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Abstract

We investigate the mechanism for boundary crises in the quasiperiodically forced logistic map which is a representative
model for quasiperiodically forced period-doubling systems. For small quasiperiodic farcinghaotic attractor disappears
suddenly via a “standard” boundagyisis when it collides \th the smooth unstable torus. Hewer, when passing a threshold
value ofe, a basin boundary metamorphosis occurs, and then the smooth unstable torus is no longer accessible from the interior
of the basin of the attractor. For this case, using the rational approximations to the quasiperiodic forcing, it is shown that a
nonchaotic attractor (smooth torus or strange nonchaotic attractor) as well as a chaotic attractor is destroyed abruptly through
a new type of boundary crisis wheicollides with an invariant fing-shaped” unstable set wh has no counterpart in the
unforced case.

0 2004 Elsevier B.V. All rights reserved.
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1. Introduction tensively studied by Grebogi et 4ll] and two kinds
of crises were discovered for the case of chaotic at-
Dynamical transitions of attractors occurring as the tractors. A sudden disappearance of a chaotic attractor
system parameters are changed have received muctoccurs when it collides with an unstable periodic orbit
attention. In particular, sudden qualitative changes in on its basin boundary, and is called the boundary cri-
the attractor are of special interest. Such discontinu- sis. On the other hand, an abruptincrease in the size of
ous abrupt changes, called the crises, were first ex-a chaotic attractor takes place when the unstable peri-
odic orbit with which the chaotic attractor collides lies
e , in the interior of the basin, and is called the interior cri-
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terized[2], and these crises have often been observedrepresentative model for the quasiperiodically forced
experimentally in periodically forced systeii3§. period-doubling systems:

In _this.Le.tter, we study the boundary crisis (!SC) in { Xpi1=d — x2+ £COS 26y,
quasiperiodically forced systems driven at two incom- M: n
mensurate frequencies. These dynamical systems have On+1= 6 + @ (Mod D),
attracted much attentiorebause of typical appearance wherex € [0, 1], 6 € S, a is the nonlinearity para-
of strange nonchaotic attractors (SNAs) which are meter of the logistic map, angd ande represent the
strange (fractal) but nonchaotic (no positive Lyapunov frequency and amplitude of the quasiperiodic forc-
exponent)4]. Since the first description of SNAs by ing, respectively. This quasiperiodically forced lo-
Grebogi et al.[5], dynamical behaviors of the qua- gistic mapM is noninvertible, because its Jacobian
siperiodically forced systems have been extensively determinant becomes zerdoag the critical curve,
investigated both theoretical[$—22] and experimen- Lo={x=0,6 €[0,1)}. Critical curves of rankk,
tally [23]. In a recent worl{20], Osinga and Feudel L; (k=1,2,...), are then given by the images b§
investigated the BC in the quasiperiodically forced (i.e.,Ly = M*(Lo)). Segments of these critical curves
Hénon map, and observed a new type of BC that oc- can be used to define a bounded trapping region of
curs when the smooth unstable torus is inaccessiblethe phase space, called an “absorbing area”, inside
from the interior of the basin of the attractor due to the which, upon entering, trajectories are henceforth con-

1)

basin boundary metamorphof2¢l]. However, the un-

stable orbit inducing such a BC was not located, and

thus the mechanism for the new BC remains unclear.
This Letter is organized as follows. In Secti@n

we investigate the underlying mechanism for the BC

in the quasiperiodically forced logistic map which we

fined[25].

Here, we set the frequency to be the reciprocal of
the golden meanp = (+/5 — 1)/2, and then inves-
tigate the BC using the RAs. For the inverse golden
mean, its rational approximants are given by the ra-
tios of the Fibonacci numbersy = F;_1/F, where

regard as a representative model for quasiperiodically the sequence dff} } satisfiesFi1 = Fy + Fx—1 with

forced period-doubling systems. For small quasiperi-
odic forcinge, a sudden destruction of a chaotic attrac-
tor occurs through a “standard” BC when it collides
with the smooth unstable torus which is developed
from the unstable periodic orbit in the (unforced) lo-
gistic map. However, as passes a threshold value, a

basin boundary metamorphosis occurs, and then the

Fo =0 and F1 = 1. Instead of the quasiperiodically
forced system, we study an infinite sequence of period-
ically forced systems with rational driving frequencies
oy . We suppose that the properties of the original sys-
tem M may be obtained by taking the quasiperiodic
limit £ — oo.

Fig. 1 shows a phase diagram in tlaee plane.

smooth unstable torus loses its accessibility from the Each phase is characterized by both the Lyapunov ex-

interior of the basin of the attractor. For this case, the

ponento, in the x-direction and the phase sensitivity

type of the BC changes. Using the rational approxima- exponents. The exponens measures the sensitivity

tions (RAS) to the quasiperiodic forcing, it is shown

with respect to the phase of the quasiperiodic forcing

that a nonchaotic attractor (smooth torus or SNA) as and characterizes the strangeness of an attractor in a
well as a chaotic attractor disappears suddenly via quasiperiodically driven systeii®]. A smooth torus

a new type of BC when it collides with an invari-

has a negative Lyapunov exponent and no phase sensi-

ant “ring-shaped” unstable set on the basin boundary. tivity (6 = 0). Its region is denoted by and shown in
Such a ring-shaped unstable set has no counterpart inlight gray. When crossing the solid line, the smooth

the unforced casp?]. Finally, a summary is given in
Section3.

2. Boundary crisesin the quasiperiodically forced
logistic map

We study the mechanism for the BC in the quasi-
periodically forced logistic map/, often used as a

torus becomes unstable and bifurcates to a smooth
doubled torus in the region denoted by .20n the
other hand, chaotic attractors have positive Lyapunov
exponents and its region is shown in black. Between
these regular and chaotic regions, SNAs that have neg-
ative Lyapunov exponents and high phase sensitivity
(8§ > 0) exist in the region shown in gray. Due to
their high phase sensitivity, these SNAs have fractal
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0.47 Divergence structure. This phase diagram is typical for quasiperi-

y odically forced period-doubling systenit6—20,22]
Intermittency Note that its main interesting feature is the existence of
) the “tongue” of quasiperiodic motion that penetrates
into the chaotic region and separates it into upper and
lower parts. We also note that this tongue lies near the
pr terminal point (denoted by the cross) of the torus dou-
o Interior . . . . . .
£ Orisie bling bifurcation curve. In this tongue, rich dynamical
transitions such as intermittency, interior crisis, and
BC occur. Here, we are interested in the BC inducing
' divergence that occurs in the region shown in white.
0'2%.78 1.04 1.30 We first consider a BQ occurring along the route
A (¢ =054 — 0.28) in Fig. 1(b). A chaotic attrac-
tor, bounded by the critical curvds, (k =1,...,4),
is given in Fig. 2@a) for a = 1.19 ande = 0.315,
and its basin is shown in gray. As the parameters
and ¢ increase, the chaotic attractor and a smooth
unstable torus (denoted by a dashed line) on the
basin boundary become closer (d&g. 2(b)). Even-
tually, when passing the threshold valde, ¢) =
(1.2986180.369309, a sudden destruction of the
chaotic attractor occurs ithugh a collision with the
smooth unstable torus which is developed from the un-
stable fixed point of the (unforced) logistic map. This
BC corresponds to a natural generalization of the BC
0.39 occurring for the unforced case = 0). Hence, we
1.13 1.19 1.25 call it the “standard” BC.
a As a ande are increased, the standard BC line con-
tinues smoothly. However, at a lower veriex, ;) ~
Fig. 1. (a) Phase diagram in thes plane. Regular, chaotic, SNA, (1.227,0.404 ,(denOted by a plus) I_n Fig. (b)), the
and divergence regimes are shown in light gray, black, gray, and Standard BC line ends and a new kind of BC curve be-
white, respectively. For the case of regular attractor, a torus and a gins by making a sharp turning. Hence, the BC curve
doubled torus exist in the regions denoted Byand 2", respec- loses its differentiability at the vertex. For this case,
2ve'?’-t t:Net f:‘r:en gl‘e sﬁfzem”;ié’; a,‘;f{‘hgeuz:o‘;fs?‘;?;i‘;etg‘:décdf:Ogil‘?n” the standard BC line is continued smoothly beyond the
| | Wi | . . .
bﬁircat(ieor? curve I?epresented by the solid line. In this t(l)Jngueu, typg—J vertex as a curve O,f a basin metamorph05|s “n_e ,de_
ical dynamical transitions such as the intermittency, interior crisis noted by a dotted line, and the new BC curve joins
(occurring when passing the dashed line) and BC may occur through Smoothly with an interior crisis curve denoted by a
interaction with the ring-shaped unstable set born when passing the dashed line at the vertex (s€&. 1(b)). When pass-
dash-dotted line. When passing the dotted line, a basin boundary ing the basin boundary metamorphosis line, the basin

metamorphosis occurs, and then the smooth unstable torus become ; i i
inaccessible from the basin of the attractor. (b) BCs leading to di- Sooundary suddenly Jumps in 5124]’ and as the in

vergence. A sudden destruction oélaaotic attractor (SNA) occurs  L€TOF Crisis curve is crossed, abrupt widening of an
via a “standard” BC along the route A (B) when it collides with the ~ attractor occurf20]. Note that these double (boundary
smooth unstable torus. On the other hand, through collision with a and interior) crises plus a basin boundary metamor-
ring-shaped unstable set, a new type of BCs, which cause the abruptphosiS occur simultaneously at the ver[ﬁﬁ].

destruction of the smooth torus, SNA, and chaotic attractors, occur - s .
along the routes C, D, and E, respectively. Hence, the BC curve is Below the basin boundary metamorph03|s line in

not differentiable at the two double-crisis vertices, denoted by the the tongu_e, a.sm.ooth torus (d?nOted by a heavy black
plus. A small box near the upper double-crisis vertex is magnified. CUrve) exists inside an absorbing area bounded by the

For other details, see the text. critical curvesL, (k =1,...,4) (e.g., seeFig. 2(c)

w 0.36

0.45

w 0.42
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Fig. 2. (a) and (b) Standard BC of a chaotic atimacChaotic attractors bounded by the critical curigs(k =1, ..., 4) and their basins of
attraction are denoted by black dots amdwn in gray, respectively for (a)= 1.19 ands = 0.315 and (b): = 1.265 ands = 0.3525. Here the
dashed line represents a smooth unstable torus on the basin bouadang (d) Basin boundary metamorphosis. (c) A smooth torus (denoted
by a heavy black curve) exists inside the absorbing area bounded by the critical £yrves=1,...,4) for a = 1.05 ande = 0.355. (d)
“Holes” (denoted by white dots), leading to divergence, appear irtkiglbasin (shown in gray) of the smooth torus (denoted by a heavy black
curve) fora = 1.187 ande = 0.4235 after breakup of the absorbing area. (e) and fpearance of a ring-shaped unstable set in the RA of
level 7. A smooth torus (denoted by a heavy black curve) and a ringedhagstable set exist inside the absorbing area bounded by the critical
curvesLy (k=1,..., 4) for (e) a = 0.989 ande = 0.3245 and (fla = 0.993 ande = 0.3265. A ring-shaped unstable set is composed-of

(= 13) small rings. Magnified views of a ring are given in the insets. Nb&t each ring consists of the unstable part (composed of unstable
orbits with the forcing period”; and shown in dark gray) and the attracting part (denoted by black dots). For more details, see the text.

for a = 1.05 ande = 0.355). However, as the basin stable torus becomes inaccessible from the interior
boundary metamorphosis line is crossed, the absorb-of basin of the smooth attracting torus, and hence it
ing area becomes brokep through collision with the ~ cannot induce any BC. For this case, using the RAs
smooth unstable torus (denoted by the dashed line),to the quasiperiodic forcing, we locate an invariant
and then “holes (denoted by white dots)”, leading to ring-shaped unstable set that causes a new type of
divergence, appear inside the basin of the smooth at-BC through a collision withthe smooth (attracting)
tracting torus (se€ig. 2(d)) [27]. As a consequence torus. When passing the dash-dotted lin€ig. 1(a),

of this basin boundary metamorphosis, the smooth un- such a ring-shaped unstable set is born via a phase-
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dependent saddle-node bifurcati@2]. This bifurca- (route E) is found to be abruptly destroyed through a
tion has no counterpart in the unforced case. As an new BC when it collides with a ring-shaped unstable
example, we consider the RA of level= 7 and ex- set.

plain the structure of the ring-shaped unstable set. As  We now fix the value of: ata = 1.18 and inves-
shown inFig. 2(e) fora = 0.989 ands = 0.3245, the tigate the BC of a smooth torus by varyirgalong

RA to the smooth torus (denoted by a heavy black the routeC. Fig. 3(a) shows a smooth torus (de-
line), composed of stable orbits with peridd (= 13), noted by black curve) whose basin is shown in gray
exists inside an absorbing area bounded by segmentdor ¢ = 0.43. Due to the existence of holes (shown
of the critical curved.; (k=1,...,4). We also note in white), leading to divergence, the smooth unstable
that a ring-shaped unstable set, consisting-o$mall torus (denoted by the dashed line) is not accessible
rings, lies inside the absorbing area. At first, each ring from the interior of the basin of the smooth attracting
consists of the stable (shown in black) and unstable torus. As the parameterincreases, the smooth torus
(shown in dark gray) orbits with the forcing period and holes become closer, as shownFig. 3(b) for

F7 (see the inset irig. 2(e)). However, as the para- ¢ = 0.445. Eventually, the smooth (attracting) torus
metersa ande increase, such rings evolve, and thus is abruptly destructed via a BC when it collides with
each ring becomes composed of a large unstable partthe hole boundary for = ¢*(= 0.445567 90%. Using
(shown in dark gray) and a small attracting part (de- the RA of levelk = 7, we investigate the mecha-
noted by black dots) (see the insethkig. 2(f)). As nism for the BC of the smooth toruBig. 3(c) shows

the levelk of the RA increases, the ring-shaped un- the smooth torus (denoted by a black line), the ring-
stable set consists of a larger number of rings with a shaped unstable set (represented by dark gray curves),
smaller attracting part. Hence, we believe that, in the and holes (shown in white) far = 0.427. The RAs
quasiperiodic limit, the ring-shaped unstable set might to the smooth torus and the ring-shaped unstable set
become a complicated invariant unstable set composedare composed of stable and unstable orbits with pe-
of only unstable orbits. Through a collision with this riod F7 (= 13), respectively. For this case, the ring-
ring-shaped unstable set which has no counterpart in shaped unstable set is close to the smooth torus. How-
the unforced case, a new type of BC occurs, as will be ever, it does not lie on any hole boundary (e.g., see

seen below.
With further increase im ande, both the new BC

a magnified view inFig. 3(d)). As the parametes
increases, the size of holes increases and new holes

curve and the basin boundary metamorphosis line endappear. Then, some part of the ring-shaped unstable

simultaneously at the upper double-crisis vertex (de-
noted by a plusja’, ) ~ (1.154 0.437) in Fig. 1(b).
Then, the standard BC line, which joins smoothly
with the basin boundary metamorphosis line at the up-
per vertex, starts again by making an angle. Along
the routesA and B beyond the upper vertex, stan-
dard BCs of the chaotic attractor and SNA occur,
respectively. On the other hand, the new BC curve
turns smoothly into a curve of intermittency at the
upper vertex. When passing the intermittency line,
a transition from a smooth torus to an intermittent
SNA occurs through collision with a ring-shaped un-
stable sef22]. As in the case of interior crisis, the
size of the attractor abrtly increases. Hereafter, we
will study new type of BCs which occur along the
routesC, D, and E crossing the segment bounded
by the lower and upper double-crisis vertices (see
Fig. (b)). A nonchaotic attractor (smooth torus (route
C) or SNA (routeD)) as well as a chaotic attractor

set lies on a hole boundary, as shownHig. 3(e)

and (f). With further increases im, the smooth
torus and the ring-shaped unstable set on the hole
boundary become closer, and eventually, for ¢3

(= 0.430854479 a phase-dependent saddle-node
bifurcation occurs througta collision between the
smooth torus and the ring-shaped unstable set. Then,
“gaps,” where the former attractor (i.e., the stable
F7-periodic orbits) no longer exists and almost all tra-
jectories go to the infinity, are formed, as shown in
Fig. 3g) (e.g., see a magnified gap kig. 3(h)). As

a result, a “partially-destroyed” torus with; (= 13)
gaps, where divergence occurs, is left. By increasing
the level of the RA tck = 19, we study the BC of the
smooth torus. It is thus found that the threshold value
&f, at which the phase-dependent saddle-node bifur-
cation of levelk (inducing the phase-dependent BCs
in the gaps) occurs, converges to the quasiperiodic
limit ¢* (= 0.44556790% in an algebraic manner,
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Fig. 3. (a) and (b) BC of a smooth torus along the radtéor « = 1.18. (a) Smooth torus (denoted by a black curve) and its basin (shown in

gray) fore = 0.43. The unstable smooth torus (denoted by a dashed line) mcoessible from the interior of the basin of the stable smooth

torus because of the existence of holes (denoted by white dots). (b) Smooth torus and holes just before the=-BIA#B. (c)—(h) Analysis

of the mechanism for the BC of the smooth torus in the RA of level Zferl.18. Magnified views neai, x) = (0.277, —0.2) in (c), (e), and

(g) are given in (d), (f), and (h), respectively. Here, the smooth torus whose basin is shown in gray, a ring-shaped unstable set, and holes are
shown in black, dark gray, and white dots, respectively. In (c) and (& £00.427, a ring-shaped unstable set lies close to the smooth torus.

In (e) and (f) fore = 0.43, some part of the ring-shaped unstable set liea dole boundary (e.g., see agnified view in (f)). Fore = &%
(=0.430854 479, a BC occurs via phase-dependent seddide bifurcations between the smoaitus and the ring-shaped unstable set on

the hole boundary. Therk; (= 13) “gaps”, where divergence occurs, are formed, as shown in (g £00.4309, (e.g., see a magnified gap

in (h)).

|Agi| ~ F %, where Agy = ¢ — ¢* anda >~ 2.01. denly via a new type of BC when it collides with the
As the levelk of the RA increases, the number of ring-shaped unstable set.

gaps, where divergence takes place, becomes larger, When crossing the remaining part of the new BC
and eventually in the quasiperiodic limit, a BC occurs curve along the route® and E in Fig. 1(b), a SNA

in a dense set of gaps covering the whéleange. and a chaotic attractor are destructed abruptly through
Consequently, the whole smooth torus disappears sud-a collision with a ring-shaped unstable set, respec-
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Fig. 4. (a) a SNA withp,, = —0.038 ands = 1.077 and (b) a chaotic attractex = 0.006 are denoted by black dots far, ¢) = (1.2327,0.43)

and (1.227,0.405), respectively. These attractors whose basins are shown in gray lie close to holes (represented by white dots), leading to
divergence. (c)—(f) Investigation of the mechanism for the BC of the SNA along the fointehe RA of levelk = 7 for ¢ = 0.43. The RAs to

the SNA and the ring-shaped unstable set are denoted by black and dark gray dots, respectively,dn<{d) 267 ands = 0.43. Some part of

the ring-shaped unstable set lies on a hole boundaryvsiownhite) (e.g., see a magnified view in (d)). ko= a3 (= 1.208945689, a BC

occurs through a collision between the chaotic component of theoRi#etSNA and the ring-shaped unstable set on the hole boundary. Then,

F7 (=13) “gaps”, where divergence takes place, are formed as shown in (e)dr.21 (e.g., see a magnified gap in (f)).

tively. For a fixed value of = 0.43, a smooth torusis  tor with o, = 0.006 shown inFig. 4(b) fora = 1.227.
transformed into a SNA via gradual fractalizatid4] Sudden destruction of the chaotic attractor takes place
when passing a threshold value of= 1.231592. when passing a threshold valuew 1.227 030 014.
Fig. 4(a) shows a SNA (denoted by black dots) with For this case, the mechanidor the BC of the chaotic

o, = —0.038 and§ = 1.077 fora = 1.2327. Due to attractor is the same as that for the case of the SNA.
the existence of holes (shown in white), the smooth Hence, it is sufficient to consider only the case of
unstable torus (represented by a dashed line) is inac-the SNA for presentation of the mechanism for the
cessible from the interior of the basin of the SNA.As  BC. Using the RA of levek = 7, we investigate the
passes another threshold valde (= 1.232 722 002, mechanism for the BC of the SNA along the route
the SNA is destroyed abruptly via a BC when it col- D for ¢ = 0.43. Fig. 4(c) and (d)show the RAs to
lides with a hole boundary. As in the case of the SNA, the SNA (denoted by black dots) and the ring-shaped
BC of a chaotic attractor also occurs along the rdute  unstable set (shown in dark gray). Unlike the case
through a collision with a hole boundary. For example, of the smooth torus, the RA to the SNA consists of
at a fixed value of = 0.405, consider a chaotic attrac- the periodic and chaotic components. Since the peri-
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