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Abstract

We investigate the mechanism for boundary crises in the quasiperiodically forced logistic map which is a repres
model for quasiperiodically forced period-doubling systems. For small quasiperiodic forcingε, a chaotic attractor disappea
suddenly via a “standard” boundarycrisis when it collides with the smooth unstable torus. However, when passing a thresho
value ofε, a basin boundary metamorphosis occurs, and then the smooth unstable torus is no longer accessible from t
of the basin of the attractor. For this case, using the rational approximations to the quasiperiodic forcing, it is show
nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor is destroyed abrupt
a new type of boundary crisis whenit collides with an invariant “ring-shaped” unstable set which has no counterpart in th
unforced case.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamical transitions of attractors occurring as
system parameters are changed have received m
attention. In particular, sudden qualitative change
the attractor are of special interest. Such discont
ous abrupt changes, called the crises, were first
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tensively studied by Grebogi et al.[1] and two kinds
of crises were discovered for the case of chaotic
tractors. A sudden disappearance of a chaotic attra
occurs when it collides with an unstable periodic or
on its basin boundary, and is called the boundary
sis. On the other hand, an abrupt increase in the siz
a chaotic attractor takes place when the unstable p
odic orbit with which the chaotic attractor collides li
in the interior of the basin, and is called the interior c
sis. Transient or intermittent dynamics associated w
the boundary or interior crisis has been well char
.
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terized[2], and these crises have often been obse
experimentally in periodically forced systems[3].

In this Letter, we study the boundary crisis (BC)
quasiperiodically forced systems driven at two inco
mensurate frequencies. These dynamical systems
attracted much attention because of typical appearan
of strange nonchaotic attractors (SNAs) which
strange (fractal) but nonchaotic (no positive Lyapun
exponent)[4]. Since the first description of SNAs b
Grebogi et al.[5], dynamical behaviors of the qua
siperiodically forced systems have been extensiv
investigated both theoretically[6–22] and experimen
tally [23]. In a recent work[20], Osinga and Feude
investigated the BC in the quasiperiodically forc
Hénon map, and observed a new type of BC that
curs when the smooth unstable torus is inaccess
from the interior of the basin of the attractor due to
basin boundary metamorphosis[24]. However, the un-
stable orbit inducing such a BC was not located, a
thus the mechanism for the new BC remains uncle

This Letter is organized as follows. In Section2,
we investigate the underlying mechanism for the
in the quasiperiodically forced logistic map which w
regard as a representative model for quasiperiodic
forced period-doubling systems. For small quasip
odic forcingε, a sudden destruction of a chaotic attra
tor occurs through a “standard” BC when it collid
with the smooth unstable torus which is develop
from the unstable periodic orbit in the (unforced)
gistic map. However, asε passes a threshold value
basin boundary metamorphosis occurs, and then
smooth unstable torus loses its accessibility from
interior of the basin of the attractor. For this case,
type of the BC changes. Using the rational approxim
tions (RAs) to the quasiperiodic forcing, it is show
that a nonchaotic attractor (smooth torus or SNA)
well as a chaotic attractor disappears suddenly
a new type of BC when it collides with an invar
ant “ring-shaped” unstable set on the basin bound
Such a ring-shaped unstable set has no counterpa
the unforced case[22]. Finally, a summary is given in
Section3.

2. Boundary crises in the quasiperiodically forced
logistic map

We study the mechanism for the BC in the qua
periodically forced logistic mapM, often used as a
e

representative model for the quasiperiodically forc
period-doubling systems:

(1)M:

{
xn+1 = a − x2

n + ε cos2πθn,

θn+1 = θn + ω (mod 1),

wherex ∈ [0,1], θ ∈ S1, a is the nonlinearity para
meter of the logistic map, andω andε represent the
frequency and amplitude of the quasiperiodic fo
ing, respectively. This quasiperiodically forced l
gistic mapM is noninvertible, because its Jacobi
determinant becomes zero along the critical curve
L0 = {x = 0, θ ∈ [0,1)}. Critical curves of rankk,
Lk (k = 1,2, . . .), are then given by the images ofL0
(i.e.,Lk = Mk(L0)). Segments of these critical curv
can be used to define a bounded trapping regio
the phase space, called an “absorbing area”, in
which, upon entering, trajectories are henceforth c
fined[25].

Here, we set the frequency to be the reciproca
the golden mean,ω = (

√
5 − 1)/2, and then inves

tigate the BC using the RAs. For the inverse gold
mean, its rational approximants are given by the
tios of the Fibonacci numbers,ωk = Fk−1/Fk , where
the sequence of{Fk} satisfiesFk+1 = Fk + Fk−1 with
F0 = 0 andF1 = 1. Instead of the quasiperiodical
forced system, we study an infinite sequence of per
ically forced systems with rational driving frequenc
ωk . We suppose that the properties of the original s
tem M may be obtained by taking the quasiperio
limit k → ∞.

Fig. 1 shows a phase diagram in thea–ε plane.
Each phase is characterized by both the Lyapunov
ponentσx in thex-direction and the phase sensitivi
exponentδ. The exponentδ measures the sensitivit
with respect to the phase of the quasiperiodic forc
and characterizes the strangeness of an attractor
quasiperiodically driven system[9]. A smooth torus
has a negative Lyapunov exponent and no phase s
tivity (δ = 0). Its region is denoted byT and shown in
light gray. When crossing the solid line, the smoo
torus becomes unstable and bifurcates to a sm
doubled torus in the region denoted by 2T . On the
other hand, chaotic attractors have positive Lyapu
exponents and its region is shown in black. Betwe
these regular and chaotic regions, SNAs that have
ative Lyapunov exponents and high phase sensiti
(δ > 0) exist in the region shown in gray. Due
their high phase sensitivity, these SNAs have fra
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Fig. 1. (a) Phase diagram in thea–ε plane. Regular, chaotic, SNA,
and divergence regimes are shown in light gray, black, gray, and
white, respectively. For the case of regular attractor, a torus and a
doubled torus exist in the regions denoted byT and 2T , respec-
tively. We note the existence of a “tongue” of quasiperiodic motion
near the terminal point (marked with the cross) of the torus doubling
bifurcation curve represented by the solid line. In this tongue, typ-
ical dynamical transitions such as the intermittency, interior crisis
(occurring when passing the dashed line) and BC may occur through
interaction with the ring-shaped unstable set born when passing the
dash-dotted line. When passing the dotted line, a basin boundary
metamorphosis occurs, and then the smooth unstable torus becomes
inaccessible from the basin of the attractor. (b) BCs leading to di-
vergence. A sudden destruction of achaotic attractor (SNA) occurs
via a “standard” BC along the route A (B) when it collides with the
smooth unstable torus. On the other hand, through collision with a
ring-shaped unstable set, a new type of BCs, which cause the abrupt
destruction of the smooth torus, SNA, and chaotic attractors, occur
along the routes C, D, and E, respectively. Hence, the BC curve is
not differentiable at the two double-crisis vertices, denoted by the
plus. A small box near the upper double-crisis vertex is magnified.
For other details, see the text.

structure. This phase diagram is typical for quasip
odically forced period-doubling systems[16–20,22].
Note that its main interesting feature is the existenc
the “tongue” of quasiperiodic motion that penetra
into the chaotic region and separates it into upper
lower parts. We also note that this tongue lies near
terminal point (denoted by the cross) of the torus d
bling bifurcation curve. In this tongue, rich dynamic
transitions such as intermittency, interior crisis, a
BC occur. Here, we are interested in the BC induc
divergence that occurs in the region shown in white

We first consider a BC occurring along the rou
A (ε = 0.5a − 0.28) in Fig. 1(b). A chaotic attrac-
tor, bounded by the critical curvesLk (k = 1, . . . ,4),
is given in Fig. 2(a) for a = 1.19 and ε = 0.315,
and its basin is shown in gray. As the parametera

and ε increase, the chaotic attractor and a smo
unstable torus (denoted by a dashed line) on
basin boundary become closer (seeFig. 2(b)). Even-
tually, when passing the threshold value(a, ε) =
(1.298 618,0.369309), a sudden destruction of th
chaotic attractor occurs through a collision with the
smooth unstable torus which is developed from the
stable fixed point of the (unforced) logistic map. Th
BC corresponds to a natural generalization of the
occurring for the unforced case(ε = 0). Hence, we
call it the “standard” BC.

As a andε are increased, the standard BC line c
tinues smoothly. However, at a lower vertex(a∗

l , ε∗
l ) �

(1.227,0.404) (denoted by a plus (+) in Fig. 1(b)), the
standard BC line ends and a new kind of BC curve
gins by making a sharp turning. Hence, the BC cu
loses its differentiability at the vertex. For this ca
the standard BC line is continued smoothly beyond
vertex as a curve of a basin metamorphosis line
noted by a dotted line, and the new BC curve jo
smoothly with an interior crisis curve denoted by
dashed line at the vertex (seeFig. 1(b)). When pass
ing the basin boundary metamorphosis line, the ba
boundary suddenly jumps in size[24], and as the in-
terior crisis curve is crossed, abrupt widening of
attractor occurs[20]. Note that these double (bounda
and interior) crises plus a basin boundary metam
phosis occur simultaneously at the vertex[26].

Below the basin boundary metamorphosis line
the tongue, a smooth torus (denoted by a heavy b
curve) exists inside an absorbing area bounded by
critical curvesLk (k = 1, . . . ,4) (e.g., seeFig. 2(c)
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Fig. 2. (a) and (b) Standard BC of a chaotic attractor. Chaotic attractors bounded by the critical curvesLk (k = 1, . . . ,4) and their basins o
attraction are denoted by black dots andshown in gray, respectively for (a)a = 1.19 andε = 0.315 and (b)a = 1.265 andε = 0.3525. Here the
dashed line represents a smooth unstable torus on the basin boundary. (c) and (d) Basin boundary metamorphosis. (c) A smooth torus (den
by a heavy black curve) exists inside the absorbing area bounded by the critical curvesLk (k = 1, . . . ,4) for a = 1.05 andε = 0.355. (d)
“Holes” (denoted by white dots), leading to divergence, appear insidethe basin (shown in gray) of the smooth torus (denoted by a heavy b
curve) fora = 1.187 andε = 0.4235 after breakup of the absorbing area. (e) and (f) Appearance of a ring-shaped unstable set in the RA
level 7. A smooth torus (denoted by a heavy black curve) and a ring-shaped unstable set exist inside the absorbing area bounded by the c
curvesLk (k = 1, . . . ,4) for (e) a = 0.989 andε = 0.3245 and (f)a = 0.993 andε = 0.3265. A ring-shaped unstable set is composed ofF7
(= 13) small rings. Magnified views of a ring are given in the insets. Note that each ring consists of the unstable part (composed of uns
orbits with the forcing periodF7 and shown in dark gray) and the attracting part (denoted by black dots). For more details, see the text
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for a = 1.05 andε = 0.355). However, as the bas
boundary metamorphosis line is crossed, the abs
ing area becomes broken up through collision with the
smooth unstable torus (denoted by the dashed li
and then “holes (denoted by white dots)”, leading
divergence, appear inside the basin of the smooth
tracting torus (seeFig. 2(d)) [27]. As a consequenc
of this basin boundary metamorphosis, the smooth
stable torus becomes inaccessible from the inte
of basin of the smooth attracting torus, and henc
cannot induce any BC. For this case, using the R
to the quasiperiodic forcing, we locate an invaria
ring-shaped unstable set that causes a new typ
BC through a collision withthe smooth (attracting
torus. When passing the dash-dotted line inFig. 1(a),
such a ring-shaped unstable set is born via a ph
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r,
dependent saddle-node bifurcation[22]. This bifurca-
tion has no counterpart in the unforced case. As
example, we consider the RA of levelk = 7 and ex-
plain the structure of the ring-shaped unstable set
shown inFig. 2(e) for a = 0.989 andε = 0.3245, the
RA to the smooth torus (denoted by a heavy bla
line), composed of stable orbits with periodF7 (= 13),
exists inside an absorbing area bounded by segm
of the critical curvesLk (k = 1, . . . ,4). We also note
that a ring-shaped unstable set, consisting ofF7 small
rings, lies inside the absorbing area. At first, each r
consists of the stable (shown in black) and unsta
(shown in dark gray) orbits with the forcing perio
F7 (see the inset inFig. 2(e)). However, as the para
metersa andε increase, such rings evolve, and th
each ring becomes composed of a large unstable
(shown in dark gray) and a small attracting part (
noted by black dots) (see the inset inFig. 2(f)). As
the levelk of the RA increases, the ring-shaped u
stable set consists of a larger number of rings wit
smaller attracting part. Hence, we believe that, in
quasiperiodic limit, the ring-shaped unstable set mi
become a complicated invariant unstable set compo
of only unstable orbits. Through a collision with th
ring-shaped unstable set which has no counterpa
the unforced case, a new type of BC occurs, as wil
seen below.

With further increase ina andε, both the new BC
curve and the basin boundary metamorphosis line
simultaneously at the upper double-crisis vertex (
noted by a plus)(a∗

u, ε∗
u) � (1.154,0.437) in Fig. 1(b).

Then, the standard BC line, which joins smooth
with the basin boundary metamorphosis line at the
per vertex, starts again by making an angle. Alo
the routesA and B beyond the upper vertex, sta
dard BCs of the chaotic attractor and SNA occ
respectively. On the other hand, the new BC cu
turns smoothly into a curve of intermittency at t
upper vertex. When passing the intermittency li
a transition from a smooth torus to an intermitte
SNA occurs through collision with a ring-shaped u
stable set[22]. As in the case of interior crisis, th
size of the attractor abruptly increases. Hereafter, w
will study new type of BCs which occur along th
routesC, D, and E crossing the segment bound
by the lower and upper double-crisis vertices (
Fig. 1(b)). A nonchaotic attractor (smooth torus (rou
C) or SNA (routeD)) as well as a chaotic attracto
t

(routeE) is found to be abruptly destroyed through
new BC when it collides with a ring-shaped unsta
set.

We now fix the value ofa at a = 1.18 and inves-
tigate the BC of a smooth torus by varyingε along
the routeC. Fig. 3(a) shows a smooth torus (d
noted by black curve) whose basin is shown in g
for ε = 0.43. Due to the existence of holes (sho
in white), leading to divergence, the smooth unsta
torus (denoted by the dashed line) is not access
from the interior of the basin of the smooth attracti
torus. As the parameterε increases, the smooth toru
and holes become closer, as shown inFig. 3(b) for
ε = 0.445. Eventually, the smooth (attracting) tor
is abruptly destructed via a BC when it collides w
the hole boundary forε = ε∗(= 0.445 567 905). Using
the RA of level k = 7, we investigate the mech
nism for the BC of the smooth torus.Fig. 3(c) shows
the smooth torus (denoted by a black line), the ri
shaped unstable set (represented by dark gray cur
and holes (shown in white) forε = 0.427. The RAs
to the smooth torus and the ring-shaped unstable
are composed of stable and unstable orbits with
riod F7 (= 13), respectively. For this case, the rin
shaped unstable set is close to the smooth torus. H
ever, it does not lie on any hole boundary (e.g.,
a magnified view inFig. 3(d)). As the parameterε
increases, the size of holes increases and new h
appear. Then, some part of the ring-shaped unst
set lies on a hole boundary, as shown inFig. 3(e)
and (f). With further increases inε, the smooth
torus and the ring-shaped unstable set on the
boundary become closer, and eventually, forε = ε∗

7
(= 0.430 854 479) a phase-dependent saddle-no
bifurcation occurs througha collision between the
smooth torus and the ring-shaped unstable set. T
“gaps,” where the former attractor (i.e., the sta
F7-periodic orbits) no longer exists and almost all t
jectories go to the infinity, are formed, as shown
Fig. 3(g) (e.g., see a magnified gap inFig. 3(h)). As
a result, a “partially-destroyed” torus withF7 (= 13)
gaps, where divergence occurs, is left. By increas
the level of the RA tok = 19, we study the BC of the
smooth torus. It is thus found that the threshold va
ε∗
k , at which the phase-dependent saddle-node b

cation of levelk (inducing the phase-dependent B
in the gaps) occurs, converges to the quasiperi
limit ε∗ (= 0.445 567 905) in an algebraic manne



S.-Y. Kim, W. Lim / Physics Letters A 334 (2005) 160–168 165

n in
oth

d holes are
orus.

on
ap
Fig. 3. (a) and (b) BC of a smooth torus along the routeC for a = 1.18. (a) Smooth torus (denoted by a black curve) and its basin (show
gray) forε = 0.43. The unstable smooth torus (denoted by a dashed line) is notaccessible from the interior of the basin of the stable smo
torus because of the existence of holes (denoted by white dots). (b) Smooth torus and holes just before the BC forε = 0.445. (c)–(h) Analysis
of the mechanism for the BC of the smooth torus in the RA of level 7 fora = 1.18. Magnified views near(θ, x) = (0.277,−0.2) in (c), (e), and
(g) are given in (d), (f), and (h), respectively. Here, the smooth torus whose basin is shown in gray, a ring-shaped unstable set, an
shown in black, dark gray, and white dots, respectively. In (c) and (d) forε = 0.427, a ring-shaped unstable set lies close to the smooth t
In (e) and (f) forε = 0.43, some part of the ring-shaped unstable set lies on a hole boundary (e.g., see a magnified view in (f)). Forε = ε∗

7
(= 0.430854479), a BC occurs via phase-dependent saddle-node bifurcations between the smooth torus and the ring-shaped unstable set
the hole boundary. Then,F7 (= 13) “gaps”, where divergence occurs, are formed, as shown in (g) forε = 0.4309, (e.g., see a magnified g
in (h)).
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|�εk| ∼ F−α
k , where�εk = ε∗

k − ε∗ and α � 2.01.
As the levelk of the RA increases, the number
gaps, where divergence takes place, becomes la
and eventually in the quasiperiodic limit, a BC occu
in a dense set of gaps covering the wholeθ -range.
Consequently, the whole smooth torus disappears
,

denly via a new type of BC when it collides with th
ring-shaped unstable set.

When crossing the remaining part of the new B
curve along the routesD andE in Fig. 1(b), a SNA
and a chaotic attractor are destructed abruptly thro
a collision with a ring-shaped unstable set, resp
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leading to

Then,
Fig. 4. (a) a SNA withσx = −0.038 andδ = 1.077 and (b) a chaotic attractorσx = 0.006 are denoted by black dots for(a, ε) = (1.2327,0.43)
and (1.227,0.405), respectively. These attractors whose basins are shown in gray lie close to holes (represented by white dots),
divergence. (c)–(f) Investigation of the mechanism for the BC of the SNA along the routeD in the RA of levelk = 7 for ε = 0.43. The RAs to
the SNA and the ring-shaped unstable set are denoted by black and dark gray dots, respectively, in (c) fora = 1.207 andε = 0.43. Some part of
the ring-shaped unstable set lies on a hole boundary (shown in white) (e.g., see a magnified view in (d)). Fora = a∗

7 (= 1.208945689), a BC
occurs through a collision between the chaotic component of the RA to the SNA and the ring-shaped unstable set on the hole boundary.
F7 (= 13) “gaps”, where divergence takes place, are formed as shown in (e) fora = 1.21 (e.g., see a magnified gap in (f)).
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tively. For a fixed value ofε = 0.43, a smooth torus i
transformed into a SNA via gradual fractalization[14]
when passing a threshold value ofa = 1.231 592.
Fig. 4(a) shows a SNA (denoted by black dots) w
σx = −0.038 andδ = 1.077 for a = 1.2327. Due to
the existence of holes (shown in white), the smo
unstable torus (represented by a dashed line) is i
cessible from the interior of the basin of the SNA. Asa

passes another threshold valuea∗ (= 1.232 722 002),
the SNA is destroyed abruptly via a BC when it c
lides with a hole boundary. As in the case of the SN
BC of a chaotic attractor also occurs along the routE

through a collision with a hole boundary. For examp
at a fixed value ofε = 0.405, consider a chaotic attra
tor with σx = 0.006 shown inFig. 4(b) for a = 1.227.
Sudden destruction of the chaotic attractor takes p
when passing a threshold value ofa = 1.227 030 014.
For this case, the mechanism for the BC of the chaotic
attractor is the same as that for the case of the S
Hence, it is sufficient to consider only the case
the SNA for presentation of the mechanism for
BC. Using the RA of levelk = 7, we investigate the
mechanism for the BC of the SNA along the rou
D for ε = 0.43. Fig. 4(c) and (d)show the RAs to
the SNA (denoted by black dots) and the ring-sha
unstable set (shown in dark gray). Unlike the ca
of the smooth torus, the RA to the SNA consists
the periodic and chaotic components. Since the p
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odic component is dominant, the average Lyapu
exponent(〈σx〉 = −0.109) is negative, where〈· · ·〉 de-
notes the average over the wholeθ . Note that some
of the ring-shaped unstable set lies on a hole bou
ary (shown in white) (e.g., see a magnified view
Fig. 4(d)). As a is increased, the chaotic compone
of the RA to the SNA and the ring-shaped uns
ble set on the hole boundary become closer. Eve
ally, for a = a∗

7 (= 1.208 945 689), they make a colli-
sion and then a phase-dependent BC occurs. ThuF7
(= 13) gaps, where divergence occurs, are form
in the whole range ofθ , as shown inFig. 4(e) for
a = 1.21 (e.g., see a magnified gap inFig. 4(f)). As
a result, the SNA becomes destroyed partially in ga
By increasing the level of the RA tok = 19, we study
the BC of the SNA. It is thus found that the thres
old value a∗

k , at which the phase-dependent BC
level k occurs, converges to the quasiperiodic limita∗
(= 1.232 722 002) in an algebraic manner,|�ak| ∼
F−α

k , where�ak = a∗
k −a∗ andα � 2.67. As the level

k of the RA increases, more and more gaps, wh
divergence takes place, appear, and eventually in
quasiperiodic limit, a BC occurs in a dense set of g
covering the wholeθ -range. Hence, the whole SNA
destroyed abruptly through a new type of BC whe
collides with the ring-shaped unstable set.

3. Summary

Using the RAs to the quasiperiodic forcing, w
have investigated the mechanism for the BCs in
quasiperiodically forced logistic map which is a re
resentative model for the quasiperiodically forc
period-doubling systems. As the quasiperiodic forc
amplitudeε passes a threshold value, a basin bound
metamorphosis occurs, and then the smooth unst
torus, inducing the standard BC, becomes inacce
ble from the interior of the basin of the attractor. F
this case, a new type of BC has been found to
cur through a collision with a ring-shaped unstable
which has no counterpart in the unforced case. A
result, a nonchaotic attractor (smooth torus or SN
as well as a chaotic attractor is abruptly destroy
Finally, we note that this kind of new BC occurs in ty
ical quasiperiodically forced period-doubling syste
such as the quasiperiodically forced Hénon map[20].
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