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We study the scaling behavior of M-furcation (M =2, 3,4,...) sequences of M™-periodic
(n =1,2,...) orbits in two coupled one-dimensional (1D} maps. Using a renormalization
method, how the scaling behavior depends on M is particularly investigated in the zero-
coupling case in which the two 1D maps become uncoupled. The zero-coupling fixed
map of the M-furcation renormalization transformation is found to have three relevant
eigenvalues 8§, o, and M (6 and « are the parameter and orbital scaling factors of 1D
maps, respectively). Here the second and third ones, a and M, called the “coupling
eigenvalues”, govern the scaling behavior of the coupling parameter, while the first one
§ governs the scaling behavior of the nonlinearity parameter like in the case of 1D maps.
The renormalization results are also confirmed by a direct numerical method.

1. Introduction

Universal scaling behaviors of M-furcation (M = 2,3,4,...) sequences of M"-
cycles {n = 1,2,...) (i.e. M"-periodic orbits) have been found in a one-parameter
family of one-dimensional (1D) unimodal maps with a quadratic maximum. As an
example, consider the logistic map

Ty = fle) =1- Azf, (1)

where t denotes the discrete time. As the nonlinearity parameter A is increased
from 0, a stable fixed point undergoes the cascade of period-doubling bifurcations
accumulating at a finite parameter value Ao (= 1.401155 ...). The bifurcation
sequence corresponding to the MSS (Metropolis, Stein, and Stein') sequence R*"
(for details of the MSS sequences and the (x)-composition rule, see Refs. 1 and 2)
exhibits an asymptotic scaling behavior.3

What happens beyond the bifurcation accumulation point A, is interesting
from the viewpoint of chaos. The parameter interval between A, and the final
boundary-crisis point A.(= 2) beyond which no periodic or chaotic attractors can
be found within the unimodality interval is called the “chaotic” regime. Within this
region, besides the bifurcation sequence, there are many other sequences of periodic
orbits exhibiting their own scaling behaviors. In particular, every primary pattern
P (that cannot be decomposed using the (*)-operation) leads to an MSS sequence
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P*". For example, P = RL leads to a trifurcation sequence of 3"-cycles, P = RL?
to a tetrafurcation sequence of 4™-cycles, and the three different P = RLR?, RL?R,
and RL? to three different period-5" sequences. Thus there exist infinitely many
higher M-furcation (M = 3,4,...) sequences inside the chaotic regime. Unlike the
bifurcation sequence, stability regions of periodic orbits in the higher M-furcation
sequences are not adjacent on the parameter axis, because they are born by their
own tangent bifurcations. The asymptotic scaling behaviors of these (disconnected)
higher M-furcation sequences characterized by the parameter and orbital scaling
factors, § and a, vary depending on the primary pattern P.%4 11

In this paper we consider two symmetrically coupled 1D maps. This coupled
map may help us understand how coupled oscillators, such as Josephson-junction
arrays or chemically reacting cells, exhibit various dynamical behaviors.}2-1* We are
interested in the scaling behavior of M-furcations (M = 2,3,...) in the two coupled
1D maps. The bifurcation case (M = 2) was previously studied in Refs. 15-20. Here
we extend the result for the bifurcation case to all the other higher multifurcation
cases with M = 3,4,... in the zero-coupling case where the two 1D maps become
uncoupled. In Sec. 2 we investigate the dependence of the scaling behavior on
M using a renormalization method. It is found that the zero-coupling fixed point
of the M-furcation renormalization transformation has three relevant eigenvalues
8, a and M. The scaling behavior of the coupling parameter is governed by two
coupling eigenvalues {CE’s) a and M, while the scaling behavior of the nonlinearity
parameter is governed by the eigenvalue é like in the case of 1D maps. As an
example, we numerically study the scaling behavior of the coupling parameter in
the trifurcation sequence in Sec. 3 and confirm the renormalization results. Finally,
a summary is given in Sec. 4.

2. Renormalization Analysis

In this section we first introduce two coupled 1D maps and discuss stability of
orbits, and then study the scaling behavior of M-furcations (M = 2,3,...) in the
zero-coupling case using the renormalization method developed in Refs. 15 and 19.
It is found that there exist three relevant eigenvalues 8, o and M. As in the case
of 1D maps, the scaling behavior of the nonlinearity parameter is governed by the
eigenvalue ¢, irrepectively of coupling. However, the scaling behavior of the coupling
parameter depends on the nature of coupling. In a linear-coupling case, in which the
coupling function has a leading linear term, it is governed by two CE’s, o and M,
whereas it is governed by only one CE, M, in the other cases of nonlinear coupling
with leading nonlinear terms.
Consider a map T consisting of two symmetrically coupled 1D maps,

Jwers = Flae,ye) = f(ze) + gz, 38),
T {'UH-I = F(ys, ) = f(ye) + 9(ws, x2), (2)

where f(x) is a 1D unimodal map with a quadratic maximum at z = 0, and g(z, y)
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is a coupling function. The uncoupled 1D map f satisfies a normalization condition
f(0) =1, (3)

and the coupling function g obeys a condition
g{x,z) =0 forany . (4)

The two-coupled map (2) is invariant under the exchange of coordinates such
that z ++ y. The set of all points which are invariant under the exchange of coordi-
nates forms a symmetry line ¥y = z. An orbit is called an “in-phase” orbit if it lies
on the symmetry line, i.e. it satisfies

, =y forallt. (5)

Otherwise it is called an “out-of-phase” orbit. Here we study only in-phase orbits,
which can be easily found from the uncoupled 1D map, z:43 = f(z:), because of
the condition (4). '
Stability of an in-phase orbit with period p is determined from the Jacobian
matrix J of TP, which is the p-product of the Jacobian matrix DT of T along the

orbit:
P E Hz) — G{xy Gz,
J=][DT(ze,2ze) =[] (f (IC);(QJt) = f'(mt)(icc);(xf)) ’ ©

t=1 t=1
where the prime denotes a derivative, and G(z) = 9¢(z,y)/0y |y=<; hereafter, G(z)
will be referred to as the “reduced coupling function” of g(z,y). The eigenvalues of
J, called the stability multipliers of the orbit, are

P P '
Ay = H fize), A= H[f’(f‘:t) - 2G(z¢)]. (7)
t=1 t=1

Note that the first stability multiplier A; is just that of the uncoupled 1D map and
the coupling affects only the second stability multiplier A.

An in-phase orbit is stable only when the moduli of both multipliers are less than
or equal to unity, i.e. —1 < A; < 1fors = 1,2. A tangent (period-doubling) bifurca-
tion occurs when each stability multiplier A; increases (decreases) through 1 (—1).
Hence the stable region of the in-phase orbit in the parameter plane is bounded by
four bifurcation lines associated with tangent and period-doubling bifurcations (i.e.
those curves determined by the equations A; = +1 for i = 1,2).

We now consider the M-furcation renormalization transformation A, which is
composed of the M-times iterating (7)) and rescaling (B) operators

N(T)=BT™B !, (8)

=3 2)

because we consider only in-phase orbits.

Here the rescaling operator B is
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Applying the renormalization operator A to the coupled map (2) n times, we
obtain the n-times renormalized map T, of the form

Tn ; {:Et‘i'l = Fn(:‘ctvyt) = fn($t) + gn(mtﬂ yf)’ (10)

Yer1 = Fo(ye, Te) = fu(ye) + gnlye, ).

Here f. and g, are the uncoupled and coupling parts of the n-times renormalized
function F,,, respectively. They satisfy the following recurrence equations

fara(@) = af (2} (1)
gns1(2,9) = aFM (2, 2) _aph0) (2 (12)

where fi')(z) = fo(#8 (@) and FM(2,3) = Fa(FM ) (2,9), F* (g, 2)).
The recurrence relations (11) and (12) define a renormalization operator R of
transforming a pair of functions (f, g)

(o) =m(f). 13)

The renormalization transformation R obviously has a fixed point (f*,g*) with
g*(z,y) = 0, which satisfies R(f*,0) = (f*,0). Here f* is just the 1D fixed function
satisfying

@) =aft0 (23, (14)

where a = 1/f*(*=1)(1), due to the normalization condition (3), and it has the
form

ffley=1+ciz* +cha + - -, (15)

where c}’s ( = 1,2,...) are some constants. The fixed point (f*,0) governs the
critical behavior near the zero-coupling critical point because the coupling fixed
function is identically zero, i.e. g*(z,y) = 0. Here we restrict our attention to this
zero-coupling case.

Consider an infinitesimal perturbation (k, ) to the zero-coupling fixed point
(f*,0). We then examine the evolution of a pair of functions (f*+ h,¢) under R.
Linearizing R at the zero-coupling fixed point, we obtain a linearized operator L of
transforming a pair of perturbations (h, ¢)

(Z:ﬂ) 2‘:(::) = (If) co) (f;) (16)
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where
hni1(z) = [Lubn)(®) (17)
et (2) a [0 (2) 50 (D), o
- (f*(M—l) (_z_)) §fM-1) (a) + ah, (f*(M—l) (2)) , (19)
en+1{z,y) = [Lepn](z, ) (20)
-asrt (£.4) - 0 (] = [0 (5.

A, a

- (0 (2)) o[ (2.2) - 100 (3]
v (0620 () 000 (). @

Here the variations 6an (£) and 8[F. (M)( - f(M)( 23] are introduced as the lin-
ear terms (denoted by [f',(lM)( ) — *(M £ linear and [F(M}(; Ly— f(M)( Vhisiae,)
in k and ¢ of the deviations of f{(2) and FiM(z 3y - M2 from fr(M)(2)
and 0, respectively. A pair of perturbations (h*,¢*) is then called an eigenpertur-
bation with eigenvalue v, if it satisfies

(5)-e(2)

h*(z) = [Luh"](=), (24)
o™ (z,y) = [Lep"](z,9)- (25)

i.e.

The eigenperturbations of the linear operator £ can be divided into two classes.
The first class of eigenperturbations are of the form (h*,0). Here h*(z) is an eigen-
function of the linear “uncoupled operator” L, satisfying Eq. (24), which is just
the eigenvalue equation in the uncoupled 1D case. It has been found in Refs. 5, 6
and 8 that there exists a unique eigenfunction A*(z) with (noncoordinate change)
relevant eigenvalue §, associated with scaling of the nonlinearity parameter.

The second class of eigenperturbations have the form (0, p*), where ¢*(x) is an
eigenfunction of the linear “coupling operator” L, satisfying Eq. (25). However, it
is not easy to directly solve the coupling eigenvalue equation (25). We therefore
introduce a tractable recurrence equation for a “reduced coupling eigenfunction ”
of ¢*(x,y), defined by

$*(x) Q(’O*EE%)_ . (26)
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Differentiating Eq. (25) with respect to y and setting y = x, we obtain an eigenvalue
equation for a reduced linear coupling operator £,

v ®*(z) = [£.8%](x) (27)
=70 (5) = (7 (D)), (28)
=57 (e () I Q) (B (reen ().

(29)

Here F(z,y) = f*(z) + ¢*(z,y), Fi™(z) is a “reduced function” of FM)(z,y)
defined by F(M)(:z:) = OFM)(2,y)/8y|y=, and the variation 6F(M)(g) is also
introduced as the linear term (denoted by [F2( M)(ﬁ)]linear) in ®* of the deviation of
F(M)( £} from 0.

In the case M = 2, the variation 6F(2)( ) of Eq. (28) becomes

B (@)= Q@) Qe () e

Substituting 6F2(2)(§) into Eq. (29), we have 6F2(3)(§) for M = 3, which consists
of three terms,

o2 (2) = (2) (1 () (0 (2)
(2w (@) (0 )
@) o

Repeating this procedure sucessively, we obtain §F, " (%) for a general M, com-
posed of M terms,

) B Qe (e Q) )

o () (1 (2) +
Ok ( ) ( *(:)( )) (M —i=1)! ( *(1+1)(a))+..

O (o 0 () &

where f(O(z) = z.
Using the fact that f*'(0) = 0, it can be easily shown that when z = 0, the
reduced coupling eigenvalue equation (29) becomes

M-1

v®*(0) = [H f*'(f*“)(O))] ©*(0). (33)

=1



Differentiating the 1D fixed-point equation (14) with respect to  and then letting
x — 0, we also have

T o6 ()
[1 770 0) = lim sy = o (34)

Then Eq. (33) reduces to
v ®*(0) = a®*(0). (35)

There are two cases. If the coupling eigenfunction ¢*(x,y) has a leading linear
term, its reduced coupling eigenfunction ®*(z) becomes nonzero at x = 0. For this
case ®*(0) # 0, we have the first CE

¥ = Q. (36)
The eigenfunction ®3(z) with CE v, is of the form
drz)=1+ajz+alz®+---, (37)

where a!’s (1 = 1,2,...) are some constants. For the other case $*(0) = 0, it is
found that f*'(z) is an eigenfunction for the reduced coupling eigenvalue equation
(29). Since Eq. (32) for the case &*(z) = f*'(x) becomes

50 (2) <! (2). =

the reduced coupling eigenvalue equation (29) reduces to
vf*'(x) = Mf*(z). (39)
We therefore have the second relevant CE
ve =M, (40)
with reduced coupling eigenfunction

®5(z) = f'(2). (41)

Note that ®%(x) has no constant term, while $(z) has a constant term.

It is also found that there exists an infinite number of additional (coordinate
change) reduced eigenfunctions f*'(z)[f*(z) — z!] with irrelevant CE’s o™ (I =
1,2,...), which are associated with coordinate changes.’®!? We conjecture that
together with the two (noncoordinate change) relevant CE's (v; = a, v2 = M),
they give the whole spectrum of the reduced linear coupling operator L. of Eq. (27)
and the spectrum is complete.

In order to examine the effect of CE’s on the M-furcation sequences, we consider
an infinitesimal coupling perturbation

g(z,y) = c p(z,9) (42)



to a critical map at the zero-coupling critical point, in which case the two-coupled
map has the form

43
Yi+1 =F(ytal‘z)=ng41(yt)+9(yt,$t), (43)

T {»’Ct+1 = F(x1,9¢) = ng_{W)(CUt) + g(z¢, 41,
where Agﬂl) denotes the accumulation value of the parameter A for the M-furcation
case, and c is an infinitesimal coupling parameter. The map 7 at ¢ = 0 is just
the zero-coupling critical map consisting of two uncoupled 1D critical maps. It is
attracted to the zero-coupling fixed map 7§ consisting of two uncoupled 1D fixed
maps, i.e.

T5 : zeer = 1 (24), yer1 = [T (we), (44)

under iterations of the M-furcation renormalization transformation A of Eq. (8).
The reduced coupling function G(z) of g(z. y) is given by (see Eq. (26))

G(z) =c®(z) = c@p—gcji) ; (45)

y=c
We choose monomials z* (I =0,1,2,...) as initial reduced functions ®(z), because
any smooth function ®(x) can be represented as a linear combination of monomials
by a Taylor series. Expressing ®(z) = ! as a linear combination of eigenfunctions
of £., we have

o(z) = ' = m®i(2) + 2 f (&) + D _Buf (@) (z) - ), (46)

=1

where o and ay are relevant components, and all 3;’s are irrelevant ones. The nth
image @, of ¢ under the reduced linear coupling operator £. of Eq. (27) has the
form

o, (z) = [L29](2)

> ayvP 87 (z) + vy f*'(z) for large n, (47)

because the irrelevant part of ®,, becomes negligibly small for large n.

A coupling is called linear or nonlinear according to its leading term. In the
case of a linear coupling, in which the coupling function ¢(z,) has a leading linear
term, its reduced coupling function ®(z) has a leading constant term (e.g. ®(z) =1
corresponds to a linear coupling case). However, for any other case of nonlinear
coupling with a leading nonlinear term, its reduced coupling function contains no
constant term (e.g. ®(z) = z' (I > 1) corresponds to a nonlinear coupling case).
Hence the first relevant component a; becomes zero for { > 1, although it is nonzero
for { = 0. It is therefore expected that the scalig behavior of the coupling parameter
may be governed by the two relevant CEs 1; = a and v, = M for the linear-coupling



case (I = 0), but by only the second relevant CE v, = M for the other nonlinear-
coupling cases (I > 1).

3. Numerical Analysis

Taking the trifurcation case with A/ = 3 as an example, we numerically study the
scaling behavior of the coupling parameter in the two coupled 1D maps (43) with
f(z) = 1 - Az? and g(z,y) [= c p(z)] = £(F™ —z™) (m = 1,2,...). In this
trifurcation case, we consider two kinds of coupling, linear and nonlinear coupling
cases, and confirm the renormalization results.

As an example of the linear-coupling case, we consider linearly coupled maps,
i.e. g(z,y) = ¢ (y — z). Figure 1 shows the stability regions of in-phase orbits with
period p = 3" (n = 1,2,3) near the ¢ = 0 line. Note that Figs. 1(a), 1(b) and 1(c)
nearly coincide near the zero-coupling point except for small numerical differences.
It is therefore expected that the height and width h, and w, of the stability region
of level n may geometrically contract in the limit of large n,

n

B~ 6", wy,~a " forlargen, (48)

where 6 = 55.247026... and a = —9.277341.... Hereafter the sequence of these
stability regions will be referred to as a “trifurcation route”.

We also follow the in-phase orbits of period p = 3™ up to level » = 10 in the
trifurcation route, and obtain a self-similar sequence of parameters (A,,c,), at
which the orbit of level » has some given stability multipliers (A1, A2) (e.g. Ay = —1
and A; = 1). Then the sequence {(An,cn)} converges geometrically to the zero-
coupling critical point (A*,0) (4* = A = 1786440255 563639 354 534447 . ..).
In order to see the convergence of each of the two scalar sequences {A,} and {c,.},
define 6, = -A—f—zf—l and p, = AX:ﬂ‘ , where AA,, = A, — An_1 and Acp, = crn—cCp_t1.

Then they converge to their limit values & and u respectively, as shown in Table 1.
Hence the two sequences {A,} and {c,} obey one-term scaling laws asymptotically

AA, ~67", Acp, ~u™ ™ forlargen, (49)

where § = 55.247... and p = —9.277... . Note that the value of the coupling-
parameter scaling factor 4 is close to that of the first CE vy (= «).

In order to take into account the effect of the second relevant CE v (= 3) on
the scaling of the sequence {Ac,}, we extend the simple one-term scaling law (49)
to a two-term scaling law 2!

Ac, ~ Cipy™ 4 Copy ™ for large n, (50)

where |ua| > |1, and C; and Cz are some constants. This is a kind of multiple
scaling law.?? Eq. (50) gives

Ac, = t1Acpy1 — taAcnya, (51)
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Fig. 1. Stable regions of the in-phase orbits with period p = 3" (n =1,2,3) in two linearly coupled
1D maps. The cases n = 1,2, and 3 are shown in (a), (b) and (c), respectively. Each stable region
is bounded by solid period-doubling bifurcation curves and dashed tangent bifurcation curves. The
scaling factors used in (b) and (c) are § = 55.247 026 and & = —9.277 341.
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Table 1. In a linear-coupling case, we followed a sequence of parameters (An,cn) at which the
pair of stability multipliers (A1 n,Ag,n) of the orbit of level n {period 3™) is (—1,1). This sequence
converges to the zero-coupling critical point (A*,0) with the scaling factors shown in the second
and third columns.

n bn Hn

3 55.26478971 —9.27261
4 55.24577151 —9.27920
5 55.24711093 -9.276 71
6 55.24702084 —9.27755
7 55.247026 98 —9.27727
8 55.247026 56 —9.27736
9 55.247026 59 —9.27733

where t; = u; + p2 and to = pyps. Then py and po are solutions of the following
quadratic equation
;1,2 —tip+ta =0 (52)

To evaluate p; and pg, we first obtain t; and t; from Ac,’s using Eq. (51)

_ ACnACn+1 - ACn_1ACn+2

ty = (53a)

AcZ, | — Acnlcnyi
_ Ac: — Acpy1Acn-y

ty = .
Ack | — AcnAcnya

(53b)

Note that Egs. (50)—(53) hold only for large n. In fact the values of ¢;’s and
pi's (¢ = 1,2) depend on the level n. Therefore we explicitly denote t;’s and u;’s by
tin's and ;s respectively. Then each of them converges to a constant as n — oo:

lim t;,, =¢;, lm p;, =y, 1=1,2. (54)

Three sequences {yi1,n}, {#t2.»}, and {u? . /u2 .} are shown in Table 2. The sec-
ond column shows rapid convergence of y , to its limit values p; (= —9.277341...),
which is close to the renormalization result of the first relevant CE 14 (= a). (Its
convergence to « is faster than that for the case of the above one-term scaling law.}
From the third and fourth columns, we also find that the second scaling factor us
is given by a product of two relevant CE’s v, and v

_u

K= (55)

where v = p; and ¥, = 3. It has been known that every scaling factor in the

multiple-scaling expansion of a parameter is expressed by a product of the eigen-
values of a linearized renormalization operator.?? ‘
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Table 2. Scaling factors g1, and p3 n in the two-term scaling for the coupling parameter are

2
M . .

% is shown in the
Han

shown in the second and third columns, respectively. A product of them,

fourth column.

Hin
n Hln H2n ﬁ;‘:
—9.277 396 06 24.578 89 3.50179
-9.27733731 27.76852 3.09952
—9.277 341 36 28.502 38 3.01972
—9.27734110 28.650 77 3.00408

—9.27734112 28.681 53 3.000 85

X =] D o

The nonlinear-coupling case is studied with an example of quadratically coupled
maps, i.e. g(z,y) = 5(y* — z?). From Eq. (7), in this quadratic-coupling case the
stability multipliers of in-phase orbits with period p = 3™ become

P

/\1'71(14) = H f’(xt), Ag’n(A,C) = (]_ <k %)PAI,”L‘ (56)

t=1

Let the pair of stability multipliers at a point (A,,¢,) be (A1 ., A2,). Then there
exists a “conjugate point” (A,, —c, —24,), at which the pair of stability multipliers
becomes (A1 n, —A2.). For ¢, = —A,, A2n = 0 and the two conjugate points
become degenerate.

Figure 2 shows the stability diagram for the quadratic-coupling case. Like the
linearly-coupled case, we also follow a self-similar sequence of parameters (A,,c,),
at which the orbit of level n has some given stability multipliers (A;, Az). Without
loss of generality we choose A; = —1. Then one can find a pair of mutually conjugate
sequences, depending on the value of A;. One sequence {(A,,c,)} can be obtained
by fixing —1 < Ay < 0, which converges to the zero-coupling critical point (A*,0).
Its “conjugate sequence” can also be obtained by following period-3™ orbits with
Az2n = —Ag. This kind of conjugate sequence {(A,, —c, — 24,)} converges to the
other critical point (A*, -2 4*) (i.e. the conjugate point of the zero-coupling critical
point).

As an example, consider the case A, = —0.5. The two conjugate sequences
are denoted by the open up- and down-triangles in Fig. 2. We first consider the
convergence of the sequence denoted by the uptriangles converging to the zero-
coupling critical point. As shown in Table 3, the two sequences {A4,} and {c,}
obey well the one-term scaling law

AA, ~87" Acy, ~ ™" for large n, (57)
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Fig. 2. Stable regions of the in-phase orbits with period p = 3™ (n = 1,2,3) in two quadratically
coupled 1D maps. Each stable region is bounded by solid period-doubling bifurcation curves
and dashed tangent bifurcation curves. The up- and down-triangles denote mutually conjugate
sequences; the sequence denoted by uptriangles converges to the zero-coupling critical point {A*, 0},
whereas the other one denoted by downtriangles converges to the other critical point (A*, —247)
conjugate to {A*,0).

Table 3. In a quadratic-coupling case, we followed a sequence of parameters {A,,c,) at which
the pair of stability multipliers (A n, A2 n) of the orbit of level n (period 3™) is (—1, —0.5). This
sequence converges to the zero-coupling critical point ( A*,0) with the scaling factors shown in the
second and third columns.

n 671, Hn

3 5526478971  2.89855
4 5524577151  2.96598
5 5524711093  2.98862
6 5524702084  2.99620
7 5524702698  2.99873
8  55.24702656  2.99958
9 5524702659  2.99986

where § = 55.247... and p = 2.999... . Note that the value of the coupling

parameter scaling factor g is close to that of the second CE v, (= 3), which is in
contradistinction to the linearly-coupled case (see Eq. (49)). Hence the first CE v,
is not involved in the scaling of the coupling parameter ¢ for the nonlinear coupling
case.

Finally, we briefly mention the scaling of the sequence denoted by the down-
triangles converging to the conjugate critical point (A*, —2A*). It is easy to see
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that the scaling of the coupling-parameter sequence {—c, —24,} is asymptotically
governed by the second CE v (= 3)

—Cp— 24, ~Cry, "+ Co6™ ™ ~ vy, " for large n, (58)

because é > v,, and € and C5 are some constants. Hence the scaling behavior
of the coupling parameter is the same -as that at the zero-coupling critical point.
The critical map at the critical point (A*, —2A%} is attracted to a fixed map T*, ,.
conjugate to the zero-coupling fixed map T}

TZoae 0 Top1 = fY (), w1 = fH(z), (59)

under iterations of the trifurcation (M = 3) renormalization transformation A of
Eq. (8). The fixed map T*, ,. has the same relevant CE’s as those of 7}}. In reality,
the straight line connecting the two conjugate points (A*,0) and (A*, —2A4%) is
a critical one. The critical behaviors at all interior points of the critical line is
governed by another fixed map T 4. (which can be obtained by directly iterating
the critical map at (A*, —A*)),

, o Y . /$2+y2)
Ta-A':xt+1:f( t2 t)a yt+1=f( % - (60)

Unlike the two conjugate fixed maps Tj and T, 4., the fixed map T ,. has no
relevant CE’s. Since T~ 4. has only one relevant eigenvalus ¢ like the case of the
uncoupled 1D map, the critical behavior at interior points is essentially the same
as that for the uncoupled 1D case. The details of the scaling behavior at critical
points other than the zero-coupling critical point will be given elsewhere.?3

4. Summary

The scaling behavior of M-furcations is studied in two symmetrically coupled 1D
maps. Using a renormalization method, the dependence of the scaling behavior on
M is particularly investigated in the zero-coupling case. It is found that the zero-
coupling fixed map of the M-furcation renormalization operator has three relevant
eigenvalues §,  and M. As in the case of 1D maps, the eigenvalue § governs the
scaling behavior of the nonlinearity parameter, irrespectively of coupling. However,
the scaling behavior of the coupling parameter depends on the nature of coupling.
In a linear-coupling case, it is governed by two CE’s a and M, whereas it is governed
by only one CE, M, in the case of a nonlinear-coupling case. Taking the trifurcation
case as an example, we also study the scaling behavior of the coupling parameter by
a direct numerical method and confirm the renormalization results. The relevance
of the results on the critical behaviors of M-furcations to the global behavior of
coupled maps will be investigated in future.
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