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We study dynamical responses of the self-oscillating Morris-Lecar (ML) neuron under
quasiperiodic stimulation. For the case of periodic stimulation on the self-oscillating ML
neuron, a transition from a periodic to a chaotic oscillation occurs through period doublings.
We investigate the effect of the quasiperiodic forcing on this period-doubling route to chaotic
oscillation. In contrast to the periodically-forced case, a new type of strange nonchaotic (SN)
oscillating states (that are geometrically strange but have no positive Lyapunov exponents)
is thus found to appear between the regular and chaotic oscillating states. Strange fractal
geometry of these SN oscillating states, which is characterized in terms of the phase sensitiv-
ity exponent and the distribution of local finite-time Lyapunov exponent, leads to aperiodic
“complex” spikings. Diverse routes to SN oscillations are found, as in the quasiperiodically
forced logistic map.

Subject Index: 034, 552

§1. Introduction

To probe dynamical properties of a system, one often applies an external stimu-
lation to the system and study its dynamical response. Particularly, much attention
has been paid to various periodically stimulated biological systems such as the em-
bryonic chick heart-cell aggregates1) and the squid giant axon.2) These periodically
forced systems have been found to exhibit rich regular and chaotic behaviors.3) In
contrast to the (well-understood) periodically forced case, quasiperiodically forced
case has received little attention.4) Hence, intensive investigation of quasiperiodically
forced biological oscillators is necessary for understanding their dynamical responses
under the quasiperiodic forcing.

Strange nonchaotic (SN) states typically appear between the regular and chaotic
states in quasiperiodically forced dynamical systems.5)–16) These SN attractors show
some properties of regular as well as chaotic attractors. Like regular attractors,
they exhibit nonchaotic dynamics in the sense that they do not have a positive
Lyapunov exponent; like usual chaotic attractors, they have a geometrically strange
fractal structure. Here, we are interested in dynamical responses of quasiperiodically
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stimulated neurons and SN responses are expected to occur.
This paper is organized as follows. In §2, we study dynamical responses of the

quasiperiodically-forced self-oscillating Morris-Lecar (ML) neuron.17)–19) The effect
of periodic forcing on the self-oscillating neurons was previously studied, and regular
and chaotic responses were found.2),20) However, to the best of our knowledge, so far
there are no works on the quasiperiodically forced neurons. Here, we study the case
of quasiperiodic stimulation with two incommensurate frequencies, and compare the
dynamical responses with those for the case of periodic stimulus. In the periodically
forced case (i.e., in the presence of only one ac stimulus source), a transition from a
periodic to a chaotic oscillation is found to occur via an infinite sequence of period-
doubling bifurcations.21) We investigate the effect of the quasiperiodic forcing on
this period-doubling route to chaotic oscillation by adding another independent ac
stimulus source. Thus, in contrast to the case of periodic forcing, a new type of SN
oscillating states is found to appear between the regular and chaotic oscillating states.
We characterize the strangeness of SN attractors in terms of the phase sensitivity
exponent and the distribution of local finite-time Lyapunov exponent.10) Due to
their strange geometry, SN oscillating states give rise to the appearance of aperiodic
complex spikings. Diverse dynamical routes to SN oscillating states are identified,
as in the quasiperiodically forced logistic map. Finally, a summary is given in § 3.

§2. SN oscillations in the quasiperiodically forced ML neuron

We consider the conductance-based ML neuron model, originally proposed to
describe the time-evolution pattern of the membrane potential for the giant muscle
fibers of barnacles.17)–19) The dynamics of the ML neuron, which is quasiperiodically
forced at two incommensurate frequencies f1 and f2, is governed by the following set
of differential equations:

C
dV

dt
= −Iion + Iext = −(ICa + IK + IL) + Iext

= −gCam∞(V )(V − VCa) − gKw(V − VK) − gL(V − VL) + Iext, (2.1a)
dw

dt
= φ

(w∞(V ) − w)
τR(V )

, (2.1b)

where

m∞(V ) = 0.5 [1 + tanh {(V − V1)/V2}] , (2.2a)
w∞(V ) = 0.5 [1 + tanh {(V − V3)/V4}] , (2.2b)
τR(V ) = 1/ cosh {(V − V3)/(2V4)} . (2.2c)

Here, the external stimulus current density (measured in units of μA/cm2) is given
by Iext = Idc + A1 sin(2πf1t) + A2 sin(2πf2t), Idc is a dc stimulus, A1 and A2 are
amplitudes of quasiperiodic forcing, and ω(≡ f2/f1) is irrational (f1 and f2: mea-
sured in units of kHz). The state of the ML neuron at a time t (measured in units
of ms) is characterized by two state variables: the membrane potential V (mea-
sured in units of mV) and the slow recovery variable w representing the activation
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of the K+ current (i.e., the fraction of open K+ channels). In Eq. (2.1a), C de-
notes the capacitance of the membrane, and the total ionic current consists of the
calcium current ICa, the potassium current IK , and the leakage current IL. Each
ionic current obeys Ohm’s law. The constants gCa, gK , and gL are the maximum
conductances for the ion and leakage channels, and the constants VCa, VK , and
VL are the corresponding equilibrium potentials at which each current is balanced
by the ionic concentration difference across the membrane. Since the calcium cur-
rent ICa changes much faster than the potassium current IK , the gate variable m
for the Ca2+ channel is assumed to always take its saturation value m∞. On the
other hand, the activation variable w for the K+ channel approaches its saturation
value w∞ with the relaxation time τR(V )/φ, where τR has a dimension of ms and
φ is a (dimensionless) temperaturelike time scale factor. The ML neuron may be
either type-I or type-II depending on the system parameters.18) For the case of a
type-I (type-II) neuron, the firing frequency begins to increase from zero (a non-
zero finite value) when Idc passes a threshold value. Here, we consider the case of
type-II excitability where gCa = 4.4 mS/cm2, gK = 8 mS/cm2, gL = 2 mS/cm2,
VCa = 120 mV, VK = −84 mV, VL = −60 mV, C = 20 μF/cm2, φ = 0.04, V1 =
−1.2 mV, V2 = 18 mV, V3 = 2 mV, and V4 = 30 mV.18)

For getting the Poincaré map of Eq. (2.1), we make a normalization f1t → t,
and then Eq. (2.1) can be reduced to the following differential equations:

dV

dt
= F1(x, θ)

=
1

C f1
[−gCam∞(V )(V − VCa) − gKw(V − VK)

−gL(V − VL) + Iext], (2.3a)
dw

dt
= F2(x, θ) =

φ

f1

(w∞(V ) − w)
τR(V )

, (2.3b)

dθ

dt
= ω, (mod 1) (2.3c)

where x[= (x1, x2)] ≡ (V, w) and Iext = Idc + A1 sin(2πt) + A2 sin(2πθ). The phase
space of the quasiperiodically forced ML oscillator is four dimensional with coor-
dinates V , w, θ, and t. Since the system is periodic in θ and t, they are circular
coordinates in the phase space. Then, we consider the surface of section, the V -w-θ
hypersurface at t = n (n: integer). The phase-space trajectory intersects the surface
of section in a sequence of points. This sequence of points corresponds to a mapping
on the three-dimensional hypersurface. The map can be computed by stroboscopi-
cally sampling the orbit points vn [≡ (xn, θn)] at the discrete time n (corresponding
to multiples of the first external driving period T1). We call the transformation
vn → vn+1 the Poincaré map, and write vn+1 = P (vn).

Equations (2.1) and (2.3c) are numerically integrated by using the fourth-order
Runge-Kutta method. Dynamical analysis is done in both the continuous-time
system (i.e., flow) and the discrete-time system (i.e., Poincaré map). For exam-
ple, the time series of the membrane potential V (t) and the phase flow are ob-
tained in the flow. On the other hand, the Lyapunov exponent22) and the phase
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Fig. 1. Period-doubling transition to chaos in the periodically forced ML oscillator for Idc = 200

μA/cm2 and f1 = 29 Hz (A2 = 0). Time series of V (t) for (a) A1 = 71.2 μA/cm2, (b) A1 = 70.3

μA/cm2, and (c) A1 = 69.3 μA/cm2, which correspond to the period-1, period-2, and chaotic

states in the Poincaré map P (solid circles represent stroboscopically sampled points in P ),

respectively. The largest Lyapunov exponent for the chaotic oscillation in (c) is σ1 � 0.334. (d)

Bifurcation diagram (i.e., plot of V versus A1) in P .

sensitivity exponent10) are calculated in the Poincaré map P . To get the Lya-
punov exponent of an attractor in the Poincaré map, we choose 20 random initial
points {(Vi(0), wi(0), θi(0)); i = 1, . . . , 20} with uniform probability in the range of
Vi(0) ∈ (−20, 20), wi(0) ∈ (0.4, 0.5), and θi(0) ∈ [0, 1). For each initial point, we
obtain the Lyapunov exponent, and choose the average value of the 20 Lyapunov
exponents. (The method of getting the phase sensitivity exponent will be given
below.)

In the presence of only the dc stimulus (i.e., A1 = A2 = 0), a transition from
a silent state to a periodic spiking state occurs for Idc = I∗dc (� 93.9 μA/cm2)
through a subcritical Hopf bifurcation as the silent state absorbs the unstable limit
cycle born via a fold limit cycle bifurcation for Idc � 88.3 μA/cm2.18) Thus, a self-
sustained oscillation (corresponding to a spiking state) is induced in the ML neuron
for Idc > I∗dc. Here, we set Idc = 200 μA/cm2 and ω to be the reciprocal of the
golden mean [i.e., ω = (

√
5− 1)/2], and numerically investigate dynamical responses

of the self-oscillating ML oscillator under the ac external stimulus. We first study
the periodically-forced case (i.e., A2 = 0) by changing A1 for f1 = 29 Hz. The time
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Fig. 2. State diagram in the A1-A2 plane for Idc = 200 μA/cm2 and f1 = 29 Hz in the quasiperi-

odically forced ML oscillator. Regular, SN, and chaotic regions are shown in light gray, gray,

and black, respectively. In the regular region, the torus, the doubled torus, and the quadrupled

torus exist in the regions denoted by T , 2T , and 4T , respectively, and the solid lines represent

torus doubling bifurcation curves with terminal points denoted by crosses. SN attractors appear

via various routes when passing the heavy solid line, the dashed line, and the dotted line.

series of V (t) for A1 = 71.2, 70.3, and 69.3 μA/cm2 are shown in Figs. 1(a)–(c),
respectively, and the bifurcation diagram in the Poincaré map P is also given in
Fig. 1(d); stroboscopically sampled points in P are represented by solid circles in
Figs. 1(a)–(c). Successive period-doubling bifurcations occur as A1 is decreased. For
example, periodic oscillations of V (t) in Figs. 1(a) and 1(b) correspond to period-1
and period-2 states in P , respectively. As A1 passes a threshold A∗

1 (= 69.576 779
μA/cm2) a chaotic transition occurs. Thus, for A1 < A∗

1 chaotic oscillations with
positive Lyapunov exponents appear [e.g., see Fig. 1(c)].

We now investigate the effect of quasiperiodic forcing on the period-doubling
route to chaotic oscillation by varying A1 and A2 for f1 = 29 Hz. A state diagram
in the A1-A2 plane is shown in Fig. 2. We characterize each state in terms of
the largest (nontrivial) Lyapunov exponent σ1, associated with dynamics of the
variable x [besides the (trivial) zero exponent, related to the phase variable θ of the
quasiperiodic forcing] and the phase sensitivity exponent δ. The exponent δ measures
the sensitivity of the variable x with respect to the phase θ of the quasiperiodic
forcing and characterizes the strangeness of an attractor.10) A smooth torus that
has a negative largest Lyapunov exponent (i.e., σ1 < 0) without phase sensitivity
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(i.e., δ = 0) exists in the region denoted by T and shown in light gray. Regular
quasiperiodic oscillations occur on these smooth tori. When crossing a solid line,
the smooth torus becomes unstable and bifurcates to a smooth doubled torus in the
region represented by 2T . These doubled tori also bifurcate to quadrupled tori which
exist in the region denoted by 4T . On the other hand, chaotic oscillating states with
positive largest Lyapunov exponents (σ1 > 0) exist in the region shown in black.
Between these regular and chaotic regions, SN oscillating states that have negative
largest Lyapunov exponents (σ1 < 0) and positive phase sensitivity exponents (δ > 0)
exist in the region shown in gray. Due to their high phase sensitivity, SN oscillating
states have a strange fractal phase space structure leading to aperiodic complex
spikings. These SN states are robust ones because they appear in a finite range of
the parameter space.15) Diverse dynamical routes to SN oscillations will be discussed
below.

SN attractors appear via gradual fractalization when passing a heavy solid
boundary curve in Fig. 2.8) As an example, we study such transition to SN os-
cillations along the route a by decreasing A1 for A2 = 1.1 μA/cm2. The time series
of V (t) for the quasiperiodic oscillation, the SN oscillation, and the chaotic oscilla-
tion for A1 = 70.9, 70.67, and 70.5 μA/cm2 are shown in Figs. 3(a)–(c), respectively.
These regular, SN, and chaotic states are analyzed in terms of the largest Lyapunov
exponent σ1 and the phase sensitivity exponent δ in the Poincaré map. Figures 3(d)-
(f) show projections of their corresponding attractors onto the θ-V plane. For the
regular state, a smooth torus exists in the θ-V plane, as shown in Fig. 3(d). As A1 is
decreased, the smooth torus becomes more and more wrinkled and transforms to an
SN attractor without apparent mediation of any nearby unstable invariant set5),6)

[e.g., see Fig. 3(e)]. This kind of gradual fractaliczation is the most common route
to SN attractors. As A1 is further decreased, such an SN attractor transforms to a
chaotic attractor, as shown in Fig. 3(f).

Dynamical property of an attractor is characterized in terms of the largest Lya-
punov exponent σ1. The Lyapunov-exponent diagram (i.e., plot of σ1 vs A1) is shown
in Fig. 3(g). As A1 passes a threshold value of A1 � 70.729 μA/cm2, an SN attractor
appears. The graph of σ1 for the SN attractor is shown in black, and its value is
negative like the case of smooth torus. However, when passing the chaotic transi-
tion point of A1 � 70.621 μA/cm2, a chaotic attractor with a positive σ1 appears.
Although SN and chaotic attractors are dynamically different, both of them have
strange geometry. For characterizing the strangeness of an attractor, we investigate
the sensitivity of the attractor with respect to the phase θ of the external quasiperi-
odic forcing.10) This phase sensitivity may be characterized by differentiating x with
respect to θ of the quasiperiodic forcing at a discrete time t = n. Using Eq. (2.3c),
we obtain the following governing equation for ∂xi

∂θ (i = 1, 2),

d

dt

(
∂xi

∂θ

)
=

2∑
j=1

∂Fi

∂xj
· ∂xj

∂θ
+

∂Fi

∂θ
, (2.4)

where (x1, x2) = (V, w) and Fi (i = 1, 2) are given in Eq. (2.3c). Starting from an
initial point x(0) and an initial value ∂x/∂θ = 0 for t = 0, we obtain the deriva-
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Fig. 3. Appearance of an SN attractor via gradual fractalization along the route a in Fig. 2 for

A2 = 1.1 μA/cm2. Time series of V (t) for (a) the quasiperiodic spiking state (A1 = 70.9

μA/cm2), (b) the SN spiking state (A1 = 70.67 μA/cm2), and (c) the chaotic spiking state

(A1 = 70.5 μA/cm2). Solid circles represent stroboscopically sampled points in the Poincaré

map P . Projections of attractors onto the θ-V plane in P are shown for (d) the smooth torus

[corresponding to (a)], (e) the SN attractor (corresponding to (b)], and (f) the chaotic attractor

[corresponding to (c)]. (g) Lyapunov-exponent diagram (i.e., plot of σ1 vs A1); σ1 for the SN

attractor is shown in black. (h) Phase sensitivity functions Γ
(1)
N are shown for the smooth torus

(T ) [(d)] and the SN attractor (SNA) [(e)]. For the case of the SN attractor, the graph is well

fitted with a dashed straight line with slope δ � 2.36. (i) Plot of the phase sensitivity exponent

δ versus ΔA1 (= A1 − A∗
1) for the SN attractor; A∗

1 � 70.729.

tive values of S
(i)
n (≡ ∂xi/∂θ) at all subsequent discrete time t = n by integrating

Eqs. (2.3c) and (2.4). One can easily see the boundedness of S
(i)
n by looking only at

the maximum

γ
(i)
N (x(0)) = max

0≤n≤N
|S(i)

n (x(0))| . (i = 1, 2) (2.5)

Generally, γ
(i)
N (x(0)) depends on a particular trajectory. To obtain a “representative”

quantity that is independent of a particular trajectory, we consider an ensemble of
randomly chosen initial points {x(0)}, and take the minimum value of γ

(i)
N with
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respect to the initial orbit points,10)

Γ
(i)
N = min

{x(0)}
γ

(i)
N (x(0)) . (i = 1, 2) (2.6)

Figure 3(h) shows a phase sensitivity function Γ
(1)
N , which is obtained in an ensemble

containing 20 random initial orbit points {(Vi(0), wi(0)); i = 1, . . . , 20} which are
chosen with uniform probability in the range of Vi(0) ∈ (−20, 20), wi(0) ∈ (0.4, 0.5),
and θi(0) ∈ [0, 1). For the case of the smooth torus in Fig. 3(d), Γ

(1)
N grows up to the

largest possible value of the derivative |∂x1/∂θ| along a trajectory and remains for
all subsequent time. Thus, Γ

(1)
N saturates for large N and hence the smooth torus

has smooth geometry without phase sensitivity. On the other hand, for the case of
the SN attractor in Fig. 3(e), Γ

(1)
N grows unboundedly with a power δ,

Γ
(1)
N ∼ N δ. (2.7)

Here, the value of δ � 2.36 is a quantitative characteristic of the phase sensitivity
of the SN attractor, and δ is called the phase sensitivity exponent. For getting
satisfactory statistics, we consider 20 ensembles for each A1, each of which contains
20 randomly chosen initial points and choose the average value of the 20 phase
sensitivity exponents obtained in the 20 ensembles. Figure 3(i) shows a plot of δ
versus ΔA1 (= A1 − A∗

1). We note that the value of δ monotonically increases from
zero as A1 is decreased away from the SN transition point A∗

1 (= 70.729 μA/cm2).
Due to this phase sensitivity, the SN oscillating state has strange fractal geometry
leading to aperiodic complex spikings, like the case of chaotic oscillations [e.g., see
Figs. 3(b) and (c)].

When passing a dashed boundary curve in Fig. 2, another route to SN attractors
appears via collision between a stable smooth doubled torus and its unstable smooth
parent torus.9) As an example, we study such transition to SN oscillations along
the route b by decreasing A1 for A2 = 0.6 μA/cm2. Figure 4(a) shows a stable
two-band torus (denoted by a solid curve) and an unstable smooth one-band parent
torus (denoted by a short-dashed curve) for A1 = 70.44 μA/cm2. We note that the
unstable parent torus is located in the middle of the two bands of the stable torus.
With decrease in A1, the bands of the stable torus become more and more wrinkled,
while the unstable torus remains smooth [e.g. see Fig. 4(b)]. As A1 passes a threshold
value of A1 � 70.4321 μA/cm2, the two bands of the stable torus touch its unstable
parent torus at a dense set of θ values (not at all θ values). This phase-dependent
(nonsmooth) collision between the stable doubled torus and its unstable parent torus
results in the birth of an SN attractor, as shown in Fig. 4(c). This SN attractor,
containing the former bands of the torus as well as the unstable parent torus, has
a positive phase sensitivity exponent (i.e., δ > 0). We discuss the distribution of
local (M -time) Lyapunov exponents σM

1 , causing the phase sensitivity of the SN
attractor.10) By taking a long trajectory and dividing it into segments of length M ,
we calculate σM

1 for each segment and obtain the probability distribution P (σM
1 ).

For M = 100, 300, and 500, P (σM
1 ) are shown in Fig. 4(d). In the limit of M → ∞,

P (σM
1 ) approaches the delta distribution δ(σM

1 − σ1), where σ1(� −0.019) is the
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Fig. 4. Appearance of an SN attractor via phase-dependent (nonsmooth) collision between a stable

two-band torus and its unstable smooth parent torus along the route b in Fig. 2 for A2 = 0.6

μA/cm2. Stable two-band torus (denoted by a solid curve) and its unstable smooth torus (rep-

resented by a short-dashed curve) for (a) A1 = 70.44 μA/cm2 and (b) A1 = 70.434 μA/cm2.

(c) SN attractor with σ1 � −0.019 and δ � 1.81 for A1 = 70.42 μA/cm2. (d) Three proba-

bility distributions P (σM
1 ) of the local M -time Lyapunov exponent for M = 100 (circles), 300

(triangles), and 500 (crosses) when A1 = 70.42 μA/cm2. (e) Three plots of log10 F+
M versus

− log10 M for A1 = 70.415, 70.42, and 70.425 μA/cm2. (f) Chaotic attractor with σ1 � 0.012

for A1 = 70.4 μA/cm2.

usual averaged Lyapunov exponent. However, we note that the distribution P (σM
1 )

has a significant positive tail which does not vanish even for large M . This positive
tail results from the local expansion near the embedded unstable parent torus.5) To
quantify this slow decay of the positive tail, we define the fraction of positive local
Lyapunov exponents as

F+
M =

∫ ∞

0
P (σM

1 ) dσM
1 . (2.8)

These fractions F+
M are plotted for A1 = 70.415, 70.42, and 70.425 μA/cm2 in

Fig. 4(e). Note that for each value of A1, the fraction F+
M exhibits a power-law
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decay,
F+

M ∼ M−η. (2.9)

Here, the value of η decreases as A1 is decreased. Consequently, a trajectory on
any SN attractor has segments of arbitrarily long length M that have positive local
Lyapunov exponents, and thus it has a phase sensitivity, inducing the strangeness
of the SN attractor. As shown in Fig. 4(e), as A1 is decreased the value of F+

M
becomes larger. Hence, the degree of phase sensitivity of the SN attractor increases.
However, its dynamics is nonchaotic because the averaged Lyapunov exponent is
negative (i.e., σ1 < 0). As another threshold value of A1 � 70.412 μA/cm2 is passed,
the SN attractor turns into a chaotic attractor with a positive largest Lyapunov
exponent σ1, as shown in Fig. 4(f).

A main interesting feature of the state diagram in Fig. 2 is the existence of
“tongues” of quasiperiodic motion that penetrate into the chaotic region. The first-
order (second-order) tongue lies near the terminal point (denoted by a cross) of
the first-order (second-order) torus-doubling bifurcation curve. When crossing the
upper boundary of the tongue (denoted by a dotted line), an SN attractor exhibiting
intermittency appears. This intermittent transition was found to occur via phase-
dependent collision of a stable torus with a nonsmooth ring-shaped unstable set in
the quasiperiodically forced logistic map.12),13) Here, we study the transition to an
intermittent SN attractor along the route c in the first-order tongue by increasing
A2 for A1 = 70.2 μA/cm2. Figure 5(a) shows a smooth torus for A2 = 0.94 μA/cm2.
When passing a threshold value of A2 � 0.945 49 μA/cm2, a sudden transition to an
intermittent SN attractor occurs, as shown in Fig. 5(b) for A2 = 0.9455 μA/cm2. A
typical trajectory on the intermittent SN attractor spends a long stretch of time in
the vicinity of the former torus, then it bursts out from this region and traces out a
much larger fraction of the state space, and so on. To characterize the intermittent
bursting, we use a small quantity d∗ for the threshold value of the magnitude of the
deviation from the former torus. When the deviation is smaller (larger) than d∗, the
intermittent attractor is in the laminar (bursting) phase. For each A2, we follow a
long trajectory until 104 laminar phases are obtained in the Poincaré map P and
get the average of characteristic time τ between bursts. As shown in Fig. 5(c), the
average value of τ exhibits a power-law scaling behavior,

τ ∼ ΔA−γ
2 , γ � 0.5, (2.10)

where the overbar represents time averaging and ΔA∗
2 = A2 − A∗

2 (A∗
2 = 0.94549).

The scaling exponent γ seems to be the same as that for the case of the quasi-
periodically forced map.11) This SN attractor has a positive phase sensitivity with
δ � 4.76 due to the existence of positive local Lyapunov exponents. Figure 5(d)
shows the probability distributions of local (M -time) Lyapunov exponents P (σM

1 )
for M = 100, 300, and 500. We note that the distribution P (σM

1 ) has a significant
positive tail which does not vanish even for large M . This positive tail results from
the local expansion near the embedded unstable set.5) We quantify this slow decay
of the positive tail in terms of the fraction of positive local Lyapunov exponents
F+

M defined in Eq. (2.8). Such fractions F+
M are plotted for A1 = 0.94549, 0.9455,
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Fig. 5. Appearance of an intermittent SN attractor along the route c in Fig. 2 for A1 = 70.2

μA/cm2. (a) Smooth torus with σ1 � −0.125 for A2 = 0.94 μA/cm2. (b) Intermittent SN

attractor with σ1 �= −0.012 and δ � 4.76 for A2 = 0.9455 μA/cm2. (c) Plot of log10τ vs

log10ΔA2. The graph is well fitted with a dashed straight line with slope γ � 0.5. Here τ is

the average characteristic time between bursts and ΔA2 = A2 − A∗
2 (A∗

2 = 0.94549 μA/cm2).

For each ΔA2, τ is calculated from 104 laminar phases in the Poincaré map P . (d) Three

probability distributions P (σM
1 ) of the local M -time Lyapunov exponent for M = 100 (circles),

300 (triangles), and 500 (crosses) when A2 = 0.9455 μA/cm2. (e) Three plots of log10 F+
M versus

− log10 M for A2 = 0.94549, 0.9455, and 0.94553 μA/cm2. (f) Chaotic attractor with σ1 � 0.038

for A2 = 0.948 μA/cm2.

and 0.94553 μA/cm2 in Fig. 5(e). Note that for each value of A2, the fraction F+
M

exhibits a power-law decay, F+
M ∼ M−η, where the value of η decreases as A2 is

increased. As a result, a trajectory on any SN attractor has segments of arbitrarily
long length M that have positive local Lyapunov exponents, and thus it has a phase
sensitivity, inducing the strangeness of the SN attractor. However, its dynamics is
nonchaotic because the averaged Lyapunov exponent is negative (i.e. σ1 < 0) in the
limit of M → ∞. As another threshold value of A2 � 0.9456 μA/cm2 is passed,
the SN attractor transforms to a chaotic attractor with a positive largest Lyapunov
exponent σ1 [see Fig. 5(f)]. As in this case of the first-order tongue, similar transition
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from a smooth doubled torus to a single-band intermittent SN attractor also occurs
when passing the upper dotted boundary curve of the second-order tongue.

§3. Summary

We have studied dynamical responses of the self-oscillating ML neuron under
quasiperiodic stimulation andquasiperiodic stimulation and compared them with
those for the case of periodic stimulus. In the periodically-forced case, a transi-
tion from a periodic to a chaotic oscillation has been found to occur through period
doublings. We have investigated the effect of the quasiperiodic forcing on the period-
doubling route to chaotic oscillation. Unlike the case of periodic forcing, a new type
of SN oscillating states has been found to appear between the regular and chaotic
oscillating states. Strange geometry of the SN attractors, which is characterized in
terms of the phase sensitivity and the distribution of local finite-time Lyapunov ex-
ponent, leads to aperiodic complex spikings. Diverse routes to SN oscillations have
been found, as in the quasiperiodically forced logistic map. These SN attractors are
also found to appear in both the Hodgkin-Huxley neuron and the FitzHugh-Nagumo
neuron under quasiperiodic forcing.23) Hence, the dynamical routes to SN states
seem to be “universal” because they occur in typical quasiperiodically forced period-
doubling systems of different nature. Finally, we suggest a real experiment on the
quasiperiodically forced neuron (e.g., a squid giant axon) and expect SN dynamical
responses to be observed.
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