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Equalization Effect in Interpopulation
Spike-Timing-Dependent Plasticity
in Two Inhibitory and Excitatory
Populations

Sang-Yoon Kim and Woochang Lim

Abstract We consider two inhibitory (I) and excitatory (E) populations with I to E
and E to I interpopulation spike-timing-dependent plasticity (STDP). By changing
the noise intensity D, we study the effect of interpopulation STDPs on fast sparsely
synchronized rhythms that appear in the two I- and E-populations. Long-term poten-
tiation (LTP) and long-term depression (LTD) for population-averaged values of
saturated interpopulation synaptic strengths are thus found to take place. Then, the
degree of fast sparse synchronization changes due to the effects of LTP and LTD. In
a broad region of intermediate D, the degree of good synchronization (with larger
synchronization degree) gets decreased. On the other hand, in a region of large D,
the degree of bad synchronization (with smaller synchronization degree) becomes
increased. As a result, an “equalization effect” in interpopulation synaptic plasticity
occurs in each I- or E-population, where the synchronization degree gets nearly the
same in a wide range of D.

1 Introduction

We are interested in fast sparsely synchronized rhythms, related to various cog-
nitive functions (Wang, 2010). This kind of fast sparse synchronization has been
much studied in diverse aspects (Wang, 2010; Fisahn et al., 1998; Brunel & Wang,
2003; Geisler et al., 2005; Brunel & Hakim, 2008). In such previous works, synap-
tic coupling strengths were static. However, in real brains, synaptic strengths may
be potentiated (LTP) or depressed (LTD) to adapt to the environment. This kind of
adjustment of synaptic strength is called the synaptic plasticity which gives the basis
for learning, memory, and development (Abbott & Nelson, 2000).
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Here,we take into consideration, spike-timing-dependent plasticity (STDP) (Song
et al., 2000). For the STDP, the synaptic strengths change depending on the relative
time difference between the post- and the pre-synaptic spike times. In our recent
works (Kim & Lim, 2018), the effects of inhibitory STDP (at I to I synapses) on
fast sparse synchronization have been studied in networks of inhibitory fast spiking
interneurons.

In contrast to the previous work on the I to I intrapopulation STDP, we consider
interpopulation (I to E and E to I) STDPs between the I- and the E-populations. By
changing the noise intensity D, we study the effects of interpopulation STDPs on fast
sparse synchronization. In Sect. 2, the two I- and E-populations with interpopulation
STDPs are described. Then, in Sect. 3, we investigate the effects of interpopulation
STDPs on fast sparse synchronization. Finally, summary and discussion are given in
Sect. 4.

2 Two I- and E-Populations with Interpopulation Synaptic
Plasticity

As in the Ref. (Kim & Lim, 2020), we consider clustered small-world networks
(SWNs) consisting of the I- and E-populations. Each I(E)-population is modeled as
a directed Watts–Strogatz SWN (Watts & Strogatz, 1998), composed of NI (NE )
(NE : NI = 4 : 1) interneurons (pyramidal cells). Connections between the I and
the E SWNs are done in random and uniform way. The Izhikevich inhibitory fast
spiking interneuron (excitatory regular spiking pyramidal cell) model (which is not
only biologically plausible, but also computationally efficient (Izhikevich, 2007))
is chosen as elements in the I SWN (E SWN). Particularly, external noise (i.e.,
background noise) in our model denotes stochastic fluctuations of random external
inputs from other brain regions (not included in the network). It is modeled in terms
of a Gaussian white noise in the governing equations for our system, and its intensity
is controlled by the parameter D. For the whole parameters used in our computations,
refer to Table 1 in Kim and Lim (2020).

The coupling strength of the synapse from the pre-synaptic neuron j in the source
Y -population to the post-synaptic neuron i in the target X -population is J (XY )

i j . Initial

synaptic strengths are normally distributed with the mean J (XY )
0 and the standard

deviation σ0 (= 5); J (I I )
0 = 1300, J (EE)

0 = 300, J (E I )
0 = 800, and J (I E)

0 = 487.5.
The I to I synaptic strength (J (I I )

0 = 1300) is so strong that fast sparse synchronization
may appear in the I-population via balance between strong inhibition and strong
external noise (Wang, 2010; Brunel & Wang, 2003; Geisler et al., 2005; Brunel &
Hakim, 2008). This I-population is a dominant one, since J (I I )

0 is much stronger than
the E to E synaptic strength (J (EE)

0 = 300). Moreover, the I to E synaptic strength
(J (E I )

0 = 800) is so strong, and hence fast sparse synchronization may also occur in
the E-population when the noise intensity D passes a threshold. In contrast, the E to
I synaptic strength (J (I E)

0 = 487.5) is small in comparison with J (E I )
0 , and hence the
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effects of the E-population to the I-population are small. In this way, we consider an
inhibition-dominated case.

Here, we consider only the I to E and E to I interpopulation synaptic plasticity; in
this case, intrapopulation synaptic strengths are static. For the interpopulation synap-
tic strengths {J (XY )

i j }, we take into consideration a multiplicative STDP (dependent
on states) (Kim & Lim, 2018). As the time t is increased, synaptic strength for each
interpopulation synapse is updated with a nearest spike pair-based STDP rule:

J (XY )
i j → J (XY )

i j + δ(J ∗ − J (XY )
i j ) |�J (XY )

i j (�t (XY )
i j )|, (1)

where J ∗ = Jh (Jl) for the LTP (LTD) and�J (XY )
i j (�t (XY )

i j ) is the synaptic modifica-

tion depending on the relative time difference �t (XY )
i j (= t (post,X)

i − t (pre,Y )

j ) between
the nearest spike times of the post-synaptic neuron i in the target X -population and
the pre-synaptic neuron j in the source Y -population. For the values of the lower
and the upper bounds (Jl and Jh) and the update rate δ, refer to Table 1 in Kim and
Lim (2020).

For the I to E STDP, we use a time-delayed Hebbian time window for the synaptic
modification �J (E I )

i j (�t (E I )
i j ) (Haas et al., 2006); refer to Eqs. (13) and (14) for

�J (E I )
i j (�t (E I )

i j ) in Kim and Lim (2020). As in the E to E Hebbian time window, LTP

occurs for �t (E I )
i j > 0, while LTD takes place for �t (E I )

i j < 0. However, the time-

delayed Hebbian time window has delayed maximum and minimum for �J (E I )
i j [see

Fig. 6a in Kim and Lim (2020)], in contrast to the E to E Hebbian time window.
For the E to I STDP, we employ an anti-Hebbian time window for the synaptic

modification�J (I E)
i j (�t (I E)

i j ) (Bell et al., 1997); refer to Eq. (15) for�J (E I )
i j (�t (E I )

i j )

in Kim and Lim (2020). For �t (I E)
i j > 0, LTD occurs, while LTP takes place for

�t (I E)
i j < 0 [see Fig. 6c in Kim and Lim (2020], in contrast to the Hebbian time

window for the E to E STDP (Song et al., 2000).

3 Effects of Interpopulation STDPs on Fast Sparse
Synchronization

We first consider the case without STDP. In this case, fast sparse synchronization has
been found to occur in an wide range (D∗

1 , D
∗
2) of noise intensity D through balance

between strong external noise and strong inhibition (Wang, 2010; Brunel & Wang,
2003; Geisler et al., 2005;Brunel & Hakim, 2008). In our model, when passing the
first threshold D∗

1 (� 91), fast sparse synchronization is found to appear in both the I-
and theE-populations. Such population synchronizationmaybewell visualized in the
raster plot of neural spikes which is a collection of spike trains of individual neurons.
As a collective quantity showing population behaviors, we use an instantaneous
population spike rate which may be obtained from the raster plots of spikes (Wang,
2010; Brunel & Wang, 2003; Geisler et al., 2005; Brunel & Hakim, 2008).
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In the case of fast sparse synchronization, raster plots of spikes in the I- and the
E-populations and the corresponding instantaneous population spike rates RI (t) and
RE (t) are shown for various values of D as shown in Fig. 3b3–b7, c3–c7, and d3–
d7 in Ref. (Kim & Lim, 2020). In the I-population, each raster plot is composed
of spikes (upper black dots) of NI (= 600) fast spiking interneurons, while in the
E-population, each raster plot consists of spikes (lower gray dots) of NE (= 2400)
regular spiking pyramidal cells. Sparse spiking stripes (consisting of spikes and rep-
resenting population sparse synchronization) appear successively in the raster plots
of spikes in both the I- and the E-populations, and the corresponding instantaneous
population spike rates RI (t) and RE (t) also show fast in-phase oscillations.

For quantitative analysis,we characterize the degree of fast sparse synchronization
in each X -population (X = E or I) in terms of synchronization degree S(X)

d , defined
by the time-averaged amplitudes of the instantaneous population spike rate RX (t).
As D is increased, the amplitude of RI (t) decreases monotonically, which results in
monotonic decrease in S(I )

d of the I-population. On the other hand, with increasing
D, the amplitude of RE (t) first increases to its peak at D ∼ 250, and then it becomes
decreased. Thus, S(E)

d for a bell-shaped curve. Due to a destructive role of noise
to spoil fast sparse synchronization, a transition to desynchronization takes place
in both I- and E-populations when passing the second threshold D∗

2 (� 537). In a
desynchronized case, spikes are completely scatteredwithout forming any stripes [see
Fig. 3b8 in Kim and Lim (2020)], and the corresponding instantaneous population
spike rates RI (t) and RE (t) become nearly stationary, as shown in Fig. 3c8, d8
in Kim and Lim (2020). As a result, asynchronous irregular states emerge in the
desynchronized region.

From now on, we take into interpopulation (both I to E and E to I) STDPs and
investigate their effects on fast sparse synchronization by varying the noise intensity
D. Time evolutions of population-averaged I to E synaptic strengths 〈J (E I )

i j 〉 and E to

I synaptic strengths 〈J (I E)
i j 〉 for various values of D are shown in Fig. 7a1, a2, respec-

tively. First, we take into consideration the case of I to E STDP. In each case of inter-
mediate values of D = 110, 250, and 400 (shown in black color), 〈J (E I )

i j 〉 increases
monotonically above its initial value J (E I )

0 (=800), and eventually it converges to a

saturated limit value 〈J (E I )
i j

∗〉 nearly at t = 1500 s. As a result, inhibitory LTP takes
place for these values of D. In contrast, for small and large values of D = 95, 500,
and 600 (shown in gray color), 〈J (E I )

i j 〉 decreases monotonically below J (E I )
0 and

converges to a saturated limit value 〈J (E I )
i j

∗〉. Consequently, inhibitory LTD occurs
in the cases of D = 95, 500, and 600.

We next consider the case of E to I STDP. Due to the effect of anti-Hebbian time
window, time evolutions of 〈J (I E)

i j 〉 are in contrast to those of 〈J (E I )
i j 〉 in the case of

time-delayed Hebbian time window. For intermediate values of D = 110, 250, and
400 (shown in black color), 〈J (I E)

i j 〉 decreases monotonically below its initial value

J (I E)
0 (=487.5), and eventually, it approaches a saturated limit value 〈J (I E)

i j

∗〉 nearly
at t = 1500 s. Consequently, excitatory LTD occurs for these intermediate values of
D. On the other hand, for small and large values of D = 95, 500, and 600 (shown in
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gray color), 〈J (I E)
i j 〉 increases monotonically above J (I E)

0 and approaches a saturated

limit value 〈J (I E)
i j

∗〉. Accordingly, excitatory LTP occurs for D = 95, 500, and 600.
Such saturated limit values in the cases of I to E and E to I STDPs are shown in

Figs. 7b1 and b2 in Kim and Lim (2020), respectively. In the case of I to E STDP,
plot of saturated limit values 〈〈J (E I )

i j

∗〉〉r for a bell-shaped curve. Here, the horizontal
dotted line represents the initial average value J (E I )

0 (= 800) of I to E synaptic
strengths. On the other hand, in the case of E to I STDP, the plot of saturated limit
values 〈〈J (I E)

i j

∗〉〉r (open circles) forms a well-shaped graph, where the horizontal

dotted line denotes the initial average value of E to I synaptic strengths J (I E)
0 (=

487.5). The lower and the higher thresholds, ˜Dl (� 99) and ˜Dh (� 408), for LTP/LTD
(where 〈〈J (E I )

i j

∗〉〉r and 〈〈J (I E)
i j

∗〉〉r lie on their horizontal lines) are denoted by solid
circles.

In the case of a bell-shaped graph for 〈〈J (E I )
i j

∗〉〉r , inhibitory LTP occurs in a broad
region of intermediate D (˜Dl < D < ˜Dh), while inhibitory LTD takes place in the
other two (separate) regions of small and large D [D∗

1 < D < ˜Dl and ˜Dh < D <

D∗
2,inter (� 672)]. We note that inhibitory LTP (inhibitory LTD) disfavors (favors)

fast sparse synchronization [i.e., inhibitory LTP (inhibitory LTD) tends to decrease
(increase) the degree of fast sparse synchronization] because of increase (decrease)
in the mean value of I to E synaptic inhibition.

In contrast, in the case of a well-shaped graph for 〈〈J (I E)
i j

∗〉〉r , excitatory LTD
takes place in a broad region of intermediate D (˜Dl < D < ˜Dh), while excitatory
LTP occurs in the other two (separate) regions of small and large D (D∗

1 < D < ˜Dl

and ˜Dh < D < D∗
2,inter). We also note that the roles of LTP and LTD are reversed in

the case of E to I STDP. ExcitatoryLTP (excitatoryLTD) favors (disfavors) fast sparse
synchronization [i.e., excitatory LTP (excitatory LTD) tends to increase (decrease)
the degree of fast sparse synchronization] due to increase (decrease) in the mean
value of E to I synaptic excitation.

The effects of LTP and LTD at inhibitory and excitatory synapses on population
states after the saturation time (t∗ = 1500 s) may be well seen in the raster plot of
spikes in the I- and the E-populations and the corresponding instantaneous population
spike rates RI (t) and RE (t). Raster plots of spikes in the I- and the E-populations
and the corresponding instantaneous population spike rates RI (t) and RE (t) are
shown for various values of D in Figs. 8b1–b6, c1–c6, and d1–d6, respectively. In
comparisonwith the casewithoutSTDP, thedegrees of fast sparse synchronization for
intermediate values of D (D = 110, 250, and 400) are decreased (i.e., the amplitudes
of RI (t) and RE (t) are decreased) due to increased I to E synaptic inhibition (i.e.,
increase in inhibitory LTP) and decreased E to I synaptic excitation (decrease in
excitatory LTD). On the other hand, for small and large values of D (D = 95 and
500), the degrees of fast sparse synchronization are increased (i.e., the amplitudes
of RI (t) and RE (t) are increased) due to decreased I to E synaptic inhibition (i.e.,
decrease in inhibitory LTD) and increased E to I synaptic excitation (increase in
excitatory LTP).
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We note that a desynchronized state for D = 600 in the absence of STDP is
transformed into fast sparse synchronization through inhibitory LTD and excitatory
LTP. In fact, desynchronized states for D∗

2 (� 537) < D < D∗
2,inter (� 672) in the

absence of STDP become fast sparsely synchronized ones in the presence of inter-
population STDPs, and thus the region of fast sparse synchronization becomes so
much extended. Moreover, we also note that the degree of fast sparse synchroniza-
tion in the I-(E-)population (i.e., the amplitude of RI (t) [RE (t)]) tends to be nearly
the same in an “extended” wide range of ˜Dl < D < D∗

2,inter, except for the narrow
small-D region (D∗

1 < D < ˜Dl). Hence, an equalization effect in the interpopulation
synaptic plasticity occurs in such an extended wide range of D.

Finally, we make quantitative characterization of the degree of fast sparse syn-
chronization in each X -population (X = E or I) in terms of synchronization degree
S(X)
d (defined by the time-averaged amplitudes of the instantaneous population spike

rate RX (t)). In each realization, S(X)
d is obtained through time average over 3000

global cycles of RX (t).
We first consider the case of I-population. Figure1a shows plots of 〈S(I )

d 〉r versus
D. In the gray region of intermediate D [˜Dl (� 99) < D < ˜Dh (� 408)], the degrees
of good synchronization (solid circles) in the absence of STDP get decreased to
lower ones (open circles) via (E to I) excitatory LTD, while in the region of large D
[˜Dh < D < D∗

2,inter (� 672)], the degrees of bad synchronization (solid circles) in
the absence of STDP become increased to higher values (open circles) through (E
to I) excitatory LTP. Consequently, in a wide region of ˜Dl < D < D∗

2,inter (including

both the intermediate and the large D regions), the values of S(I )
d become nearly the

same. This kind of equalization effect may also be well seen in the histograms for

Fig. 1 Characterization of spiking degrees for fast sparse synchronization. Plots of a [(b)] the
synchronization degree 〈S(I )

d 〉r (〈S(E)
d 〉r ) (open circles) versus D in the I(E)-population. For com-

parison, those in the absence of STDP are also denoted by solid circles. Histograms for distribution
of synchronization degrees 〈S(I )

d 〉r (〈S(E)
d 〉r ) in the I(E)-population in the c1 [(d1)] absence and the

c2 [(d2)] presence of interpopulation STDP
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the distribution of 〈S(I )
d 〉r in the region of ˜Dl < D < D∗

2,inter. The gray histogram in
the absence of STDP is shown in Fig. 1c1 and the hatched histogram in the presence
of interpopulation STDP is given in Fig. 1c2. The standard deviation (�12.4) in the
hatched histogram is much smaller than that (� 20.4) in the gray histogram, and
hence equalization effect emerges. Moreover, a dumbing-down effect also occurs
because the mean value (� 23.7) in the hatched histogram is smaller than that (�
27.9) in the gray histogram.

Next, we consider the case of E-population. Figure1b shows plots of 〈S(E)
d 〉r ver-

sus D. In the gray region of intermediate D (˜Dl < D < ˜Dh), the degrees of good
synchronization (solid circles) in the absence of STDP become decreased to lower
ones (open circles) through (I to E) inhibitory LTP, while in the region of large
D (˜Dh < D < D∗

2,inter ), the degrees of bad synchronization (solid circles) in the
absence of STDP get increased to higher values (open circles) via (I to E) inhibitory
LTD. As a result, in a broad region of ˜Dl < D < D∗

2,inter (including both the inter-

mediate and the large D regions), the values of S(E)
d get nearly the same, as in the

case of S(I )
d . This type of equalization effect may also be well seen in the histograms

for the distribution of 〈S(E)
d 〉r in the region of ˜Dl < D < D∗

2,inter. The gray histogram
in the absence of STDP and the hatched histogram in the presence of interpopulation
STDP are shown in Fig. 1d1, d2, respectively. The standard deviation (�0.9) in the
hatched histogram is much smaller than that (�3.1) in the gray histogram, and hence
equalization effect appears. Furthermore, a dumbing-down effect also takes place
because the mean value (� 3.0) in the hatched histogram is smaller than that (� 6.0)
in the gray histogram.

4 Summary and Discussion

We considered clustered small-world networks consisting of I- and E-populations
with interpopulation STDPs. A time-delayed Hebbian time window has been
employed for the I to E STDP update rule. On the other hand, an anti-Hebbian
time window has been used for the E to I STDP update rule. By changing the noise
intensity D, we have studied the effects of interpopulation STDPs on fast sparsely
synchronized rhythms. Thus, LTP and LTD have been found to occur, depending on
D. These LTP and LTD affect the degree of fast sparse synchronization. In a broad
region of intermediate D, the degree of good synchronization (with larger synchro-
nization degree) has been found to get decreased. On the other hand, in the region
of large D, the degree of bad synchronization has been found to become increased.
Accordingly, the degree of fast sparse synchronization becomes nearly the same (i.e.,
a kind of “equalization effect” occurs) in a wide range of D. We note that this kind of
equalization effect is distinctly in contrast to the Matthew effect in intrapopulation (I
to I and E to E) synaptic plasticity where good (bad) synchronization becomes better
(worse) (Kim & Lim, 2018).
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