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‘We consider a forced Duffing oscillator with a double-well potential, which behaves as an
asymmetric soft oscillator in each potential well. Bifurcations associated with resonances
of the asymmetric attracting periodic orbits, arising from the two stable equilibrium
points of the potential, are investigated in details by varying the two parameters A (the
driving amplitude) and w (the driving frequency). We thus obtain the phase diagram
showing rich bifurcation structure in the w—A plane. For the subharmonic resonances,
the corresponding period-doubling bifurcation curves become folded back, within which
diverse bifurcation phenomena such as “period bubblings” are observed. For the primary
and superharmonic resonances, the corresponding saddle-node bifurcation curves form
“horns”, leaning to the lower frequencies. With decreasing w, resonance horns with
successively increasing torsion numbers recur in a similar shape. We note that recurrence
of self-similar resonance horns is a “universal” feature in, the bifurcation structure of
many driven nonlinear oscillators. :

1. Introduction

A periodically driven double-well Duffing oscillator,! ™2 which has become a classic
model for analysis of nonlinear phenomena, is investigated. It can be described in a
normalized form by a second-order nonautonomous ordinary differential equations,

&4y —x + x> = Acoswt, (1)

where v is the damping coefficient, and A coswt is a driving force with amplitude A
and frequency w, and the overdot denotes a differentiation with respect to time ¢.

The Duffing equation (1) with negative linear stiffness describes the dynamics
of a buckled beam? ® as well as a plasma oscillator.” Its dynamics has been an-
alyzed in great details by Holmes using both the theoretical techniques and the
computer simulations.* The results of this work have been also confirmed in ex-
periments by Moon.%® Since then, a number of authors have studied the forced
double-well Duffing oscillator in the past two decades. Thus, albeit simple looking,
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rich dynamical behaviors have been found, including the fractal basin boundaries
between coexisting competing attractors,® period-doubling transitions to chaos,9~14
hopping cross-well chaotic states induced through attractor-merging crises or
intermittencies,19714 hysterisis jumps,'?~ 14 sudden disappearance of chaotic attrac-
tors through crises,'? 14 and a recurring structure of resonances of large symmetric
orbits and a regular window structure inside a resonance.%:16

In this paper, we investigate the bifurcation behaviors of the forced double-well
Duffing oscillator by varying the two parameters A and w. For the unforced case
of A = 0, there are two stable equilibrium points at (z,z) = (+1,0). However,
as A is increased from 0, a conjugate pair of asyminetric attracting orbits with
period 27 /w (fixed points for the Poincaré map) arises from the “unforced” equi-
librium points. We are particularly interested in the bifurcations associated with
stability of the two asymmetric fixed points of the Poincaré map. So far, only some
partial results on such bifurcations have been obtained in a particular region of
the parameter plane.?12714 Here we make a global and detailed investigation of
the bifurcations associated with resonances of the two asymmetric fixed points to
improve our understanding of the bifurcation behaviors of the forced double-well
Duffing oscillator.

This paper is organized as follows. In Sec. 2, we discuss characterization of local
bifurcations of asymmetric periodic orbits. Bifurcations associated with resonances
of the asymmetric attracting periodic orbits, arising from the two stable equilibrium
points of the potential, are then investigated through numerical calculations of the
Floquet (stability) multipliers!” and torsion numbers,'® characterizng the topolog-
ical property of the local flow, in Sec. 3. We thus obtain the phase diagram showing
rich bifurcation structure in the parameter plane. For the subharmonic resonances,
the associated period-doubling bifurcation curves are folded, along which there are
subcritical and supercritical parts. Diverse bifurcation phenomena such as “period
bubblings” are also observed inside the folded bifurcation curve. For the primary
and superharmonic resonances, the associated saddle-node bifrucation curves form
“horns”, and they lean to the lower frequencies, because the double-well Duffing
oscillator shows soft spring behavior in each potential well. As w is decreased,
resonance horns with successively increasing torsion numbers and asymptotically
“self-similar” shapes appear in the parameter plane, as in many other driven os-
cillators such as the Toda'® and Morse?® oscillators (asymmetric soft oscillators),
the pendulum?! (symmetric soft oscillator), and the single-well Duffing oscillator
(symmetric hard oscillator).?2 It is thus suggested that recurrence of self-similar res-
onance horns be a “universal” feature in the bifurcation structure of many driven
nonlinear oscillators.?3 Finally, a summary is given in Sec. 4.

2. Characterization of Local Bifurcations

For the numerical calculations we transform the second-order ordinary differential
equation (1) into a system of two first-order ordinary differential equations:
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=1y, (2a)
?):f(x,y,t)=—’7y—|—$~w3—l—Acoswt. (2b)
These equations have a symmetry S, because the transformation
T 2
S:x— —x, Yy — Y, t*-)t—i—g [T(period):ljl7 (3)
w

leaves Eq. (2) invariant. If an orbit z(t)[= (x(t),y(t))] is invariant under S, it is
called a symmetric orbit. Otherwise, it is called an asymmetric orbit and has its
“conjugate” orbit Sz(¢). Here we consider only the asymmetric orbits.

For the unforced case of A = 0, there exists a conjugate pair of stable equilibrium
points at (z,y) = (£1,0). However, as A is increased from 0, two asymmetric
attracting orbits with the same period 27w arise from the “unforced” equilibrium
points. We note that they become the asymmetric fixed points of the Poincaré
map P, generated by stroboscopically sampling the orbit points with the external
driving period T. Hereafter, we will denote the asymmetric fixed points by z.
As an example see Fig. 1 showing the phase portraits of the asymmetric periodic
orbits, encircling the two unforced equilibrium points. Linearizing Eq. (2) at (z,y) =
(41,0), we find that the (unforced and undamped) natural frequency wp is V2.
Moving out, the orbits surrounding (+1, 0) have successively longer periods. Hence
the double-well Duffing oscillator near (1, 0) behaves as an asymmetric soft spring.
For the primary (n = 1) and superharmonic (n = 2,3, ...) resonances at w =~ wo/n
(wo = \/5), jump phenomena occur, in which the small asymmetric orbits z; are
replaced by relatively large asymmetric orbits. On the other hand, for w =~ 2wg /n
(n =1,3,5,...) the asymmetric fixed points z; become unstable through the first
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Fig. 1. Phase portrait of two asymmetric attracting orbits with the period 27 /w, arising from
the two stable equilibrium points of the potential, for v = 0.1, w = 3.0, and A = 0.05. The phase
flows of the stable asymmetric orbits are denoted by solid curves, and their Poincaré maps are
represented by solid circles.
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(n = 1) and secondary (n = 3,5,...) subharmonic resonances. Here we study
bifurcations associated with resonances of the asymmetric fixed points z;.

Linear stability of an asymmetric orbit with period ¢ is determined by the
eigenvalues, called the Floquet (stability) multipliers, of the linearized Poincaré
map DP9 of the g-times iterated map P?, which can be obtained using the Floquet
theory.l? Using the Liouville’s formula,?? one can easily show that the linearized
map DP? has a constant determinant, det DP? = e~ 797 . Hence the pair of Floquet
multipliers of an asymmetric orbit with period g lies either on the circle of radius
e~ 79T/2 or on the real axis in the complex plane. The asymmetric orbit is stable
when both Floquet multipliers lie inside the unit circle. We first note that they
never cross the unit circle, except at the real axis and hence Hopf bifurcations do
not occur. Consequently, a stable asymmetric periodic orbit can lose its stability
when a Floquet multiplier passes through 1 or —1 on the real axis. When a Flo-
quet multiplier passes through —1, the stable asymmetric periodic orbit becomes
unstable via a supercritical or subcritical period-doubling (PD) bifurcation. On the
other hand, when a Floquet multiplier passes through 1, a saddle-node (SN) bi-
furcation occurs, where the stable asymmetric orbit disappears through collision
with an asymmetric unstable orbit with the same period g. For more details on
bifurcations, refer to Ref. 25.

There exist many bifurcation curves with the same type (PD or SN) and period
in the parameter plane. For a better distinction and classification, we characterize
each bifurcation not only by the type and period g, but also by another invariant,
the so-called torsion number p, which counts the average rotation number of the
nearby orbits during the period q.'® The torsion number (normalized by the factor
27) at the SN bifurcation curves becomes an integer. However, when crossing a PD
bifurcation curve, not only the period but also the torsion number doubles from an
odd multiple of 1/2 to an odd integer.

Thus our notation for a bifurcation curve, which will be used in Sec. 3, is SN(p, q)
for a period-g SN bifurcation with torsion number p and PD(p, q) for a PD bifur-
cation from period q/2 to period g with torsion number p. We choose the pair of
(p,q) for the PD bifurcation curve as that of the period-doubled orbit to keep p as
an integer. ~

3. Rich Bifurcation Structure

By varying the two parameters A and w, we study the bifurcation behaviors, as-
sociated with resonances of the asymmetric fixed points z}, arising from the two
stable equilibrium points of the potential, for a moderately damped case of v = 0.1.
We determine the stability of the asymmetric fixed points 2z} in the w — A plane
through numerical calculations of the Floquet multipliers and then investigate the
bifurcations at the stability boundary curves in details. The torsion numbers of the
asymmetric fixed points 2} at the bifurcation curves are also obtained to character-
ize their topological properties. Rich bifurcation behaviors are thus found, as will
be seen below.



Bifurcation Structure of the Double-Well Duffing Oscillator 1805

3.1. Bifurcation structure associated with the subharmonic
resonance

For w ~ 2wqg [wo = V2], a subharmonic resonance occurs in which the asymmetric
fixed points z} become unstable by a PD bifurcation. Figure 2 shows the bifurcation
structure associated with the subharmonic resonance. We note that the PD(1,2)
bifurcation curve, corresponding to the first subharmonic resonance, becomes folded
back at a frequency we (=~ 3.23). This is in contrast to the case of the Toda and Morse
oscillators. When crossing the lower part of the folded curve, the asymmetric fixed
points z} become unstable through the PD bifurcations. However, when crossing the
upper part, they become restabilized through the reverse PD bifurcations. Hence
the restabilization of the asymmetric fixed points 2z} is one characteristic feature
for the double-well Duffing oscillator.

The PD bifurcation curves with higher period g = 4,8 are also given in Fig. 2.
They correspond to the beginning of two PD cascades. A sequence of bifurcation
curves in each PD cascade are characterized by a sequence of pairs (pn, gn) which
obey a simple relation,?®

X ;
Po=2"po 32" = (1", g =2"q0 (n=0,1,2,...). (4)

where pg (= 1) and go (= 2) are the basic torsion number and period, respectively.
Both choices of sign are realized by following the two different PD routes of the

L SN(1,2)

1.5 2.0 2.5 3.0

Fig. 2. Bifurcation structure associated with the first subharmonic resonance of the asymmetric
fixed points z2. The symbols PD and SN denote the period-doubling (solid line) and saddle-node
(dashed line) bifurcation curves, respectively. Each curve is also labelled by a pair (p,q); p and g
are the torsion number and period, respectively. For other details, see the text.
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subharmonic resonance:
PD(1,2) — PD(1,4) —» PD(3,8) — - -, (5)
PD(1,2) — PD(3,4) —» PD(5,8) — -- -, (6)

where the second PD route is shown in the inset.

We also note that the classification of the bifurcation curves by the period ¢
and torsion number p is not unique, as is exemplified by the two different PD(5, 8)
curves inside the PD(3,4) curve (see the inset in Fig. 2). Both PD(5, 8) bifurcations
are connected by an unstable orbit with period ¢ = 4, which meets two SN(2,4)
bifurcations on its way to the other PD(5, 8) bifurcation. This can be read from a
bifurcation diagram for the vertical cut at constant w (e.g., see the cut “a” denoted
by a dashed arrow). The SN(2, 4) curves lie in so close vicinity of the PD(5, 8) curves
that they cannot be visible. We therefore give an artificial schematic pictogram
which depicts the vicinity of the meeting point of the two PD(5,8) curves more
clearly in their topological structure. We also note that the structure inside the
PD(3,4) curve may be found in many other oscillators (refer to Fig. 7 in Ref. 18).

As shown in Fig. 2, two different SN(1, 2) curves touch the PD(1, 2) curve at the
boundary points, denoted by the solid circles and decompose it into the supercritical
and subcritical parts. The frequency values at the left and right boundary points
are wp, =~ 1.9 and wp r =~ 2.8, respectively. The PD(1,2) bifurcation is subcritical
on the heavy part between the two boundary points, while it is supercritical on the
other parts.

For a better understanding of the bifurcation structure in Fig. 2, we also present
several bifurcation diagrams obtained by the amplitude scanning for a fixed fre-
quency. We first consider the supercritical case of wp, < w < wg. The bifurca-
tion diagrams for w = 3.0, 2.97, and 2.95 are given in Figs. 3(a), 3(b), and 3(c),
respectively. They show “period-bubblings”. For w = 3.0, with increasing A the
asymmetric fixed point 2z} becomes unstable through a supercritical PD(1, 2) bifur-
cation, giving rise to the birth of a new stable period-doubled orbit. However, as A is
further increased, it becomes restabilized via a reverse supercritical PD(1, 2) bifur-
cation by absorbing the newly-born period-doubled orbit. Consequently, a primary
period-2 bubble is formed in the diagram, as shown in Fig. 3(a). With decreasing
w, this primary bubble bifurcates into secondary period-4 bubbles [see Fig. 3(b)],
which also develop further higher-order bubbles, until fully-bloomed trees appear,
as shown in Fig. 3(c). We note that, as A is increased periodic orbits are both cre-
ated and destroyed, unlike the monotone behavior of the logistic map.?” This kind
of antimonotone behavior of the concurrent creation and destruction of periodic
orbits has been observed in many other physical systems.2®

We next consider the subcritical case of w ] < w < wp r, corresponding to the
heavy part of PD(1,2) curve in Fig. 2. An example for w = 2.6 is given in Fig. 4(a).
Unlike the above supercritical case (wp,r < w < wg), the asymmetric fixed point 2}
loses its stability through a subcritical PD(1, 2) bifurcation by absorbing an unstable
asymmetric orbit of period 2 born via an asymmetric SN(1, 2) bifurcation. However,
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Fig. 3. Bifurcation diagrams (plot of z versus A) starting from a stable equilibrium point at
z = —1 for (a) w = 3.0, (b) w = 2.97, (c) w = 2.95. They show “period bubblings”. Here the solid
line denotes a stable fixed point, while the dashed line represents an unstable fixed point. The
symbols denote the same as those in Fig. 2.

as A is further increased, it becomes restabilized through a reverse supercritical
PD(1, 2) bifurcation by absorbing the stable period-2 orbit born via the asymmetric
SN(1, 2) bifurcation.

In the remaining range of wo < w < wyp,1 in Fig. 2, the asymmetric fixed point
z; becomes unstable through a supercritical PD(1, 2) bifurcation and a new stable
orbit with period 2 appears. However, the fate of the newly-born period-2 orbit
becomes different from the above supercritical case (whbr < w < wf). An example
for w = 1.6 is shown in Fig. 4(b). To show the topological structure more clearly,
we also give the schematic pictogram of the bifurcation diagram in the inset. We
note that the newly-born orbit with period 2 disappears at the upper SN(1,2) bi-
furcation curve through the collision with an unstable period-2 orbit born at the
lower SN(1, 2) bifurcation curve. The subsequent bifurcation behavior is similar to
the above subcritical case (wp) < w < wp,). That is, with further increase of A,
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Fig. 4. Bifurcation diagrams (plot of x versus A) starting from a stable equilibrium point at
xz = —1 for (a) w = 2.6 (subcritical case), (b) w = 1.6 (supercritical case). Here the symbols and
the line type denote the same as those in Figs. 2 and 3, respectively.

the asymmetric fixed point z} becomes restabilized through a reverse supercriti-
cal PD(1,2) bifurcation by absorbing the stable period-2 orbit born at the lower
SN(1, 2) bifurcation curve.

3.2. Bifurcation structure associated with the primary and
superharmonic resonances

With further decreasing w from wo (= v/2), we continue to study the bifurcation
structure associated with resonances of the asymmetric fixed point z7. It is thus
found that the frequency region may be divided into an infinity of subregions R,
(n=1,2,3,...) with similar repeating bifurcation structures.

Each subregion R,, is associated with the nth-order resonance of the asymmet-
ric fixed point z}. As shown in Fig. 5(a), there exists the primary resonance horn
with a cusp at w =~ wyp in the first subregion R; between w ~ 1.34 and w ~ 0.66.
We note that a pair of SN(1, 1) bifurcation curves form the contour of the horn.
Within this primary resonance, a secondary subharmonic response occurs at the
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Fig. 5. Recurrence of self-similar resonance horns, associated with the primary and superhar-
monic resonances. The symbols denote the same as those in Fig. 2. For other details, see the
text.

PD(3, 2) curve with a sharp nose at w =~ 0.8. As in the case of the first subharmonic
resonance explained in Subsec. 3.1, two SN(3,2) curves touch the PD(3, 2) curves
at the boundary points, labelled by the solid circles. Between these two boundary
points, the PD(3,2) bifurcation is subcritical and otherwise supercritical. These
resonance horn and subharmonic resonance recur in a similar shape with decreas-
ing w. Figures 5(a) and 5(b) show a recurrent structure of the second and third
resonance horns, corresponding to the superharmonic resonances of the second and
third orders, and secondary subharmonic responses within them in the subregions
Ry and Rj3. These resonance horns lean to the lower frequencies, which is a typ-
ical characteristic for the soft spring. We also note that recurrence of self-similar
resonance horns occurs in many other driven oscillators such as the Toda, Morse,
pendulum, and single-well Duffing oscillators.

In each subregion R,, as the driving amplitude A is increased, the asym-
metric fixed point 2z} eventually disappears at the upper SN(n,1) curve through
the collision with the unstable asymmetric fixed point born at the lower SN(n, 1)
curve. Moreover, in some subpart of R,, subharmonic resonance occurs before the
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Fig. 6. Bifurcation diagrams (plot of z versus A) starting from a stable equilibrium point at
z = —1 for w = 1.2, 0.62, and 0.415 are given in (a), (b), and (c), respectively. They show jump
phenomena, associated with the primary and superharmonic resonances. Here the symbols and
the line type denote the same as those in Figs. 2 and 3, respectively.

disappearance of z. As examples, we first consider the cases of w = 1.2,0.62, and
0.415 without the subharmonic resonances. Three bifurcation diagrams for those
cases are given in Figs. 6(a), 6(b) and 6(c), respectively. For each case, the asym-
metric stable fixed point 2z}, arising from z = —1, disappears through the SN(n, 1)
bifurcation by absorbing the unstable asymmetric fixed point born at the lower
SN(n, 1) bifurcation curve (n = 1,2,3). Then, a jump resonance occurs, in which
z¥ is replaced by the stable asymmetric fixed point zJ, born at the lower SN(n, 1)
bifurcation curve with torsion number n. The phase portrait of zJ;, and its time evo-
lution for some A are given in Fig. 7 (Figs. 7(a) and 7(b) for w = 1.2, Figs. 7(c) and
7(d) for w = 0.62, and Figs. 7(e) and 7(f) for w = 0.415). Note that with decreas-
ing w, the asymmetric periodic orbits zZ,, associated with the nth-order resonance,
possesses an increasing number of loops (see the phase portraits in the left column).
The waveform of = for w = 1.2 corresponds to the harmonic response, while the sec-
ond and third waveforms for w = 0.62 and 0.415 correspond to the superharmonic
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Fig. 7. Phase portraits (shown in the left column) and time evolutions z(7) (shown in the right
column. 7 is a time normalized to the external driving period T' (= 27 /w), i.e., 7 = t/T) for
w = 1.2 and A = 0.12 in (a) and (b), w = 0.62 and A = 0.25 in (c¢) and (d), and w = 0.415 and
A =0.31 in (e) and (f).

responses of second and third orders, respectively (see the time evolutions of z in
the right column).

Finally, we discuss the subharmonic responses within the resonance horns. As
shown in Fig. 5, there exists the PD(2n + 1,2) curve with a sharp nose within
the SN(n,1) resonance horn (n = 1,2,3). Note that the bifurcation structures,
associated with these secondary subharmonic resonances, are similar to the struc-
ture, associated with the first subharmonic resonance (see Fig. 2). That is, two
SN(2n+1,2) curves strike the PD(2n+1, 2) curve at the boundary points, denoted
by the solid circles. The PD(2n + 1,2) bifurcation is subcritical on the part of the
PD(2n + 1,2) curve between the two boundary points, whereas it is supercritical
on the other parts. Thus, when crossing the lower part of the folded PD(2n + 1, 2)
curve, the stable asymmetric fixed point 2z} becomes unstable via a subcritical or
supercritical PD, while it becomes restabilized through a supercritical PD when
crossing the upper part of the folded PD(2n + 1, 2) curve. However, such a restabi-
lized fixed point z} eventually disappears at the upper SN(n, 1) curve.
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4. Summary

We have made a detailed investigation of bifurcations associated with resonances
of the asymmetric fixed points z}, arising from the two stable equilibrium points
of the potential, in the double-well Duffing oscillator. A phase diagram showing
rich bifurcation structure, characterized by the bifurcation type (PD or SN), pe-
riod ¢, and torsion number p, has been thus obtained in the w — A plane. For the
subharmonic resonances, the associated PD bifurcation curves become folded, along
which there exist subcritical and supercritical parts. Diverse bifurcation phenomena
such as period bubblings have been also observed. For the primary and superhar-
monic resonances, the associated SN bifurcation curves form horns, leaning to the
lower frequencies. With decreasing w, resonance horns with successively increasing
torsion numbers repeat in a similar shape, as in many other driven oscillators such
as the Toda, Morse, pendulum, and single-well Duffing oscillators. It is thus sug-
gested that recurrence of self-similar resonance horns be a “universal” feature in
the bifurcation structure of many driven nonlinear oscillators.
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