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Anomalous Hopf Bifurcations in Symmetrically-coupled Period-doubling
Systems
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We consider two symmetrically-coupled logistic maps, and investigate the effect of symmetry on
Hopf bifurcations, giving rise to the birth of the daughter orbits encircling the symmetric anti-phase
mother orbit (with a time shift of half a period). When the rotation numbers ν of daughter orbits
are rational (i.e., ν = r/s; r and s: coprimes), anomalous Hopf bifurcations are found to occur due
to the symmetry of the coupled system. For even r, a symmetric periodic attractor is born through
a standard Hopf bifurcation while for odd r, a conjugate pair of asymmetric periodic attractors
appears via a nonstandard double Hopf bifurcation. These symmetry-conserving and -breaking Hopf
bifurcations are explained by using the concept of a half-cycle map of a symmetrically-coupled map.
These anomalous Hopf bifurcations might be observed in real experiments of symmetrically-coupled
period-doubling systems.
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I. INTRODUCTION

Two coupled oscillators with competing frequencies
exhibit a typical transition from quasiperiodicity to
chaos as the coupling strength passes a threshold value.
As a representative model for the quasiperiodic transi-
tion to chaos, the circle map has been intensively studied
[1,2]. We note that such a quasiperiodic transition oc-
curs in two symmetrically coupled period-doubling sys-
tems. The dynamics of two coupled logistic maps [3–
7] and two coupled Rössler oscillators [8], which indi-
vidually display a period-doubling transition to chaos,
has been investigated in details. Thus, a quasiperiodic
transition to chaos (accompanied with mode lockings)
has been found, as in the case of the circle map. This
interesting phenomenon has been observed experimen-
tally in two resistively-coupled p-n junction resonators
[9]. The coupled resonators show a quasiperiodic transi-
tion through replacement of period-doubling bifurcations
of the single resonator with Hopf bifurcations. A similar
quasiperiodic transition to chaos was also observed in an
experiment involving two inductively coupled electronic
frequency generators [10].

Emergence of Hopf bifurcations was shown to be a
generic feature of symmetrically-coupled period-doubling
systems [11, 12]. However, so far the type of daughter
orbit that appears via these Hopf bifurcations remains
unclear. To make this point clear, in Sec. II. , we investi-
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gate the effect of symmetry on Hopf bifurcations of sym-
metric anti-phase mother orbits in two symmetrically-
coupled logistic maps. When the rotation numbers ν of
daughter orbits (which are just the average numbers of
rotations around a mother orbit point per period of the
mother orbit) are rational (i.e., ν = r/s; r and s: co-
primes), two types of Hopf bifurcations are found to oc-
cur. For even r, a symmetric periodic attractor is born
through a standard Hopf bifurcation while for odd r,
a conjugate pair of asymmetric periodic attractors ap-
pears via a nonstandard double Hopf bifurcation. We
explain the symmetry-conserving and -breaking Hopf bi-
furcations by using the concept of a half-cycle map of the
symmetrically-coupled map [13]. These anomalous Hopf
bifurcations are expected to be observed in experiments
of symmetrically-coupled period-doubling systems, such
as two resistively-coupled p-n junction resonators [9] and
two inductively-coupled electronic frequency generators
[10]. Finally, we give a summary in Sec. III. .

II. SYMMETRY-CONSERVING AND
-BREAKING HOPF BIFURCATIONS IN

TWO COUPLED LOGISTIC MAPS

We consider two symmetrically-coupled period-
doubling maps:

T :
{

xn+1 = f(xn) + ε (yn − xn),
yn+1 = f(yn) + ε (xn − yn), (1)
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where xn and yn are state variables of the first and the
second elements at a discrete time n, and ε is a cou-
pling parameter. As an element in our coupled sys-
tem, we choose the one-dimensional logistic map with
f(x) = 1−ax2, which is a representative period-doubling
system [14]. In the single logistic map, a period-doubling
transition to chaos occurs as the nonlinearity parameter
a passes a threshold value a∗ (= 1.401 155 · · · ). We also
note that the coupled map T has an exchange symmetry
S such that

S TS(x, y) = T (x, y); S(x, y) = (y, x). (2)

The set of all points, which are invariant under the ex-
change of coordinates S, form a symmetry line y = x.
If an orbit is invariant under S, it is called a symmetric
orbit; otherwise, it is called an asymmetric orbit.

For the uncoupled case of ε = 0, the coupled map
of Eq. (1) breaks into two uncoupled logistic maps. If
they both have orbits with period P , then the compos-
ite system has P different orbits distinguished by the
phase shift Q (= 0, 1, . . . , P − 1). The case of Q = 0
corresponds to the in-phase orbit on the diagonal, while
other cases of Q 6= 0 correspond to out-of-phase orbits.
If Q = P/2, then an anti-phase (180◦ out-of-phase) or-
bit with a time shift of half a period exists; otherwise
(Q 6= P/2), non-antiphase orbits appear. The in-phase
and the anti-phase periodic orbits are symmetric with
respect to the exchange symmetry S, while other peri-
odic orbits are asymmetric. Two asymmetric period-P
orbits with phase shift Q and P −Q are conjugate ones
because one orbit is transformed into the other one un-
der the exchange of coordinates S. These orbits will
be called “conjugate-phase” orbits, and they have the
same stability. All periodic orbits, associated with the
period-doubling cascade of the logistic map, persist when
coupling is introduced, at least while its value is small
enough. Hereafter, we classify these periodic orbits in
terms of their periods and phase shifts (P,Q).

The stability of an orbit with period P in two coupled
maps of Eq. (1) is determined from the Jacobian matrix
J of TP , which is the P -product of the Jacobian matrix
DT of T along the orbit:

J =
P∏

n=1

DT (xn, yn)

=
P∏

n=1

(
f ′(xn)− ε ε

ε f ′(yn)− ε

)
, (3)

where f ′(x) = df(x)/dx. The eigenvalues of J , λ1 and
λ2, are called the stability multipliers of the orbit. An
orbit is stable only when the moduli of both multipliers
are less than unity (i.e., |λi| < 1 (i = 1, 2); both of them
lie inside the unit circle in the complex plane). When a
multiplier passes the unit circle at λ = 1 (−1), the orbit
becomes unstable via a saddle-node or pitchfork (period-
doubling) bifurcation. On the other hand, as a pair of

Fig. 1. (a) Periodic orbits for a = 1.31 and ε = 0.01. There
are symmetric in-phase (denoted by solid circles) and anti-
phase (denoted by crosses) orbits and asymmetric conjugate-
phase orbits (represented by up- and down-triangles). (b)
Stability diagram in the ε − ∆a plane; ∆a = a − a∗

(a∗ = 1.401 155 189 · · · ). Solid, dashed, dash-dotted, and
dotted lines represent the period-doubling, pitchfork, Hopf,
and saddle-node bifurcation curves, respectively. Light gray
and gray regions denote stability regions of the anti-phase or-
bits with low periods P = 4 and 8, respectively. (c) Stability
diagram obtained by magnifying the rectangular region in (b)
with the scaling factors α and δ.

multipliers crosses the unit circle, except at λ = ±1 (i.e.,
λ becomes a complex number whose magnitude is larger
than unity), the orbit loses its stability through a Hopf
bifurcation. The type of attractors in the two coupled
maps is determined in terms of their Lyapunov exponents
(σ1 and σ2; σ1 ≥ σ2). By iterating the Jacobian matrix
of DT along a trajectory, such Lyapunov exponents are
obtained through the Gram-Schmidt reorthonormaliza-
tion procedure [15]. When the largest Lyapunov expo-
nent σ1 is negative (zero), the attractor is a periodic
(quasiperiodic) one. On the other hand, it is a chaotic
one when σ1 is positive. Furthermore, a hyperchaotic
attractor with two positive Lyapunov exponents, σ1 and
σ2, may appear.

Figure 1(a) shows four types of periodic orbits in the
x − y plane for a = 1.31 and ε = 0.01. The symmet-
ric in-phase period-2 orbit with (P,Q) = (2, 0) (repre-
sented by solid circles) lies on the diagonal, while the
other out-of-phase period-4 orbits with non-zero Q are
off the diagonal. The symmetric anti-phase orbit with
(P, Q) = (4, 2) is denoted by crosses and a pair of asym-
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metric conjugate-phase orbits with (P,Q) = (4, 1) and
(4, 3) are represented by up triangles and down trian-
gles, respectively. The stability regions of the symmet-
ric in-phase and anti-phase orbits with low periods are
shown in Fig. 1(b). Period-doubling, pitchfork, Hopf,
and saddle-node bifurcations occur at the solid, dashed,
dash-dotted, and dotted boundary curves, respectively.
Particularly, the light-gray and gray regions denote sta-
bility regions of the anti-phase orbits with period P = 4
and 8, respectively. An anti-phase orbit of type (4, 2)
[(8, 4)] appears via a period-doubling bifurcation of the
in-phase orbit of type (2, 0) [(4, 0)] at the nonhorizon-
tal solid curve, and it becomes unstable through a Hopf
bifurcation at the dash-dotted curve. Using the renor-
malization method [16–18], it has been shown that near
the zero-coupling critical point (a, ε) = (a∗, 0), dynami-
cal behavior at a set of parameters (a∗+∆a, ε) is similar
to that (with doubled time scale) at a set of scaled pa-
rameters (a∗ + ∆a/δ, ε/δc), where ∆a = a − a∗, and δ
(= 4.669 · · · ) and δc are the scaling factors for the non-
linearity and coupling parameters, respectively. For the
case of linear coupling of Eq. (1), the scaling is governed
by the two relevant factors δc = α (= −2.502 · · · ) and 2.
Hence, the asymptotic scaling associated with coupling is
governed by the largest scaling factor α. To see the scal-
ing, we magnify a small rectangular region in Fig. 1(b)
with the scaling factors α and δ. The magnified stability
diagram with double periods is shown in Fig. 1(c). We
note that it is nearly the same as that in Fig. 1(b). Thus,
similar anti-phase orbits with higher periods, which lose
their stability via Hopf bifurcations, appear successively
near the zero-coupling critical point.

Figure 2(a) shows the state diagram near a Hopf bifur-
cation curve of the anti-phase period-4 orbit. An anti-
phase orbit of type (4,2) appears via a period-doubling
bifurcation of the in-phase orbit of type (2,0) when pass-
ing the solid curve D2,0. The stability regions of the in-
phase orbit and the anti-phase orbit are labeled as their
type (2,0) and (4,2), respectively. The anti-phase orbit
becomes unstable via a Hopf bifurcation at the dash-
dotted curve H4,2. As a result, mode locking (shown in
black) and quasiperiodicity (shown in gray) occur, as in
the case of the circle map [1,2]. Some of the mode-locked
regions are labeled as their rotation numbers ν, which are
just the average numbers of rotations around a mother
orbit point per period of the mother orbit (i.e., the anti-
phase period-4 orbit). Mode-locked points with the same
rotation number ν form a wedge-shaped region (called
the “Arnol’d tongue”) fanning out from the Hopf bifur-
cation point. As the parameter a is further increased,
chaos (shown in light gray) and hyperchaos (shown in
white) occur. A plot of the rotation number ν versus ε
along the route, a = 0.48 ε + 1.34 is given in Fig. 2(b).
As ε is increased, the rotation number increases. Mode
lockings with constant rational rotation number ν (i.e.,
ν = r/s; r and s: coprimes) occur in parameter intervals;
some of them are labeled as their rotation numbers. On
the other hand, each quasiperiodicity with an irrational

Fig. 2. (a) State diagram near a Hopf bifurcation curve of
the anti-phase period-4 orbit. The stability regions of the in-
phase and the anti-phase orbits are labeled as their types (2,0)
and (4,2), respectively. The anti-phase orbit appears via a
period-doubling bifurcation when passing the D2,0 curve, and
it becomes unstable through a Hopf bifurcation at the H4,2

curve. Mode locking, quasiperiodicity, chaos, and hyperchaos
are shown in black, gray, light gray, and white, respectively.
(b) Plot of the rotation number ν versus ε along the route,
a = 0.48 ε + 1.34

rotation number ν occurs at a point.
From now on, we investigate the effect of symmetry

on Hopf bifurcations of symmetric anti-phase orbits with
even periods. A Hopf bifurcation of a symmetric anti-
phase orbit occurs when a pair of its stability multipli-
ers λ1,2 passes the unit circle (where λ1,2 = e±2πiν) in
the complex plane. When ν is an irrational number, a
symmetric quasiperiodic attractor with rotation number
ν is born, and it encircles the mother anti-phase orbit
(denoted by crosses), as shown in Fig. 3(a) for a = 1.2
and ε = −0.25. However, when ν is a rational number
(i.e., ν = r/s; r and s are coprimes), anomalous Hopf
bifurcations occur due to the symmetry of the coupled
system, which may be analyzed in terms of a half-cycle
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Fig. 3. (a) Symmetric quasiperiodic attractor born via a
Hopf bifurcation of the anti-phase period-4 orbit (denoted by
crosses) for a = 1.2 and ε = −0.25. (b) Symmetry-conserving
standard Hopf bifurcation for even r. A pair of symmet-
ric period-20 attractor (denoted by solid circles) and saddle
(denoted by solid triangles), born via a standard Hopf bifur-
cation of the anti-phase period-4 orbit (denoted by crosses),
exists for a = 1.266 and ε = −0.169 in the Arnol’d tongue
with ν = 2/5. The union of the attractor, the saddle, and
the unstable manifolds (denoted by solid curves) forms an
invariant curve. (c) Symmetry-breaking nonstandard double
Hopf bifurcation for odd r. Two conjugate pairs of asymmet-
ric period-32 attractors (denoted by solid and open circles)
and saddles (denoted by solid and open triangles), born via a
nonstandard Hopf bifurcation of the anti-phase period-4 orbit
(denoted by crosses), exist for a = 1.24 and ε = −0.2 in the
Arnol’d tongue with ν = 3/8. The union of the attractors,
the saddles, and the unstable manifolds (denoted by solid
curves) forms an invariant curve.

map of the symmetrically-coupled map [13]. We con-
sider a symmetric anti-phase orbit with even period P ,
{zn[≡ (xn, yn)];n = 0, . . . , P − 1}. For this case, each
orbit point zn is a fixed point of the P th iterate of the
symmetrically-coupled map T (i.e., TP ), and TP is the
second iterate of a half-cycle map R,

TP = R R; R = STP/2. (4)

Each point zn of the symmetric anti-phase orbit is also
a fixed point of R because Szn = zn+P/2. We now con-
sider the case that zn exhibits a standard Hopf bifur-
cation in R when its stability multipliers are e±2πip/q

(p and q are coprimes). Then, a pair of stable and un-
stable orbits with rotation number p/q appears in R.
For this case, stability multipliers of zn in TP becomes
λ[≡ e±2πir/s] = e±2πi(2p)/q (r and s are coprimes). For
odd q, each daughter orbit in R turns into a daughter
orbit with the same period q in TP which has the rota-
tion number ν(= r/s) = 2p/q; r = 2p (r: even number).
Consequently, for even r, a standard Hopf bifurcation,
giving rise to the birth of a pair of stable and unsta-
ble orbits with rotation number ν, occurs in TP . As an
example of even r, consider the Arnol’d tongue with ro-
tation number ν = 2/5 in Fig. 2(a). An attractor with
ν = 2/5 (denoted by solid circles) encircles its mother
anti-phase orbit point (denoted by a cross) in T 4, as
shown in Fig. 3(b) for a = 1.266 and ε = −0.169. A
magnified view is given in the inset. A pair of attractor
(denoted by solid circles) and saddle (denoted by solid
triangles) surrounds an anti-phase orbit point. The un-
stable manifolds (denoted by solid curves) of the saddle
points flow into the attractor, and thus form an invariant
curve. Thus, a symmetric period-20 daughter attractor,
encircling its mother anti-phase period-4 orbit, appears
through a standard symmetry-conserving Hopf bifurca-
tion in T . On the other hand, each daughter orbit with
even period q (and odd p) in R is transformed into two
daughter orbits with periods q/2 in TP , and their rota-
tion numbers in TP are ν(= r/s) = p/(q/2); r = p (r :
odd number). Consequently, for odd r, two pairs of sta-
ble and unstable orbits with rotation number ν appear
via a nonstandard double Hopf bifurcation in TP . As an
example of odd r, we consider the Arnol’d tongue with
rotation number ν = 3/8 in Fig. 2(a). Two daughter at-
tractors with ν = 3/8 (denoted by solid and open circles)
surround their mother anti-phase orbit point (denoted by
a cross) in T 4, as shown in Fig. 3(c) for a = 1.24 and
ε = −0.2. A magnified view is given in the inset. For
this case, the union of two pairs of attractors and saddles
(denoted by solid and open triangles) and the unstable
manifolds (denoted by solid curves) forms an invariant
curve. Thus, a pair of asymmetric period-32 daughter
attractors, encircling its mother anti-phase period-4 or-
bit, appears through a nonstandard symmetry-breaking
Hopf bifurcation in T . These two asymmetric attractors
are conjugate ones because one attractor is transformed
into the other one under an exchange of coordinates S.

To study another type of coupling, called the dissi-
pative coupling, which tends to equalize the states of
elements, we consider the following type of two coupled
maps:

T :
{

xn+1 = f(xn) + ε [f(yn)− f(xn)],
yn+1 = f(yn) + ε [f(xn)− f(yn)]. (5)

For this case of dissipative coupling, the scaling, associ-
ated with the coupling parameter ε, is governed by only
one relevant factor δc = 2 [16–18], in contrast to the
above case of linear coupling [see Eq. (1)] with δc = α
and 2. Figure 4(a) shows stability regions of the sym-
metric in-phase and anti-phase orbits with low periods.
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Fig. 4. Hopf bifurcations for the case of dissipative cou-
pling. (a) Stability diagram in the ε − ∆a plane. Solid,
dashed, and dash-dotted lines denote the period-doubling,
pitchfork, and Hopf bifurcation curves, respectively. Light
gray and gray regions denote stability regions of the anti-
phase orbits with low periods P = 4 and 8, respectively. (b)
Stability diagram obtained by magnifying the rectangular re-
gion in (a) with the scaling factors 2 and δ. (c) State dia-
gram near a Hopf bifurcation curve of the anti-phase period-
4 orbit. The stability regions of the in-phase and the anti-
phase orbits are labeled as their types (2,0) and (4,2), respec-
tively. Mode locking, quasiperiodicity, chaos, and divergence
are shown in black, gray, light gray, and white, respectively.
(d) Symmetry-conserving standard Hopf bifurcation. A sym-
metric period-20 attractor (denoted by solid circles), born
via a standard Hopf bifurcation, exists for a = 1.208 and
ε = −0.2 in the Arnol’d tongue with ν = 2/5. (e) Symmetry-
breaking nonstandard Hopf bifurcation. A conjugate pair of
asymmetric period-28 attractors (denoted by solid and open
circles), born via a nonstandard double Hopf bifurcations, ex-
ists for a = 1.253 and ε = −0.125 in the Arnol’d tongue with
ν = 3/7.

Period-doubling, pitchfork, and Hopf bifurcations occur
at the solid, dashed, and dash-dotted boundary curves,
respectively. Stability regions of the anti-phase orbits
with period P = 4 and 8 are shown in light gray and gray,
respectively. These anti-phase orbits appear via period-
doubling bifurcations of their in-phase mother orbits

when passing the nonhorizontal solid curves, and they
lose their stability via Hopf bifurcations when crossing
the dash-dotted curves. To see the scaling, we magnify
the small rectangular region in Fig. 4(a) with the scaling
factors 2 and δ. The magnified stability diagram with
double periods in Fig. 4(b) is nearly the same as that in
Fig. 4(a). Thus, similar anti-phase orbits of higher or-
ders, which become unstable via Hopf bifurcations, ap-
pear successively near the zero-coupling critical point.
Figure 4(c) shows the state diagram near the dash-dotted
Hopf bifurcation curve H4,2 of the anti-phase orbit with
(P, Q) = (4, 2), which is born via a period-doubling bifur-
cation of the in-phase orbit of type (2,0) when passing the
solid curve D2,0. As in the linear-coupling case, mode-
locking (shown in black) and quasiperiodicity (shown
in gray) occur via Hopf bifurcations of the anti-phase
period-4 orbit. Some Arnol’d tongues are labeled with
their rotation numbers. With further increase in a, chaos
and divergence occur in the light-gray and the white re-
gions, respectively. As shown in the above, for the case
of rational rotation number ν (= r/s), a standard or a
nonstandard Hopf bifurcation may occur, depending on
whether r is even or odd. As an example of even r, we
consider the Arnol’d tongue with ν = 2/5. A daughter
attractor with the rotation number ν = 2/5 (denoted by
solid circles) encircles its mother anti-phase orbit point
(denoted by a cross) in T 4, as shown in Fig. 4(d) for
a = 1.208 and ε = −0.2. A magnified view is given in
the inset. The union of the attractor, the saddle (denoted
by solid triangles), and the unstable manifold forms an
invariant curve. Thus, a symmetric period-20 attractor,
encircling its mother anti-phase period-4 orbit, appears
via a standard symmetry-conserving Hopf bifurcation in
T . As an example of odd r, we consider the Arnol’d
tongue with ν = 3/7. As shown in Fig. 4(e) for a = 1.253
and ε = −0.125, two attractors (denoted by solid and
open circles with ν = 2/5 in T 4) surround their mother
anti-phase orbit point (denoted by a cross). The union of
two pairs of attractors and saddles (denoted by solid and
open triangles) and unstable manifolds forms an invari-
ant curve (see the magnified view in the inset). Thus, a
conjugate pair of asymmetric period-28 attractors, encir-
cling its mother anti-phase period-4 orbit, appears via a
nonstandard symmetry-breaking Hopf bifurcation in T .

III. SUMMARY

For both cases of linear and dissipative couplings, we
have investigated the effect of symmetry on Hopf bifur-
cations of symmetric anti-phase periodic orbits in two
symmetrically-coupled logistic maps. When the rotation
numbers ν of daughter orbits are rational (i.e., ν = r/s),
two types of Hopf bifurcations occur due to the sym-
metry of the coupled system. For even r, a symmet-
ric periodic attractor appears through a standard Hopf
bifurcation while for odd r, a conjugate pair of asym-
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metric attractors is born via a nonstandard double Hopf
bifurcation. These anomalous Hopf bifurcations are ex-
plained by using the concept of a half-cycle map of a
symmetrically-coupled map. In the presence of small
asymmetry, Hopf bifurcations also occur [11]. However,
they are only standard ones, unlike the symmetric case.
Finally, the symmetry-conserving and -breaking Hopf
bifurcations should be observed in real experiments of
symmetrically-coupled period-doubling systems such as
two resistively-coupled p-n junction resonators [9] and
two inductively-coupled electronic frequency generators
[10].
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