.e., quenching of noise-induced
spikings) because each neuron is attracted to a noisy equilibrium state. Through com-
petition of these two different roles of coupling, coupling-induced spiking coherence is
found to occur in a large range of intermediate coupling strength. The degree of spiking
coherence is well-characterized in terms of a coherence measure reflecting the degree of
“resemblance” of the global potential to the local potential.
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1. Introduction

Recently, much attention has been paid to brain rhythms.1 Synchronous firings in

neural systems are correlated with neural encoding of sensory stimuli (e.g., visual

binding).2 Collective dynamics has been intensively investigated in coupled systems,

consisting of spontaneously firing (i.e., self-oscillating) neurons, and thus three types

of mechanisms for neural synchronization have been found.3 In contrast to the

suprathreshold case of self-oscillating neurons, the case of subthreshold neurons
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has received little attention. For an isolated single case, each subthreshold neuron

cannot fire spontaneously without noise; it can fire only with the help of noise.

Hence, intensive investigation of subthreshold neurons is necessary to understand

their coherent collective dynamics.

This paper is organized as follows. In Sec. 2, we consider a large ensemble of

globally coupled subthreshold Morris–Lecar (ML) neurons.4–6 By varying the cou-

pling strength J , we investigate collective coherence of noise-induced spikings. For

small J , the global output signal (i.e., the ensemble-averaged membrane potential)

becomes incoherent because neurons fire independently. However, as J passes a

lower threshold J∗
l , the global output signal becomes coherent (i.e., a transition

to spiking coherence occurs) because the coupling stimulates collective coherence

between noise-induced spikings. As in globally coupled chaotic systems,7–10 this co-

herent transition may be described in terms of the order parameter which is just the

mean square deviation of the global output signal. Furthermore, we characterize the

degree of spiking coherence by using a coherence measure M reflecting the degree of

“resemblance” of the global potential to the local potential. As J is increased from

J∗
l , M increases, it becomes maximal at an optimal coupling strength J∗, and then

it decreases abruptly. Such an abrupt decrease in M results from the effect of os-

cillator death (i.e., quenching of noise-induced spikings) occurring for large J .11–15

This coupling-induced oscillator death, leading to a nonfiring state, occurs because

each neuron is attracted to a noisy equilibrium state. As a result of competition of

these two different roles of coupling, coupling-induced coherent states appear in a

large range of intermediate coupling strength. Finally, a summary is given in Sec. 3.

2. Coupling-Induced Spiking Coherence in Globally Coupled

Subthreshold Neurons

We consider a system of N globally coupled neurons. As an element in our coupled

system, we choose the conductance-based ML neuron model, originally proposed to

describe the time-evolution pattern of the membrane potential for the giant muscle

fibers of barnacles.4–6 The population dynamics in this neural network is governed

by a set of the following differential equations:

C
dVi

dt
= −Iion,i + IDC + Dξi + Isyn,i , (1a)

dwi

dt
= φ

(w∞(Vi) − wi)

τR(Vi)
, i = 1, . . . , N , (1b)

where

Iion,i = ICa,i + IK,i + IL,i (2a)

= gCam∞(Vi)(Vi − VCa) + gKwi(Vi − VK) + gL(Vi − VL) , (2b)
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Isyn,i =
J

N − 1

N
∑

j(6=i)

Θ(Vj − V ∗) , (2c)

m∞(V ) = 0.5[1 + tanh{(V − V1)/V2}] , (2d)

w∞(V ) = 0.5[1 + tanh{(V − V3)/V4}] , (2e)

τR(V ) = 1/ cosh{(V − V3)/(2V4)} . (2f)

Here, the state of the ith neuron at a time t (measured in units of ms) is character-

ized by two state variables: the membrane potential Vi (measured in units of mV)

and the slow recovery variable wi representing the activation of the K+ current

(i.e., the fraction of open K+ channels). In Eq. (1a), C represents the capacitance

of the membrane of each neuron, and the time evolution of Vi is governed by four

kinds of source currents.

The total ionic current Iion,i of the ith neuron consists of the calcium current

ICa,i, the potassium current IK,i, and the leakage current IL,i. Each ionic current

obeys Ohm’s law. The constants gCa, gK , and gL are the maximum conductances

for the ion and leakage channels, and the constants VCa, VK , and VL are the reversal

potentials at which each current is balanced by the ionic concentration difference

across the membrane. Since the calcium current ICa,i changes much faster than

the potassium current IK,i, the gate variable mi for the Ca2+ channel is assumed

to always take its saturation value m∞(Vi). On the other hand, the activation

variable wi for the K+ channel approaches its saturation value w∞(Vi) with a

relaxation time τR(Vi)/φ, where τR has a dimension of ms and φ is a (dimensionless)

temperature-like time scale factor.

Each ML neuron is also stimulated by the common DC current IDC and an

independent Gaussian white noise ξ [see the second and third terms in Eq. (1a)]

satisfying 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t
′)〉 = δijδ(t−t′), where 〈· · ·〉 denotes the ensemble

average. The noise ξi is a parametric one which randomly perturbs the strength of

the applied current IDC , and its intensity is controlled by the parameter D. The last

term in Eq. (1a) represents the coupling of the network. Each neuron is connected

to all the other ones through global instantaneous pulse-type synaptic couplings.

Isyn,i of Eq. (2c) represents such a synaptic current injected into the ith neuron.

The coupling strength is controlled by the parameter J , Θ(x) is the Heaviside step

function (i.e., Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0), and V ∗ is the threshold

value for the spiking state (i.e., for Vi > V ∗ a local spiking state of the ith neuron

appears). Here, we consider the excitatory coupling of J > 0 and set V ∗ = 0 mV.

The ML neuron may exhibit either type-I or type-II excitability, depending

on the system parameters. Throughout this paper, we consider the case of type-

II excitability where gCa = 4.4 mS/cm2, gK = 8 mS/cm2, gL = 2 mS/cm2,

VCa = 120 mV, VK = −84 mV, VL = −60 mV, C = 5 µF/cm2, φ = 0.04,

V1 = −1.2 mV, V2 = 18 mV, V3 = 2 mV, and V4 = 30 mV.16 As IDC passes
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a threshold in the absence of noise, each single type-II ML neuron begins to fire

with a nonzero frequency which is relatively insensitive to the change in IDC .17,18

Numerical integration of Eq. (1) is done using the Heun method19 (with the time

step ∆t = 0.01 ms) similar to the second-order Runge–Kutta method, and data for

(Vi, wi) (i = 1, . . . , N) are obtained with the sampling time interval ∆t = 1 ms.

For each realization of the stochastic process in Eq. (1), we choose a random initial

point [Vi(0), wi(0)] for the ith (i = 1, . . . , N) neuron with uniform probability in

the range of Vi(0) ∈ (−60, 60) and wi(0) ∈ (0.1, 0.5).

We consider a large population of globally coupled ML neurons for a subthresh-

old case of IDC = 84 µA/cm
2
. For an isolated single case, each subthreshold neuron

cannot fire spontaneously in the absence of noise, and it may generate firings only

with the aid of noise. We set D = 1.5 µA · ms1/2/cm2 and numerically investigate

collective coherence of noise-induced firings by varying the coupling strength J for

N = 103. Emergence of global spiking coherence in the population may be described

by the population-averaged membrane potential VG(t) (corresponding to the global

potential) and the global recovery variable WG(t),

VG(t) =
1

N

N
∑

i=1

Vi(t) and WG(t) =
1

N

N
∑

i=1

wi(t) . (3)

Figure 1(a) shows phase portraits of the global state for three values of J . For

small J , neurons fire independently, and hence incoherent states appear. For an

incoherent state of J = 4 µA/cm2, the global state lies at a noisy equilibrium point

(denoted by an open circle) near (VG, WG) ' (−24.8, 0.1). However, as J passes

a lower threshold J∗
l (' 6.7 µA/cm2), a coherent transition occurs because the

coupling stimulates collective coherence between noise-induced spikings. Then, the

global state exhibits a counterclockwise rotation on a noisy limit cycle (e.g., see the

limit cycle in Fig. 1(a) for J = 50 µA/cm
2
), and hence stochastic spiking coherence

occurs. However, when passing a higher threshold J∗
h (' 141.9 µA/cm

2
), the noisy

limit cycle is transformed into another noisy equilibrium point (represented by

a solid circle) [e.g., see the case of J ' 142 µA/cm
2

in Fig. 1(a)], and then an

incoherent state appears. As in globally coupled chaotic systems,7–10 the mean

square deviation of the global potential VG(t) (i.e., time-averaged fluctuations of

VG(t)),

O ≡ (VG(t) − VG(t))2 , (4)

plays the role of an order parameter used for describing the coherence-incoherence

transition, where the overbar represents time averaging. Here, we discard the first

time steps of a stochastic trajectory as transients for 103 ms, and then we numeri-

cally compute O by following the stochastic trajectory for 104 ms. For the coherent

(incoherent) state, the order parameter O approaches a nonzero (zero) limit value

in the thermodynamic limit of N → ∞. Figure 1(b) shows a plot of the order pa-

rameter versus the coupling strength J . For J < J∗
l , incoherent states exist because

the order parameter O tends to zero as N → ∞. As J passes the lower threshold
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Fig. 1. (a) Coherent and incoherent states for N = 103 and D = 1.5 µA · ms1/2/cm2. Noisy
equilibrium point near (VG,WG) ' (−24.8, 0.1) for J = 4 µA/cm2, noisy limit cycle for J =
50 µA/cm2, and noisy equilibrium point near (VG ,WG) ' (9.3, 0.6) for J = 142 µA/cm2. (b) Plots
of log10 O versus log10 J for D = 1.5 µA · ms1/2/cm2.

J∗
l , a coherent transition occurs because the coupling stimulates coherence between

noise-induced spikings. However, for large J > J∗
h , such coherent states disappear

due to the effect of coupling-induced oscillator death occurring for large J (which

will be discussed below).

Figures 2(a1)–2(a4) show phase portraits of the global and local output signals in

the coherent regime. Since our neural network is globally coupled, any local neuron

may be a representative one. By comparing the local and global phase portraits, one

can obtain qualitative information about the degree of collective spiking coherence.

For an optimal coupling strength J∗ (' 141 µA/cm
2
), the global state exhibits

a collective motion on the the gray limit cycle. For this optimal case, the degree

of collective spiking coherence seems to be maximal because the gray limit cycle

coincides nearly with the black limit cycle of the first local state, as shown in

Fig. 2(a2). However, as J is deviated from J∗, the size of the global gray limit cycle

decreases [see Figs. 2(a1), 2(a3), and 2(a4)], and hence the degree of collective

spiking coherence (i.e., the degree of “resemblance” of the global output signal to

the local output signal) decreases. Such degree of collective spiking coherence may
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Fig. 2. Phase portraits and coherence measure for N = 103 and D = 1.5 µA · ms1/2/cm2. Gray
(black) limit cycles of the global (first local) state for (a1) J = 8 µA/cm2, (a2) J = 141 µA/cm2,
(a3) J = 141.7 µA/cm2, and (a4) J = 141.8 µA/cm2. (b) Plot of coherence measure M versus
log10 J .

be quantified by a measure M defined by20,21

M ≡
√
O

1

N

N
∑

i=1

√

(Vi(t) − Vi(t))2

. (5)

This coherence measure M is just the ratio between the standard deviation (i.e., the

root-mean-square deviation) of the global potential VG(t) and the population av-

erage over each neuron’s standard deviation of local potential Vi (i.e., M reflects

the degree of “resemblance” of the global potential to the local potential). For a

coherent state, 0 < M ≤ 1, while in an incoherent state, M = 0. Here, we numer-

ically compute M by following the stochastic trajectory during 200 oscillations of

VG(t) after a transient process of 103 ms when N = 103. Figure 2(b) shows the

plot of M versus the coupling strength. As J is increased from J∗
l , M increases, it

becomes maximal for J = J∗, and then it decreases to zero abruptly for J = J∗
h .

Such an abrupt decrease in M for J > J∗ results from the effect of oscillator death

occurring when J is large.

Finally, we discuss the coupling-induced death of local oscillations. Figure 3(a)

shows the phase portrait of the first local state (v1, w1) for an incoherent (firing)

case of J = 142 µA/cm2. We note that the motion on the noisy limit cycle is

strongly nonuniform because the local state (v1, w1) spends much time near the

point of (v1, w1) ' (9.3, 0.6) [i.e., the point density near (v1, w1) ' (9.3, 0.6) is

very high]. With increase in J , such nonuniformity of the motion along the noisy
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Fig. 3. Oscillator death for N = 103 and D = 1.5 µA ·ms1/2/cm2. (a) Nonuniform motion of the
first local state on a noisy limit cycle for J = 142 µA/cm2. (b) Plot of the average firing frequency
f versus log10 J . (c) Noisy equilibrium point for J = 143 µA/cm2.

limit cycle is intensified, and hence the average spiking frequency f decreases, as

shown in Fig. 3(b). Eventually, when passing a threshold J∗
o (' 142.6 µA/cm

2
), the

noisy limit cycle is transformed into a noisy equilibrium point (e.g., see Fig. 3(c) for

J = 143 µA/cm2), which is similar to the case of the saddle-node bifurcation on an

invariant circle (also called the infinite-period bifurcation) in the deterministic case

(without noise).22 As a result, oscillator death (i.e., quenching of noise-induced

spikings) occurs for J > J∗
o because each local neuron is attracted to a noisy

equilibrium state.
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3. Summary

We have numerically investigated coupling-induced spiking coherence by varying

the coupling strength J in an ensemble of globally coupled subthreshold ML neu-

rons.23 As J passes a lower threshold J∗
l , a coherent transition, which is described

in terms of the order parameter, occurs because the coupling induces collective co-

herence between noise-induced spikings. The degree of collective spiking coherence

is well-characterized in terms of a coherence measure M reflecting the degree of

resemblance of the global potential to the local potential. As J is increased from

J∗
l , M increases, it becomes maximal at an optimal coupling strength J∗, and then

it decreases dramatically. Such an abrupt decrease in M results from the effect of

oscillator death (i.e., cessation of noise-induced spikings) which occurs for large J

because each neuron is attracted to a noisy equilibrium state. Through competition

of these two different roles of coupling, coupling-induced spiking coherence is found

to occur over a large range of intermediate coupling strength. Finally, we note that

collective coherence of noise-induced spikings might be an origin for synchronous

brain rhythms in a noisy environment, which correlate with the brain function of

encoding sensory stimuli.
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