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Interior crises in quasiperiodically forced period-doubling systems
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Abstract

As a representative model for quasiperiodically forced period-doubling systems, we consider the quasiperiodically forced logistic map, and
investigate the dynamical mechanism for the interior crises. For small quasiperiodic forcing ε, a chaotic attractor abruptly widens via a “standard”
interior crisis when it collides with a smooth unstable torus. However, as ε passes a threshold value, the smooth unstable torus loses its accessibility
from the interior of the basin of the attractor. For this case, we use the rational approximation to the quasiperiodic forcing, and find that a
nonstandard interior crisis occurs for a nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor when it
collides with an invariant “ring-shaped” unstable set. Particularly, we note that a three-band smooth torus transforms into a single-band intermittent
strange nonchaotic attractor through the nonstandard interior crisis. The intermittent strange nonchaotic attractor is also characterized in terms of
the average interburst time and the local Lyapunov exponent.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamical transitions of attractors which occur with varia-
tion of the system parameters have been a topic of considerable
interest. Particularly, sudden qualitative changes in the attrac-
tor are of special interest. Such discontinuous abrupt changes,
called the crises, were first extensively studied in the logistic
map [1] and two kinds of interior and boundary crises were
discovered for the case of chaotic attractors. Here, we are inter-
ested in the interior crisis, through which an abrupt enlargement
of a chaotic attractor occurs when it collides with an unstable
periodic orbit which lies in the interior of the basin. Intermit-
tent dynamics associated with the interior crisis has been well
characterized in model systems [2] and in experiments [3].

In this Letter, we study the interior crisis in quasiperiodically
forced period-doubling systems driven at two incommensurate
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frequencies. These dynamical systems have attracted much at-
tention because of typical appearance of strange nonchaotic
attractors (SNAs) which are strange (fractal) but nonchaotic (no
positive Lyapunov exponent) [4]. Since the first description of
SNAs by Grebogi et al. [5], dynamical behaviors of the quasi-
periodically forced systems have been extensively investigated
both theoretically [6–20] and experimentally [21]. In a recent
work [14], Witt et al. investigated the interior crisis in the qua-
siperiodically forced logistic map, and found the appearance of
an SNA via an interior crisis when the smooth unstable torus is
inaccessible from the interior of the basin of the attractor due to
the basin boundary metamorphosis [22]. However, the dynami-
cal mechanism for the interior crisis, giving rise to the birth of
an SNA, remains unclear because the unstable orbit inducing
such an interior crisis was not explicitly located.

This Letter is organized as follows. In Section 2, we consider
the quasiperiodically forced logistic map which is a represen-
tative model for quasiperiodically forced period-doubling sys-
tems, and study the dynamical mechanism for the interior crises
by varying the nonlinearity parameter a of the logistic map and
the quasiperiodic forcing amplitude ε. Interior crisis has been
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discovered first for the period-3 window in the (unforced) lo-
gistic map [1]. A period-3 window is opened through a saddle-
node bifurcation creating a pair of stable and unstable period-3
orbits, and it is closed via an interior crisis where a chaotic at-
tractor collides with the unstable period-3 orbit. Consequently,
a sudden widening of the chaotic attractor occurs. We inves-
tigate the effect of quasiperiodic forcing on the interior crisis
responsible for the disappearance of the period-3 window. For
small ε, a standard interior crisis of a three-band chaotic attrac-
tor occurs through a collision with the smooth unstable torus
(which is developed from the period-3 unstable orbit of the lo-
gistic map). However, as ε passes a threshold value, a basin
boundary metamorphosis occurs, and then the smooth unstable
torus loses its accessibility from the interior of the basin of the
attractor. For this case, the type of the interior crisis changes.
Using the rational approximation to the quasiperiodic forcing,
it is found that a nonstandard interior crisis occurs for a non-
chaotic attractor (smooth torus or SNA) as well as a chaotic
attractor via a collision with an invariant ring-shaped unsta-
ble set [19]. Particularly, for the case of a three-band torus, the
nonstandard interior crisis results in the birth of a single-band
intermittent SNA. This intermittent SNA is also characterized
in terms of the average interburst time and the local Lyapunov
exponent. Finally, a summary is given in Section 3.

2. Interior crises in the quasiperiodically forced logistic
map

We study the interior crises in the quasiperiodically forced
logistic map M , often used as a representative model for the
quasiperiodically forced period-doubling systems:

(1)M :
{

xn+1 = (a + ε cos 2πθn)xn(1 − xn),

θn+1 = θn + ω (mod 1),

where x ∈ [0,1], θ ∈ S1, a is the nonlinearity parameter of
the logistic map, and ω and ε represent the frequency and
amplitude of the quasiperiodic forcing, respectively. This qua-
siperiodically forced logistic map M is noninvertible, because
its Jacobian determinant becomes zero along the critical curve,
L0 = {x = 0.5, θ ∈ [0,1)}. Critical curves of rank k, Lk (k =
1,2, . . .), are then given by the images of L0 [i.e., Lk =
Mk(L0)]. Segments of these critical curves can be used to de-
fine a bounded trapping region of the phase space, called an
“absorbing area”, inside which, upon entering, trajectories are
henceforth confined [23].

Here, we set the frequency to be the reciprocal of the golden
mean, ω = (

√
5 − 1)/2. For the inverse golden mean, its ra-

tional approximants are given by the ratios of the Fibonacci
numbers, ωk = Fk−1/Fk , where the sequence of {Fk} satis-
fies Fk+1 = Fk + Fk−1 with F0 = 0 and F1 = 1. Instead of the
quasiperiodically forced system, we study an infinite sequence
of periodically forced systems with rational driving frequen-
cies ωk . We suppose that the properties of the original system
M may be obtained by taking the quasiperiodic limit k → ∞.
Using this technique, the mechanism for the interior crises is
investigated.
Fig. 1. Phase Diagram in the a–ε plane. Regular, chaotic, and SNA regimes
are shown in light gray, black, and gray, respectively. For the case of regular
attractor, a three-band torus exists in the region denoted by 3T . When pass-
ing the solid line, a six-band torus appears in the region denoted by 6T via a
torus-doubling bifurcation. (The terminal point of the torus doubling bifurca-
tion curve is denoted by a solid circle.) An interior crisis occurs when crossing
the white heavy line. This interior-crisis curve loses its smoothness at the two
vertices (denoted by the crosses), and it ends at the terminal point (denoted
by the plus) of the torus-collision bifurcation curve (represented by the white
dashed line). When passing the dotted line, a basin boundary metamorphosis
occurs, and then the smooth unstable torus becomes inaccessible from the basin
of the attractor. For this case, a nonstandard interior crisis occurs along the
routes A, B , and C through a collision with a ring-shaped unstable set. Such a
nonstandard interior crisis is in contrast to the standard one occurring along the
routes α and β via a collision with a smooth unstable torus. For other details,
see the text.

Fig. 1 shows a phase diagram in the a–ε plane. Each phase
is characterized by both the Lyapunov exponent σx in the
x-direction and the phase sensitivity exponent δ. The expo-
nent δ measures the sensitivity with respect to the phase of
the quasiperiodic forcing and characterizes the strangeness of
an attractor in a quasiperiodically driven system [8]. A three-
band smooth torus has a negative Lyapunov exponent and no
phase sensitivity (δ = 0). Its region is denoted by 3T and shown
in light gray. When crossing the black solid line, the three-
band torus becomes unstable and bifurcates to a six-band torus
in the region denoted by 6T . On the other hand, chaotic at-
tractors have positive Lyapunov exponents and its region is
shown in black. Between these regular and chaotic regions,
SNAs that have negative Lyapunov exponents and high phase
sensitivity (δ > 0) exist in the region shown in gray. Due to
their high phase sensitivity, these SNAs have fractal structure.
When crossing the white solid curve, an interior crisis where a
three-band attractor transforms suddenly to an enlarged single-
band attractor occurs. This interior-crisis curve starts from the
interior-crisis point (a = 3.8568, ε = 0) of the logistic map
and ends at the terminal point [represented by the plus (+)]
of the torus-collision bifurcation curve (denoted by the white
dashed curve) beginning from the saddle-node bifurcation point
(a = 1 + √

8, ε = 0) of the logistic map. When passing the
white dashed curve, a three-band torus disappears through a



W. Lim, S.-Y. Kim / Physics Letters A 355 (2006) 331–336 333
collision with a three-band unstable torus, and then a single-
band intermittent chaotic attractor appears.

We first consider an interior crisis of a chaotic attractor
which occurs along the route α for ε = 0.002 in Fig. 1. There
exists a three-band chaotic attractor (denoted by black dots)
with σx = 0.14 in the map M , as shown in Fig. 2(a) for a =
3.85. For this case, a smooth unstable three-band torus (de-
noted by the dashed line) lies near the chaotic attractor. As a

increases and passes a threshold value of a = 3.853 760 029, the
three-band chaotic attractor transforms suddenly to an enlarged
single-band chaotic attractor through a collision with the unsta-
ble three-band torus. Thus, for a = 3.855, a single-band chaotic
attractor with σx = 0.578 appears in M , as shown in Fig. 2(b).
This interior crisis corresponds to a natural generalization of the
interior crisis occurring for the unforced case (ε = 0). Hence,
we call it the “standard” interior crisis.

As ε is increased, the standard interior-crisis line continues
smoothly. However, at a lower vertex (a∗

l , ε∗
l ) �

(3.8475,0.0058) (denoted by a cross in Fig. 1), the standard
interior-crisis line ends and a nonstandard interior-crisis curve
begins by making a sharp turning. Hence, the interior-crisis
curve loses its differentiability at the vertex. For this case, the
standard interior-crisis line is continued smoothly beyond the
vertex as a curve of a basin boundary metamorphosis in the 3rd
iterate of M (i.e., M3) denoted by a dotted line. As the basin
boundary metamorphosis line is passed, the basin boundary of
an attractor in M3 suddenly jumps in size [22]. We consider
a smooth three-band torus in M , which exists below the basin
boundary metamorphosis line. This three-band torus is trans-
formed into the three tori in M3. Fig. 2(c) shows the middle
torus (represented by the heavy solid curve) inside its absorb-
ing area bounded by the critical curves Lk (k = 3,6,9,12) for
a = 3.84 and ε = 0.008. The basin of the middle attractor is
shown in light gray, while the basins of the upper and lower
tori (not shown) are shown in gray. However, when passing
the basin boundary metamorphosis line, the absorbing area be-
comes broken up through a collision with the smooth unstable
torus (denoted by the dashed curve) on a basin boundary. Then,
the basin of the middle torus becomes complex because it con-
tains “holes” of other basins of the upper and lower tori, as
shown in Fig. 2(d) for a = 3.84 and ε = 0.01 [24].

As a consequence of the basin boundary metamorphosis, the
smooth unstable torus becomes inaccessible from the interior
of basin of the middle torus, and hence it cannot induce any
crisis. For this case, using the rational approximation to the qua-
siperiodic forcing, we locate an invariant ring-shaped unstable
set that causes a nonstandard interior crisis through a collision
with the smooth torus. Such a ring-shaped unstable set is born
via a phase-dependent saddle-node bifurcation [19]. As an ex-
ample, we consider the rational approximation of level k = 5
and explain the structure of the ring-shaped unstable set for
a = 3.84. As shown in Fig. 2(e) for ε = 0.00805, the rational
approximation to the smooth torus (denoted by the heavy solid
curve), composed of stable orbits with period F5 (= 5), exists.
We also note that a ring-shaped unstable set, consisting of F5
small rings, lies inside the basin. At first, each ring consists of
the stable (shown in black) and unstable (shown in dark gray)
Fig. 2. (a), (b) Standard interior crisis of a chaotic attractor occurring along the
route α for ε = 0.002. A smooth unstable torus (denoted by a dashed curve) lies
near a three-band chaotic attractor (denoted by black dots) in (a) for a = 3.85.
The three-band chaotic attractor transforms suddenly to an enlarged single-band
chaotic attractor through a collision with the smooth unstable torus, as shown in
(b) for a = 3.855. (c), (d) Basin boundary metamorphosis in the third iterate of
M (i.e., M3) for a = 3.84. A three-band torus in M turns into three tori in M3.
(c) A middle torus (denoted by a heavy solid curve) exists inside an absorb-
ing area bounded by the critical curves Lk (k = 3,6,9,12) in its basin (shown
in light gray) for ε = 0.008. (d) “Holes” (denoted by gray dots), belonging to
other basins of the upper and lower tori, appear inside the light gray basin of the
middle torus for ε = 0.01 after breakup of the absorbing area. (e), (f) Appear-
ance of a ring-shaped unstable set in the rational approximation of level 5 in M3

for a = 3.84. A ring-shaped unstable set lies near the middle torus (denoted by
the heavy solid line) for (e) ε = 0.00805 and (f) ε = 0.0082. A ring-shaped un-
stable set is composed of F5 (= 5) small rings. Magnified views of a ring are
given in the insets. Note that each ring consists of the unstable part (composed
of unstable orbits with the forcing period F5 and shown in dark gray) and the
attracting part (denoted by black dots). For more details, see the text.

orbits with the forcing period F5 [see the inset in Fig. 2(e)].
However, as ε is increased, such rings evolve, and thus each
ring becomes composed of a large unstable part (shown in dark
gray) and a small attracting part (denoted by black dots) [see
Fig. 2(f) for ε = 0.0082]. As the level k of the rational ap-
proximation increases, the ring-shaped unstable set consists of
a larger number of rings with a smaller attracting part. Hence,
we believe that, in the quasiperiodic limit, the ring-shaped un-
stable set might become a complicated invariant unstable set
composed of only unstable orbits. (For more details on the ring-
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shaped unstable set, refer to Ref. [19].) Through a collision with
this ring-shaped unstable set, a nonstandard interior crisis oc-
curs, as will be shown below.

With further change in a and ε, both the nonstandard
interior-crisis curve and the basin boundary metamorphosis
line cease simultaneously at the upper vertex (denoted by a
cross) (a∗

u, ε∗
u) � (3.8340,0.0096) in Fig. 1. Then, the stan-

dard interior-crisis line, which joins smoothly with the basin
boundary metamorphosis line at the upper vertex, starts again
by making an angle. Along the routes α and β beyond the
upper vertex, standard interior crises of the chaotic attractor
and SNA occur, respectively. This standard interior-crisis curve
ends at the terminal point (denoted by the plus) of the torus-
collision bifurcation curve (represented by the white dashed
line). Hereafter, we will investigate the nonstandard interior
crises which occur along the routes A, B , and C crossing the
segment bounded by the lower and upper vertices [see Fig. 1].
A nonstandard interior crisis is found to occur for a nonchaotic
attractor [smooth torus (route A) and SNA (route B)] as well
as a chaotic attractor (route C). Particularly, a single-band SNA
appears as a result of the nonstandard interior crisis of a three-
band smooth torus.

We fix the value of a at a = 3.843 and study the nonstandard
interior crisis of a three-band smooth torus by varying ε along
the route A. Fig. 3(a) shows a three-band smooth torus (de-
noted by solid curves) for ε = 0.01. As ε increases and passes
Fig. 3. (a), (b) Nonstandard interior crisis of a smooth three-band torus occurring along the route A for a = 3.843. (a) A three-band torus (denoted by the solid
curve) for ε = 0.01. (b) An enlarged single-band SNA with σx = −0.003 and δ = 5.738 for ε = 0.010536. (c)–(g) Analysis of the mechanism for the nonstandard
interior crisis of the smooth torus in the rational approximation of level 7 in M3 for a = 3.843. Magnified views near (θ, x) = (0.58,0.52) in (c) and (e) are given
in (d) and (f), respectively. Here, the middle torus (denoted by the heavy solid curve) exists in its light gray basin in (c) for ε = 0.0103. Some part of a ring-shaped
unstable set (shown in dark gray) lies on a boundary of holes (shown in gray) of other basins of the upper and lower tori [see a magnified view in (d)]. Through a
collision between the middle torus and the ring-shaped unstable set, F7 (=13) gaps, where single-band intermittent chaotic attractors exist, are formed, as shown in
(e) for ε = 0.01033 [see a magnified view in (f)]. The (partially-merged) rational approximation to the whole attracting set in M is given in (g).
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a threshold value ε∗ (= 0.010 535 889), the smooth torus trans-
forms suddenly to an enlarged single-band SNA, as shown in
Fig. 3(b) for ε = 0.010 536. Using the rational approximation of
level k = 7, we investigate the mechanism for this nonstandard
interior crisis of the three-band smooth torus in M3. Fig. 3(c)
shows the middle torus (denoted by the heavy solid curve) in its
basin (shown in light gray) in M3 for ε = 0.0103. We note that
the basin of the middle torus contains holes (shown in gray) of
other basins of the lower and upper tori. Hence, the smooth un-
stable torus (denoted by a dashed curve) is not accessible from
the interior of the basin of the middle torus. For this case, some
part of a ring-shaped unstable set (shown in dark gray) lies on
a hole boundary (e.g., see a magnified view in Fig. 3(d), where
holes in the light gray basin are represented by gray dots). The
rational approximation to the smooth torus and the ring-shaped
unstable set are composed of the stable and unstable orbits with
period F7 (= 13), respectively. As ε is increased, the smooth
torus and the ring-shaped unstable set on the hole boundary
become closer, and eventually, for ε = ε∗

7 (= 0.010 325 331) a
phase-dependent saddle-node bifurcation occurs through a col-
lision between the smooth torus and the ring-shaped unstable
set. Then, F7 (= 13) “gaps”, where the former attractor (i.e.,
the stable F7-periodic orbits) no longer exists, are formed, as
shown in Fig. 3(e) for ε = 0.01033. In these gaps, single-band
intermittent chaotic attractors (denoted by black dots) appear
[for a clear view, a magnified gap is given in Fig. 3(f)] as a result
of the attractor-merging crises of the upper, middle, and lower
tori in the gaps. Thus, the rational approximation to the whole
attracting set in the original map M becomes composed of the
union of the three-band periodic component and the single-band
intermittent chaotic component, as shown in Fig. 3(g). Since the
periodic component is dominant, the average Lyapunov expo-
nent (〈σx〉 = −0.083) is negative, where 〈· · ·〉 denotes the aver-
age over the whole θ . Hence, the (partially-merged) 7th rational
approximation to the attractor in Fig. 3(g) becomes nonchaotic,
and resembles the single-band SNA in Fig. 3(b), although the
level k = 7 is low. By increasing the level of the rational approx-
imation to k = 13, we study the interior crisis of the three-band
torus. It is thus found that the threshold value ε∗

k , at which the
phase-dependent saddle-node bifurcation of level k (inducing
attractor-merging crises in the gaps in M3) occurs, converges
to the quasiperiodic limit ε∗ (= 0.010 535 889) in an algebraic
manner, |
εk| ∼ F−α

k , where 
εk = ε∗
k − ε∗ and α � 2.0. As

the level k of the rational approximation increases, the num-
ber of gaps, where phase-dependent attractor-merging crises
occur, becomes larger, and eventually in the quasiperiodic limit,
the rational approximation to the attractor has a dense set
of gaps, filled by single-band intermittent chaotic attractors.
Consequently, an intermittent single-band SNA, containing the
ring-shaped unstable set, appears, as shown in Fig. 3(b). We
note that the nonstandard interior crisis of a three-band torus
results in the birth of a single-band intermittent SNA.

The intermittent SNA, born via the nonstandard interior cri-
sis, may be characterized in terms of the average time between
bursts and the local Lyapunov exponents [2,13–15]. A typical
trajectory of the third iterate of M (i.e., M3) spends a long
stretch of time in the vicinity of one of the three former attrac-
tors (i.e., the upper, middle, and lower tori), then it bursts out
from this region and comes close to the same or other former
tori where it remains again for some time interval, and so on.
In this way the trajectory irregularly jumps between the three
former tori. For this case, the characteristic time τ is the av-
erage over a long trajectory of the time between bursts (i.e.,
jumps) [2]. As shown in Fig. 4(a) for a = 3.843, the average
value of τ exhibits a power-law scaling behavior [14],

(2)〈τ 〉 ∼ (ε − ε∗)−γ , γ = 0.5 ± 0.001.

Fig. 4(b) shows the plot of the Lyapunov exponent σx versus

ε (= ε − ε∗). We note that σx abruptly increases during the
transition from torus to SNA, which is similar to the case of
the intermittent route to SNA [13]. We also discuss the distrib-
ution of local (M-time) Lyapunov exponents σM

x , causing the
sensitivity of the SNA with respect to the phase θ of the qua-
siperiodic forcing [8]. As an example, we consider the case of
a = 3.843 and ε = 0.010 536 and obtain the probability distri-
bution P(σM

x ) of local (M-time) Lyapunov exponents σM
x by

taking a long trajectory, dividing it into segments of length M ,
and calculating σM

x in each segment. For M = 200, 1000, and
2000, P(σM

x )’s are shown in Fig. 4(c). In the limit M → ∞,
P(σM

x ) approaches the delta distribution δ(σM
x − σx ), where

σx (= −0.003) is just the usual averaged Lyapunov exponent.
However, we note that the distribution P(σM

x ) has a significant
positive tail which does not vanish even for large M . To quan-
tify this slow decay of the positive tail, we define the fraction of
positive local Lyapunov exponents as

(3)F+
M =

∞∫
0

P
(
σM

x

)
dσM

x .

These fractions F+
M ’s are plotted for ε = 0.010 536, 0.010 537,

and 0.010 538 in Fig. 4(d). Note that for each value of ε, the
fraction F+

M exhibits a power-law decay,

(4)F+
M ∼ M−η.

Here the values of the exponent η decreases as ε increases. Con-
sequently, a trajectory on any SNA has segments of arbitrarily
long M that have positive local Lyapunov exponents, and thus
it has a phase sensitivity, inducing the strangeness of the SNA.
As shown in Fig. 4(d), as ε increases the value of F+

M becomes
larger. Hence, the degree of the phase sensitivity of the SNA
increases.

As in the above case of a smooth torus (route A), a three-
band SNA (chaotic attractor) transforms to a single-band one
along the route B (C) in Fig. 1. Using the rational approxima-
tion to the quasiperiodic forcing, such a nonstandard interior
crisis is also shown to occur through a collision with a ring-
shaped unstable set.

3. Summary

We have investigated the mechanism for the interior crises in
the quasiperiodically forced logistic map. Using the rational ap-
proximation to the quasiperiodic forcing, a nonstandard interior
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Fig. 4. (a) Plot of log10〈τ 〉 (〈τ 〉 is the average time between bursts) versus log10 
ε (
ε = ε − ε∗) for a = 3.843. The data are well fitted with the straight line
with the slope γ = 0.5 ± 0.001. (b) Plot of σx versus 
ε for a = 3.843. We note an abrupt change in σx near the transition point. (c) Three probability distributions
P(σM

x ) of the local M-time Lyapunov exponents for M = 200, 1000, and 2000 when a = 3.843 and ε = 0.010536. (d) Plots of log10 F+
M

(F+
M

: fraction of
the positive local Lyapunov exponents) versus − log10 M for a = 3.843. Note that the three plots for ε = 0.010536 (circles), 0.010537 (squares), and 0.010538
(triangles) are well fitted with the straight lines with the slopes η = 0.237, 0.132, and 0.068, respectively. Hence, F+

M
decays with some power η.
crisis has been found to occur for a nonchaotic attractor (smooth
torus or SNA) as well as a chaotic attractor via a collision with
an invariant ring-shaped unstable set. Particularly, a single-band
intermittent SNA appears through the nonstandard interior cri-
sis of a three-band smooth torus. Characterization of the inter-
mittent SNA has also been made in terms of the average time
between bursts and the local Lyapunov exponents. This kind of
nonstandard interior crisis is in contrast to the standard interior
crisis which occurs through a collision with a smooth unstable
torus.
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