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Characterization of Weak Collective Neural Coherence
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We consider a large population of N globally coupled inhibitory subthreshold neurons (which
cannot fire spontaneously without noise). In a range of noise intensity, an oscillating ensemble-
averaged collective potential with small amplitude emerges via cooperation of the complex potentials
of individual neurons. To characterize this “weak” collective neural coherence, we introduce a

new coherence measure, M
(CI)
c , based on the ensemble average of cross-correlations between the

collective potential and the individual potentials. This newly-introduced measure M
(CI)
c can be

regarded as a “statistical-mechanical” measure because it quantifies the average contribution of
(microscopic) individual potentials to the (macroscopic) collective potential. As a result of regular

oscillations of the collective-individual cross-correlation functions, M
(CI)
c may be used to detect

weak collective coherence much better than the conventional “microscopic” measure, M
(II)
c , based

on the cross-correlations between individual potentials. Furthermore, the computation load for

M
(CI)
c (∼N) is much reduced as compared to that for M

(II)
c (∼N2).
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I. INTRODUCTION

Recently, much attention has been paid to brain
rhythms [1,2]. Synchronous neural oscillations may be
used for efficient sensory processing (e.g., visual binding)
[3]. In addition, neural synchronization is also correlated
with pathological rhythms associated with neural dis-
eases (e.g., epileptic seizures and tremors in Parkinson’s
disease) [4]. Here, we are interested in the characteriza-
tion of these synchronized neural rhythms.

Collective coherence in a neural population may be
well described by the (population-averaged) collective
potential VC . For a coherent case, an oscillating (macro-
scopic) collective potential VC emerges via cooperation of
(microscopic) potentials of individual neurons. This col-
lective neural coherence has been characterized mostly
in terms of two coherence measures [5]. The first is a
“thermodynamic” fluctuation-based coherence measure
Mf . Neural coherence is directly related to fluctuations
of the collective potential VC . In the thermodynamic
limit (N → ∞), a collective state becomes coherent if
an oscillating collective potential VC appears. Otherwise
(i.e., when the collective potential VC is stationary), it
becomes incoherent. Thus, the mean square deviation of
the collective potential VC (i.e., time-averaged fluctua-
tions of VC) plays the role of an order parameter to de-
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scribe the coherence-incoherence transition [6]. For nor-
malization, the order parameter is divided by the aver-
age fluctuation of individual potentials. The fluctuation-
based coherence measure Mf (i.e., the normalized order
parameter) and the order parameter were used to charac-
terize the degree of collective coherence in various neural
systems [7–10]. Since Mf and the order parameter con-
cern only the time-averaged fluctuations of the macro-
scopic potential VC [without considering the quantitative
relation between VC and the (microscopic) individual po-
tentials], it can be regarded as a “thermodynamic” mea-
sure. The second is a “microscopic” correlation-based
measure. A cross-correlation measurement is one of the
major experimental tools for studying correlations be-
tween individual potentials of pairs of neurons [11]. The
cross-correlation between individual potentials of a pair
of neurons is influenced not only by the direct interaction
between the pair, but also by the population dynamics
of the whole system [9]. For asynchronous states, the
magnitude of typical cross-correlations is small (order of
1/N) and vanishes for large N . For this asynchronous
case, the cross-correlation between individual potentials
of a pair of neurons depends strongly on their direct in-
teraction. On the other hand, for synchronous states,
the magnitude of typical cross-correlations is of order 1.
For this synchronous case, cross-correlations are domi-
nated by coherent population dynamics (rather than a
direct interaction between a given pair). These cross-
correlations may serve as a measure of collective coher-
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ence of firing activities of neurons. Thus, a correlation-
based measure M

(II)
c given by the average of the nor-

malized cross-correlations between individual potentials
of pairs of neurons at zero-time lag was used to mea-
sure the degree of collective neural coherence [12, 13].
M

(II)
c is a “microscopic” measure because it is based on

cross-correlations between individual potentials of pairs
of neurons. In addition to the characterization of collec-
tive neural coherence, a correlation-based measure was
also used to characterize the spike timing reliability [14].

Many previous works for neural synchronization were
done in neural systems composed of spontaneously firing
(i.e., self-oscillating) suprathreshold neurons. For this
case, neural coherence occurs through the cooperation
of regular firings of suprathreshold self-firing neurons. In
contrast, neural systems composed of subthreshold neu-
rons have received little attention. Each subthreshold
neuron cannot fire spontaneously without noise (i.e., it
can generate firings with the aid of noise), in contrast
to the suprathreshold case. Recently, collective coher-
ence between noise-induced spikings was found in a pop-
ulation of pulse-coupled excitatory subthreshold neurons
[15,16]. This neural coherence emerges via cooperation
of noise-induced complex firings of subthreshold neurons.
The degree of neural coherence for the excitatory sub-
threshold case is lower than that for the suprathreshold
case.

In this paper, we study collective coherence in N glob-
ally coupled inhibitory subthreshold Morris-Lecar (ML)
neurons with slowly decaying synapses [17–19]. In some
range of noise intensity, a coherent collective potential
VC with a small amplitude emerges via cooperation of
complex individual potentials vi (i = 1, ..., N). The de-
gree of coherence for this inhibitory subthreshold case
is much lower than that for the excitatory subthreshold
case. In Sec. II., we characterize this weak collective
neural coherence in terms of a coherence measure M

(CI)
c

defined by the ensemble average of the cross-correlations
between the collective potential VC and the individual
potentials vi. Unlike the conventional “thermodynamic”
and “microscopic” measures (Mf and M

(II)
c ), this newly-

introduced coherence measure M
(CI)
c may be regarded

as a “statistical-mechanical” measure because it quan-
tifies the average contribution of (microscopic) individ-
ual potentials to the (macroscopic) collective potential.
The new collective-individual cross-correlation functions
exhibit distinctly regular oscillations, in contrast to
the complex amplitude fluctuations of the conventional
individual-individual cross-correlation functions. Such
a regular oscillation implies a high-degree collective-
individual correlation. Therefore, M

(CI)
c can be used to

detect weak collective coherence much better than the
conventional “microscopic” measure M

(II)
c . Moreover,

the computation load (∼N) for M
(CI)
c is much reduced

when compared to that (∼N2) for M
(II)
c . Finally, a sum-

mary is given in Sec. III.

II. CHARACTERIZATION OF WEAK
COLLECTIVE COHERENCE IN A
POPULATION OF INHIBITORY

SUBTHRESHOLD NEURONS

We consider an inhibitory ensemble of N globally cou-
pled subthreshold ML neurons [17–19]. Each ML neu-
ron with a membrane capacitance C has three intrinsic
ionic currents: the calcium current ICa, the potassium
current IK , and the leakage current IL. It is also stim-
ulated by the common DC current IDC and an inde-
pendent Gaussian white noise satisfying 〈ξi(t)〉 = 0 and
〈ξi(t) ξj(t′)〉 = δij δ(t − t′), where 〈· · · 〉 denotes the en-
semble average. The noise intensity is controlled by the
parameter D. Each ML neuron is connected to all the
others through global synaptic couplings. Hence, it has
a synaptic current Isyn with a synaptic reversal potential
Vsyn. The strength of the synaptic current is controlled
by the parameter J , and we use Vsyn = −80 mV for the
inhibitory synapse.

The state of the ith neuron (i = 1, ..., N) at a time
t (measured in units of ms) is characterized by three
state variables: the membrane potential vi (measured in
units of mV), the slow recovery variable wi represent-
ing the activation of the K+ current, and the synaptic
gate variable si denoting the fraction of open synaptic
ion channels. The synaptic gate variable si obeys the
1st-order kinetics [8,12]. The synaptic channel opening
and closing rates are α = 10 ms−1 and β = 0.1 ms−1,
respectively [20]. Then, the population dynamics in this
neural network is governed by the following set of differ-
ential equations:

C
dvi

dt
= −Iion,i + IDC + Dξi − Isyn,i, (1a)

dwi

dt
= φ

(w∞(vi)− wi)
τR(vi)

, (1b)

dsi

dt
= αs∞(vi)(1− si)− βsi, i = 1, · · · , N, (1c)

where

Iion,i = ICa,i + IK,i + IL,i (2a)
= gCam∞(vi)(vi − VCa)

+gKwi(vi − VK) + gL(vi − VL), (2b)

Isyn,i =
J

N − 1

N∑
j( 6=i)

sj(t)(vi − Vsyn), (2c)

m∞(v) = 0.5 [1 + tanh {(v − V1)/V2}] , (2d)
w∞(v) = 0.5 [1 + tanh {(v − V3)/V4}] , (2e)
τR(v) = 1/ cosh {(v − V3)/(2V4)} , (2f)

s∞(vi) = 1/(1 + e−vi/2). (2g)

Each ionic current obeys Ohm’s law. The constants gCa,
gK , and gL are the maximum conductances for the ion
and leakage channels, and the constants VCa, VK , and
VL are the reversal potentials. As is well known, the ML
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Fig. 1. Individual and collective membrane potentials in
N(= 103) globally coupled inhibitory subthreshold ML neu-

rons for IDC = 87 µA/cm2, D = 20 µA · ms1/2/cm2, and
J = 3 mS/cm2: (a) time series of three individual potentials
v1, v2, and v3 (unit of potential: mV), and (b) time series
of the ensemble-averaged collective potential VC with small
amplitude.

neuron may exhibit either type-I or type-II excitability,
depending on the system parameters. Throughout this
paper, we consider the case of type-II excitability with
the parameter values given in Ref. 18. Numerical inte-
gration of Eq. (1) is done using the Heun method [21]
with the time step ∆t = 0.01 ms, and data for (vi, wi, si)
(i = 1, . . . , N) are obtained with the sampling time in-
terval ∆t = 1 ms.

We study collective coherence in an inhibitory popu-
lation of N (= 103) globally coupled subthreshold ML
neurons by varying the noise intensity D for IDC = 87
µA/cm2 and J = 3 mS/cm2. (Hereafter, for convenience,
we omit the dimensions of IDC , D, and J .) Emergence
of collective coherence in the population may be well de-
scribed by the population-averaged collective potential

VC(t) =
1
N

N∑
i=1

vi(t). (3)

For 9.4 < D < 33.4, an oscillating collective potential
VC with small amplitude appears [22]. As an example,
we consider the weakly coherent case of D = 20. Figure
1 shows individual potentials of the first three neurons
and the collective potential VC . Individual inhibitory
neurons exhibit intermittent firings phase-locked to VC

at random multiples of the period T (=54.2 ms) of VC .
However, through cooperation of these complex individ-
ual potentials, a regularly oscillating collective potential
VC with small amplitude emerges.

We characterize the weak collective coherence for the
case of D = 20 in terms of the cross-correlations between

Fig. 2. Collective-individual and individual-individual
cross-correlation functions in N(= 103) globally coupled in-
hibitory subthreshold ML neurons for IDC = 87 µA/cm2,

D = 20 µA · ms1/2/cm2, and J = 3 mS/cm2: (a) cross-
correlation functions Ci(τ) between the collective potential
VC and the individual potential vi (i = 1, 2, 3), (b) magni-
fications of Ci(τ) near τ = 0, (c) cross-correlation functions
Cij(τ) between individual potentials vi and vj for the 1st
three neurons, and (d) magnifications of Cij(τ) near τ = 0.
Vertical dashed lines in (b) and (d) represent the integer mul-
tiples of the period T (=54.2 ms) of VC . The number of data
used for the calculation of each cross-correlation function in
(a) and (c) is 212.

the collective potential VC and the individual potentials
vi (i = 1, ..., N); thus, we make clear the quantitative re-
lation between the (macroscopic) collective potential VC

and the (microscopic) individual potentials. The normal-
ized cross-correlation function Ci(τ) between VC and vi

is given by

Ci(τ) =
∆VC(t + τ) ∆vi(t)√

∆V 2
C(t)

√
∆v2

i (t)
, (4)

where τ is the time lag, ∆VC(t) = VC(t) − VC(t),
∆vi(t) = vi(t)− vi(t), and the overline denotes the time
average. The first three cross-correlation functions Ci(τ)
between VC and vi (i = 1, 2, 3) are shown in Fig. 2(a).
They exhibit nearly regularly-damped oscillations with
decaying amplitudes for large time lag τ . As shown in
Fig. 2(b), the Ci(τ)’s exhibit in-phase oscillations be-
cause they are phase-locked to VC . For comparison, we
also obtain the conventional cross-correlation functions
Cij(τ) between individual potentials vi and vj :

Cij(τ) =
∆vi(t + τ) ∆vj(t)√

∆v2
i (t)

√
∆v2

j (t)
, (5)
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Fig. 3. Convergence of the kth-order approximant C
(k)
1 (τ)

to the cross-correlation function C1(τ) between VC and v1

in N(= 103) globally coupled inhibitory subthreshold ML

neurons for IDC = 87 µA/cm2, D = 20 µA · ms1/2/cm2, and
J = 3 mS/cm2. Vertical dashed lines denote integer multiples
of the period T (=54.2 ms) of VC . The number of data used

for the calculation of each kth-order approximant C
(k)
1 (τ) is

212.

where ∆vi(t) = vi(t) − vi(t). Unlike the “regular”
cross-correlation functions Ci between VC and vi, the
cross-correlation functions Cij between the individual
potentials show apparently “irregular” oscillations due
to amplitude fluctuations (see Fig. 2(c)). However, their
phases are locked to VC due to the effect of coher-
ent population dynamics, as shown in Fig. 2(d). The
regular oscillation of the cross-correlation function Ci

implies a high-degree collective-individual correlation.
Hence, weak collective coherence may be detected in the
collective-individual cross-correlation function Ci much
better than in the conventional individual-individual
cross-correlation function Cij .

We expect averaging of the individual-individual
cross-correlation functions to lead to a regular oscilla-
tion as in the case of the collective-individual cross-
correlation function. To show this explicitly, we rewrite
the collective-individual cross-correlation function Ci of
Eq. (4) as a summation of unnormalized individual-
individual cross-correlations:

Ci(τ) =

∑N
j=1 ∆vj(t + τ) ∆vi(t)

N

√
∆V 2

C(t)
√

∆v2
i (t)

. (6)

Figure 3 shows three kth-order (k = 10, 50, and 200)
approximants, C

(k)
i (τ), to the collective-individual cross-

correlation function Ci(τ), where

C
(k)
i (τ) =

∑k
j=1 ∆vj(t + τ) ∆vi(t)

k

√
∆V 2

C(t)
√

∆v2
i (t)

. (7)

Fig. 4. “Statistical-mechanical” measure M
(CI)
c based on

the collective-individual correlations in N (= 103) globally
coupled inhibitory subthreshold ML neurons for IDC = 87
µA/cm2 and J = 3 mS/cm2. (a) Plots of Ci(0) (cross-
correlation at the zero-time lag between VC and vi) versus

i (neuron) for (a1) D = 9.5 µA · ms1/2/cm2, (a2) D = 10

µA · ms1/2/cm2, (a3) D = 20 µA · ms1/2/cm2, (a4) D = 30

µA · ms1/2/cm2, and (a5) D = 32 µA · ms1/2/cm2. (b) Plot

of M
(CI)
c versus log10 D. The number of data used for the

calculation of a cross-correlation function for each D in (a)
and (b) is 212.

As the order k is increased, more regular oscillations ap-
pear.

To quantify the weak collective neural coherence, we
introduce a coherence measure M

(CI)
c based on the

collective-individual cross-correlations Ci(0) between VC

and vi at zero-time lag:

M (CI)
c =

1
N

N∑
i=1

Ci(0). (8)

Unlike the conventional “microscopic” measure M
(II)
c ,

M
(CI)
c may be regarded as a “statistical-mechanical”

measure because it quantifies the average contribution of
(microscopic) individual potentials to the (macroscopic)
collective potential. By varying D in the coherent region
(9.4 < D < 33.4), we measure the degree of weak col-
lective coherence in terms of M

(CI)
c . Figure 4(a) shows

plots of Ci(0) versus i (neuron index) for various values
of D; for each value of D, fluctuations occur at about
the average value. By averaging Ci(0) over all neurons
for each value of D, we obtain a bell-shaped graph of
M

(CI)
c (see Fig. 4(b)). A maximal collective coherence is

found to occur for D = D∗ ('13). We also discuss the
effect of collective coherence on individual subthreshold
neurons. Due to the stochastic spiking coherence, the
synaptic current, injected into each individual neuron,
becomes temporally coherent. Hence, the stochastic res-
onance of an individual subthreshold neuron in the net-
work may be enhanced [23]. The degree of the stochastic
resonance is also maximal for D = D∗. As a result of
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the regular oscillations of the collective-individual cross-
correlation functions Ci (see Fig. 2), the “statistical-
mechanical” measure M

(CI)
c may be used to detect weak

collective coherence much better than the conventional
“microscopic” measure M

(II)
c . Furthermore, the com-

putation load for M
(CI)
c increases in proportion to N

because of the ensemble average over all neurons while
that for M

(II)
c grows in proportion to N2 due to the av-

erage over all neuron pairs. Hence, the computation load
(∼ N) for M

(CI)
c is much reduced as compared to that

(∼ N2) for M
(II)
c .

III. SUMMARY

We have studied weak collective coherence in a popu-
lation of N globally coupled inhibitory subthreshold ML
neurons. For a weakly coherent case, a regularly oscillat-
ing collective potential VC with small amplitude appears
through cooperation of complex individual potentials.
To characterize this weak collective neural coherence, we
introduce a new type of “statistical-mechanical” coher-
ence measure, M

(CI)
c , by considering the average cross-

correlations between the collective potential VC and the
individual potentials vi (i = 1, ..., N). We note that
the new collective-individual cross-correlation functions
exhibit distinctly regular oscillations while the conven-
tional individual-individual cross-correlation functions
show complex amplitude fluctuations. This regular oscil-
lation implies a high-degree of collective-individual cor-
relation. Hence, M

(CI)
c can be used to detect the weak

collective coherence much better than the conventional
“microscopic” measure M

(II)
c based on the individual-

individual correlations. Moreover, the computation load
(∼N) for M

(CI)
c is much reduced when compared to that

(∼N2) for M
(II)
c . Finally, we expect that M

(CI)
c to pos-

sibly be implemented to characterize the weak collective
neural coherence in the experimentally-obtained data of
individual and collective potentials.
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